-
Notifications
You must be signed in to change notification settings - Fork 3
/
ArraysTwo.java
831 lines (708 loc) · 23 KB
/
ArraysTwo.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
/**
*
*/
package coding.bat.solutions;
/**
* @author Aman Shekhar
*
*/
public class ArraysTwo {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
}
// --------------------------------------------------------------------------------------------
// Return the number of even ints in the given array. Note: the % "mod" operator
// computes the remainder, e.g. 5 % 2 is 1.
//
//
// countEvens([2, 1, 2, 3, 4]) → 3
// countEvens([2, 2, 0]) → 3
// countEvens([1, 3, 5]) → 0
public int countEvens(int[] nums) {
int mCount = 0;
for (int i : nums) {
if ((i % 2) == 0) {
mCount++;
}
}
return mCount;
}
// --------------------------------------------------------------------------------------------
// Given an array length 1 or more of ints, return the difference between the
// largest and smallest values in the array. Note: the built-in Math.min(v1, v2)
// and Math.max(v1, v2) methods return the smaller or larger of two values.
//
//
// bigDiff([10, 3, 5, 6]) → 7
// bigDiff([7, 2, 10, 9]) → 8
// bigDiff([2, 10, 7, 2]) → 8
//
// --------------------------------------------------------------------------------------------
public int bigDiff(int[] nums) {
int max = nums[0];
int min = nums[0];
for (int i : nums) {
if (i > max) {
max = i;
}
if (i <= min) {
min = i;
}
}
return max - min;
}
// Return the "centered" average of an array of ints, which we'll say is the
// mean average of the values, except ignoring the largest and smallest values
// in the array. If there are multiple copies of the smallest value, ignore just
// one copy, and likewise for the largest value. Use int division to produce the
// final average. You may assume that the array is length 3 or more.
//
//
// centeredAverage([1, 2, 3, 4, 100]) → 3
// centeredAverage([1, 1, 5, 5, 10, 8, 7]) → 5
// centeredAverage([-10, -4, -2, -4, -2, 0]) → -3
// --------------------------------------------------------------------------------------------
public int centeredAverage(int[] nums) {
int result = 0;
int largest = nums[0];
int smallest = nums[0];
for (int i : nums) {
result += i;
if (i > largest) {
largest = i;
}
if (i < smallest) {
smallest = i;
}
}
result -= (largest + smallest);
return result /= (nums.length - 2);
}
// Return the sum of the numbers in the array, returning 0 for an empty array.
// Except the number 13 is very unlucky, so it does not count and numbers that
// come immediately after a 13 also do not count.
//
//
// sum13([1, 2, 2, 1]) → 6
// sum13([1, 1]) → 2
// sum13([1, 2, 2, 1, 13]) → 6
// --------------------------------------------------------------------------------------------
public int sum13(int[] nums) {
int sum = 0;
if (nums.length == 0) {
sum = sum;
} else {
for (int i = 0; i < nums.length - 1; i++) {
if (nums[i] == 13) {
sum = sum;
nums[i + 1] = 0;
} else {
sum += nums[i];
}
}
if (nums[nums.length - 1] != 13) {
sum += nums[nums.length - 1];
}
}
return sum;
}
// --------------------------------------------------------------------------------------------
// Return the sum of the numbers in the array, except ignore sections of numbers
// starting with a 6 and extending to the next 7 (every 6 will be followed by at
// least one 7). Return 0 for no numbers.
//
//
// sum67([1, 2, 2]) → 5
// sum67([1, 2, 2, 6, 99, 99, 7]) → 5
// sum67([1, 1, 6, 7, 2]) → 4
public int sum67(int[] nums) {
int mSum = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] != 6) {
mSum += nums[i];
} else {
while (nums[i] != 7) {
i++;
}
}
}
return mSum;
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if the array contains a 2 next to a 2
// somewhere.
//
//
// has22([1, 2, 2]) → true
// has22([1, 2, 1, 2]) → false
// has22([2, 1, 2]) → false
public boolean has22(int[] nums) {
for (int i = 0; i < nums.length - 1; i++) {
if (nums[i] == 2 && nums[i + 1] == 2)
return true;
}
return false;
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if the array contains no 1's and no 3's.
//
//
// lucky13([0, 2, 4]) → true
// lucky13([1, 2, 3]) → false
// lucky13([1, 2, 4]) → false
public boolean lucky13(int[] nums) {
for (int i = 0; i < nums.length; i++) {
if (nums[i] == 1 || nums[i] == 3)
return false;
}
return true;
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if the sum of all the 2's in the array is
// exactly 8.
//
//
// sum28([2, 3, 2, 2, 4, 2]) → true
// sum28([2, 3, 2, 2, 4, 2, 2]) → false
// sum28([1, 2, 3, 4]) → false
public boolean sum28(int[] nums) {
int sum = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] == 2) {
sum += nums[i];
}
}
if (sum == 8)
return true;
return false;
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if the number of 1's is greater than the
// number of 4's
//
//
// more14([1, 4, 1]) → true
// more14([1, 4, 1, 4]) → false
// more14([1, 1]) → true
public boolean more14(int[] nums) {
int mNum1 = 0;
int mNum4 = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] == 1) {
mNum1++;
} else if (nums[i] == 4) {
mNum4++;
}
}
return mNum1 > mNum4;
}
// --------------------------------------------------------------------------------------------
// Given a number n, create and return a new int array of length n, containing
// the numbers 0, 1, 2, ... n-1. The given n may be 0, in which case just return
// a length 0 array. You do not need a separate if-statement for the length-0
// case; the for-loop should naturally execute 0 times in that case, so it just
// works. The syntax to make a new int array is: new int[desired_length]
public int[] fizzArray(int n) {
int[] array = new int[n];
for (int i = 0; i < n; i++) {
array[i] = i;
}
return array;
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if every element is a 1 or a 4.
//
//
// only14([1, 4, 1, 4]) → true
// only14([1, 4, 2, 4]) → false
// only14([1, 1]) → true
public boolean only14(int[] nums) {
int mCount = 0;
for (int element : nums) {
if (element != 4 && element != 1) {
mCount++;
}
}
return !(mCount > 0);
}
// --------------------------------------------------------------------------------------------
// Given a number n, create and return a new string array of length n,
// containing the strings "0", "1" "2" .. through n-1. N may be 0, in which case
// just return a length 0 array. Note: String.valueOf(xxx) will make the String
// form of most types. The syntax to make a new string array is: new
// String[desired_length] (See also: FizzBuzz Code)
//
//
// fizzArray2(4) → ["0", "1", "2", "3"]
// fizzArray2(10) → ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]
// fizzArray2(2) → ["0", "1"]
public String[] fizzArray2(int n) {
String[] array2 = new String[n];
for (int i = 0; i < n; i++) {
array2[i] = String.valueOf(i);
}
return array2;
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if it contains no 1's or it contains no
// 4's.
//
//
// no14([1, 2, 3]) → true
// no14([1, 2, 3, 4]) → false
// no14([2, 3, 4]) → true
public boolean no14(int[] nums) {
int one = 0;
int four = 0;
for (int element : nums) {
if (element == 1) {
one++;
}
if (element == 4) {
four++;
}
}
if (one == 0) {
return true;
} else if (four == 0) {
return true;
} else {
return false;
}
}
// --------------------------------------------------------------------------------------------
// We'll say that a value is "everywhere" in an array if for every pair of
// adjacent elements in the array, at least one of the pair is that value.
// Return true if the given value is everywhere in the array.
//
//
// isEverywhere([1, 2, 1, 3], 1) → true
// isEverywhere([1, 2, 1, 3], 2) → false
// isEverywhere([1, 2, 1, 3, 4], 1) → false
//
public boolean isEverywhere(int[] nums, int val) {
for (int i = 0; i < nums.length - 1; i++) {
if (nums[i] != val && nums[i + 1] != val)
return false;
}
return true;
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if the array contains a 2 next to a 2 or
// a 4 next to a 4, but not both.
//
//
// either24([1, 2, 2]) → true
// either24([4, 4, 1]) → true
// either24([4, 4, 1, 2, 2]) → false
public boolean either24(int[] nums) {
boolean isTwo = false;
boolean isFour = false;
for (int i = 0; i < nums.length - 1; i++) {
if ((nums[i] == 2 && nums[i + 1] == 2)) {
isTwo = true;
} else if (nums[i] == 4 && nums[i + 1] == 4) {
isFour = true;
}
}
return isTwo != isFour;
}
// --------------------------------------------------------------------------------------------
// Given arrays nums1 and nums2 of the same length, for every element in nums1,
// consider the corresponding element in nums2 (at the same index). Return the
// count of the number of times that the two elements differ by 2 or less, but
// are not equal.
//
//
// matchUp([1, 2, 3], [2, 3, 10]) → 2
// matchUp([1, 2, 3], [2, 3, 5]) → 3
// matchUp([1, 2, 3], [2, 3, 3]) → 2
public int matchUp(int[] nums1, int[] nums2) {
int count = 0;
for (int i = 0; i < nums1.length; i++) {
if (Math.abs(nums1[i] - nums2[i]) <= 2 && nums1[i] != nums2[i])
count++;
}
return count;
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if the array contains two 7's next to
// each other, or there are two 7's separated by one element, such as with {7,
// 1, 7}.
//
//
// has77([1, 7, 7]) → true
// has77([1, 7, 1, 7]) → true
// has77([1, 7, 1, 1, 7]) → false
public boolean has77(int[] nums) {
for (int i = 0; i < nums.length - 1; i++) {
if (nums[i] == 7 && nums[i + 1] == 7)
return true;
if (i <= nums.length - 3 && nums[i] == 7 && nums[i + 2] == 7)
return true;
}
return false;
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if there is a 1 in the array with a 2
// somewhere later in the array.
//
//
// has12([1, 3, 2]) → true
// has12([3, 1, 2]) → true
// has12([3, 1, 4, 5, 2]) → true
public boolean has12(int[] nums) {
boolean found1 = false;
for (int i = 0; i < nums.length; i++) {
if (nums[i] == 1)
found1 = true;
if (found1 && nums[i] == 2)
return true;
}
return false;
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if the array contains either 3 even or 3
// odd values all next to each other.
//
//
// modThree([2, 1, 3, 5]) → true
// modThree([2, 1, 2, 5]) → false
// modThree([2, 4, 2, 5]) → true
//
public boolean modThree(int[] nums) {
for (int i = 0; i < nums.length - 2; i++) {
if (nums[i] % 2 == nums[i + 1] % 2 && nums[i] % 2 == nums[i + 2] % 2)
return true;
}
return false;
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if the value 3 appears in the array
// exactly 3 times, and no 3's are next to each other.
//
//
// haveThree([3, 1, 3, 1, 3]) → true
// haveThree([3, 1, 3, 3]) → false
// haveThree([3, 4, 3, 3, 4]) → false
//
public boolean haveThree(int[] nums) {
int count = 0;
boolean isPerv3 = false;
for (int i = 0; i < nums.length && count <= 3; i++) {
if (nums[i] == 3) {
if (isPerv3)
return false;
else {
count++;
isPerv3 = true;
}
} else
isPerv3 = false;
}
return (count == 3);
}
// --------------------------------------------------------------------------------------------
// Given an array of ints, return true if every 2 that appears in the array is
// next to another 2.
//
//
// twoTwo([4, 2, 2, 3]) → true
// twoTwo([2, 2, 4]) → true
// twoTwo([2, 2, 4, 2]) → false
public boolean twoTwo(int[] nums) {
if (nums.length == 1 && nums[0] == 2)
return false;
if (nums.length >= 2
&& ((nums[0] == 2 && nums[1] != 2) || (nums[nums.length - 1] == 2 && nums[nums.length - 2] != 2)))
return false;
for (int i = 1; i <= nums.length - 2; i++) {
if (nums[i] == 2 && nums[i - 1] != 2 && nums[i + 1] != 2)
return false;
}
return true;
}
// --------------------------------------------------------------------------------------------
// Return true if the group of N numbers at the start and end of the array are
// the same. For example, with {5, 6, 45, 99, 13, 5, 6}, the ends are the same
// for n=0 and n=2, and false for n=1 and n=3. You may assume that n is in the
// range 0..nums.length inclusive.
//
//
// sameEnds([5, 6, 45, 99, 13, 5, 6], 1) → false
// sameEnds([5, 6, 45, 99, 13, 5, 6], 2) → true
// sameEnds([5, 6, 45, 99, 13, 5, 6], 3) → false
public boolean sameEnds(int[] nums, int len) {
int start = 0;
int end = nums.length - len;
for (; len > 0; len--) {
if (nums[start] != nums[end])
return false;
else {
start++;
end++;
}
}
return true;
}
// --------------------------------------------------------------------------------------------
// Return true if the array contains, somewhere, three increasing adjacent
// numbers like .... 4, 5, 6, ... or 23, 24, 25.
//
//
// tripleUp([1, 4, 5, 6, 2]) → true
// tripleUp([1, 2, 3]) → true
// tripleUp([1, 2, 4]) → false
public boolean tripleUp(int[] nums) {
if (nums.length >= 3) {
for (int i = 0; i < nums.length - 2; i++) {
int a = nums[i];
int b = nums[i + 1];
int c = nums[i + 2];
if ((c - b) == 1 && (b - a == 1)) {
return true;
}
}
return false;
}
return false;
}
// --------------------------------------------------------------------------------------------
// Given start and end numbers, return a new array containing the sequence of
// integers from start up to but not including end, so start=5 and end=10 yields
// {5, 6, 7, 8, 9}. The end number will be greater or equal to the start number.
// Note that a length-0 array is valid. (See also: FizzBuzz Code)
//
//
// fizzArray3(5, 10) → [5, 6, 7, 8, 9]
// fizzArray3(11, 18) → [11, 12, 13, 14, 15, 16, 17]
// fizzArray3(1, 3) → [1, 2]
public int[] fizzArray3(int start, int end) {
int[] arr = new int[end - start];
for (int i = start; i < end; i++)
arr[i - start] = i;
return arr;
}
// --------------------------------------------------------------------------------------------
// Return an array that is "left shifted" by one -- so {6, 2, 5, 3} returns {2,
// 5, 3, 6}. You may modify and return the given array, or return a new array.
//
//
// shiftLeft([6, 2, 5, 3]) → [2, 5, 3, 6]
// shiftLeft([1, 2]) → [2, 1]
// shiftLeft([1]) → [1]
public int[] shiftLeft(int[] nums) {
if (nums.length >= 2) {
int temp = nums[0];
for (int i = 0; i < nums.length - 1; i++)
nums[i] = nums[i + 1];
nums[nums.length - 1] = temp;
}
return nums;
}
// --------------------------------------------------------------------------------------------
// For each multiple of 10 in the given array, change all the values following
// it to be that multiple of 10, until encountering another multiple of 10. So
// {2, 10, 3, 4, 20, 5} yields {2, 10, 10, 10, 20, 20}.
//
//
// tenRun([2, 10, 3, 4, 20, 5]) → [2, 10, 10, 10, 20, 20]
// tenRun([10, 1, 20, 2]) → [10, 10, 20, 20]
// tenRun([10, 1, 9, 20]) → [10, 10, 10, 20]
public int[] tenRun(int[] nums) {
int tenMode = -1;
for (int i = 0; i < nums.length; i++) {
if (nums[i] % 10 == 0)
tenMode = nums[i];
else if (tenMode != -1)
nums[i] = tenMode;
}
return nums;
}
// --------------------------------------------------------------------------------------------
// Given a non-empty array of ints, return a new array containing the elements
// from the original array that come before the first 4 in the original array.
// The original array will contain at least one 4. Note that it is valid in java
// to create an array of length 0.
//
//
// pre4([1, 2, 4, 1]) → [1, 2]
// pre4([3, 1, 4]) → [3, 1]
// pre4([1, 4, 4]) → [1]
public int[] pre4(int[] nums) {
int p = 0;
int[] arr;
while (nums[p] != 4)
p++;
arr = new int[p];
for (int i = 0; i < p; i++)
arr[i] = nums[i];
return arr;
}
// --------------------------------------------------------------------------------------------
// Given a non-empty array of ints, return a new array containing the elements
// from the original array that come after the last 4 in the original array. The
// original array will contain at least one 4. Note that it is valid in java to
// create an array of length 0.
//
//
// post4([2, 4, 1, 2]) → [1, 2]
// post4([4, 1, 4, 2]) → [2]
// post4([4, 4, 1, 2, 3]) → [1, 2, 3]
public int[] post4(int[] nums) {
int p = nums.length - 1;
int[] arr;
while (nums[p] != 4)
p--;
arr = new int[nums.length - 1 - p];
for (int i = p + 1; i < nums.length; i++)
arr[i - p - 1] = nums[i];
return arr;
}
// --------------------------------------------------------------------------------------------
// We'll say that an element in an array is "alone" if there are values before
// and after it, and those values are different from it. Return a version of the
// given array where every instance of the given value which is alone is
// replaced by whichever value to its left or right is larger.
//
//
// notAlone([1, 2, 3], 2) → [1, 3, 3]
// notAlone([1, 2, 3, 2, 5, 2], 2) → [1, 3, 3, 5, 5, 2]
// notAlone([3, 4], 3) → [3, 4]
public int[] notAlone(int[] nums, int val) {
for (int i = 1; i < nums.length - 1; i++) {
if (nums[i] == val) {
if (nums[i - 1] != val && nums[i + 1] != val)
nums[i] = (nums[i - 1] > nums[i + 1]) ? nums[i - 1] : nums[i + 1];
}
}
return nums;
}
// --------------------------------------------------------------------------------------------
// Return an array that contains the exact same numbers as the given array, but
// rearranged so that all the zeros are grouped at the start of the array. The
// order of the non-zero numbers does not matter. So {1, 0, 0, 1} becomes {0 ,0,
// 1, 1}. You may modify and return the given array or make a new array.
//
//
// zeroFront([1, 0, 0, 1]) → [0, 0, 1, 1]
// zeroFront([0, 1, 1, 0, 1]) → [0, 0, 1, 1, 1]
// zeroFront([1, 0]) → [0, 1]
public int[] zeroFront(int[] nums) {
int zeroIndex = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] == 0) {
nums[i] = nums[zeroIndex];
nums[zeroIndex] = 0;
zeroIndex++;
}
}
return nums;
}
// --------------------------------------------------------------------------------------------
// Return a version of the given array where all the 10's have been removed. The
// remaining elements should shift left towards the start of the array as
// needed, and the empty spaces a the end of the array should be 0. So {1, 10,
// 10, 2} yields {1, 2, 0, 0}. You may modify and return the given array or make
// a new array.
//
//
// withoutTen([1, 10, 10, 2]) → [1, 2, 0, 0]
// withoutTen([10, 2, 10]) → [2, 0, 0]
// withoutTen([1, 99, 10]) → [1, 99, 0]
public int[] withoutTen(int[] nums) {
int[] arr = new int[nums.length];
int p = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] != 10) {
arr[p] = nums[i];
p++;
}
}
return arr;
}
// --------------------------------------------------------------------------------------------
// Return a version of the given array where each zero value in the array is
// replaced by the largest odd value to the right of the zero in the array. If
// there is no odd value to the right of the zero, leave the zero as a zero.
//
//
// zeroMax([0, 5, 0, 3]) → [5, 5, 3, 3]
// zeroMax([0, 4, 0, 3]) → [3, 4, 3, 3]
// zeroMax([0, 1, 0]) → [1, 1, 0]
public int[] zeroMax(int[] nums) {
int max;
for (int i = 0; i < nums.length - 1; i++) {
if (nums[i] == 0) {
max = 0;
for (int k = i + 1; k < nums.length; k++) {
if (nums[k] > max && nums[k] % 2 == 1)
max = nums[k];
}
if (max != 0)
nums[i] = max;
}
}
return nums;
}
// --------------------------------------------------------------------------------------------
// Return an array that contains the exact same numbers as the given array, but
// rearranged so that all the even numbers come before all the odd numbers.
// Other than that, the numbers can be in any order. You may modify and return
// the given array, or make a new array.
//
//
// evenOdd([1, 0, 1, 0, 0, 1, 1]) → [0, 0, 0, 1, 1, 1, 1]
// evenOdd([3, 3, 2]) → [2, 3, 3]
// evenOdd([2, 2, 2]) → [2, 2, 2]
public int[] evenOdd(int[] nums) {
int temp;
int evenIndex = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] % 2 == 0) {
temp = nums[i];
nums[i] = nums[evenIndex];
nums[evenIndex] = temp;
evenIndex++;
}
}
return nums;
}
// --------------------------------------------------------------------------------------------
// This is slightly more difficult version of the famous FizzBuzz problem which
// is sometimes given as a first problem for job interviews. (See also: FizzBuzz
// Code.) Consider the series of numbers beginning at start and running up to
// but not including end, so for example start=1 and end=5 gives the series 1,
// 2, 3, 4. Return a new String[] array containing the string form of these
// numbers, except for multiples of 3, use "Fizz" instead of the number, for
// multiples of 5 use "Buzz", and for multiples of both 3 and 5 use "FizzBuzz".
// In Java, String.valueOf(xxx) will make the String form of an int or other
// type. This version is a little more complicated than the usual version since
// you have to allocate and index into an array instead of just printing, and we
// vary the start/end instead of just always doing 1..100.
//
//
// fizzBuzz(1, 6) → ["1", "2", "Fizz", "4", "Buzz"]
// fizzBuzz(1, 8) → ["1", "2", "Fizz", "4", "Buzz", "Fizz", "7"]
// fizzBuzz(1, 11) → ["1", "2", "Fizz", "4", "Buzz", "Fizz", "7", "8", "Fizz",
// "Buzz"]
//
public String[] fizzBuzz(int start, int end) {
String[] arr = new String[end - start];
for (int i = start; i < end; i++) {
if (i % 15 == 0) {
arr[i - start] = "FizzBuzz";
} else if (i % 3 == 0) {
arr[i - start] = "Fizz";
} else if (i % 5 == 0) {
arr[i - start] = "Buzz";
} else {
arr[i - start] = String.valueOf(i);
}
}
return arr;
}
}