-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_train.py
executable file
·282 lines (249 loc) · 11.1 KB
/
run_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""run_train.py
Main HoVer-Net training script.
Usage:
run_train.py [--gpu=<id>] [--view=<dset>]
run_train.py (-h | --help)
run_train.py --version
Options:
-h --help Show this string.
--version Show version.
--gpu=<id> Comma separated GPU list. [default: 6,7]
--view=<dset> Visualise images after augmentation. Choose 'train' or 'valid'.
"""
import cv2
cv2.setNumThreads(0)
import argparse
import glob
import importlib
import inspect
import json
import os
import shutil
import matplotlib
import numpy as np
import torch
from docopt import docopt
from torch.nn import DataParallel # TODO: switch to DistributedDataParallel
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from config import Config
from dataloader.train_loader import FileLoader
from misc.utils import rm_n_mkdir, check_manual_seed
from run_utils.engine import RunEngine
from run_utils.utils import (
check_log_dir,
check_manual_seed,
colored,
convert_pytorch_checkpoint,
convert_encoder_checkpoint
)
#### have to move outside because of spawn
# * must initialize augmentor per worker, else duplicated rng generators may happen
def worker_init_fn(worker_id):
# ! to make the seed chain reproducible, must use the torch random, not numpy
# the torch rng from main thread will regenerate a base seed, which is then
# copied into the dataloader each time it created (i.e start of each epoch)
# then dataloader with this seed will spawn worker, now we reseed the worker
worker_info = torch.utils.data.get_worker_info()
# to make it more random, simply switch torch.randint to np.randint
worker_seed = torch.randint(0, 2 ** 32, (1,))[0].cpu().item() + worker_id
# print('Loader Worker %d Uses RNG Seed: %d' % (worker_id, worker_seed))
# retrieve the dataset copied into this worker process
# then set the random seed for each augmentation
worker_info.dataset.setup_augmentor(worker_id, worker_seed)
return
####
class TrainManager(Config):
"""Either used to view the dataset or to initialise the main training loop."""
def __init__(self):
super().__init__()
return
####
def _get_datagen(self, batch_size, run_mode, nr_procs=0, fold_idx=0):
nr_procs = nr_procs if not self.debug else 0
# ! Hard assumption on file type
file_list = []
if run_mode == "train":
data_dir_list = self.train_dir_list
else:
data_dir_list = self.valid_dir_list
for dir_path in data_dir_list:
file_list.extend(glob.glob("%s/*.npy" % dir_path))
file_list.sort() # to always ensure same input ordering
assert len(file_list) > 0, (
"No .npy found for `%s`, please check `%s` in `config.py`"
% (run_mode, "%s_dir_list" % run_mode)
)
print("Dataset %s: %d" % (run_mode, len(file_list)))
input_dataset = FileLoader(
file_list,
mode=run_mode,
with_type=self.type_classification,
setup_augmentor=nr_procs == 0,
**self.shape_info[run_mode]
)
dataloader = DataLoader(
input_dataset,
num_workers=nr_procs,
batch_size=batch_size * self.nr_gpus,
shuffle=run_mode == "train",
drop_last=run_mode == "train",
worker_init_fn=worker_init_fn,
)
return dataloader
####
def run_once(self, opt, run_engine_opt, log_dir, prev_log_dir=None, fold_idx=0):
"""Simply run the defined run_step of the related method once."""
check_manual_seed(self.seed)
log_info = {}
if self.logging:
# check_log_dir(log_dir)
rm_n_mkdir(log_dir)
tfwriter = SummaryWriter(log_dir=log_dir)
json_log_file = log_dir + "/stats.json"
with open(json_log_file, "w") as json_file:
json.dump({}, json_file) # create empty file
log_info = {
"json_file": json_log_file,
"tfwriter": tfwriter,
}
loader_dict = {}
for runner_name, runner_opt in run_engine_opt.items():
loader_dict[runner_name] = self._get_datagen(
opt["batch_size"][runner_name],
runner_name,
nr_procs=runner_opt["nr_procs"],
fold_idx=fold_idx,
)
####
def get_last_chkpt_path(prev_phase_dir, net_name):
stat_file_path = prev_phase_dir + "/stats.json"
with open(stat_file_path) as stat_file:
info = json.load(stat_file)
epoch_list = [int(v) for v in info.keys()]
last_chkpts_path = "%s/%s_epoch=%d.tar" % (
prev_phase_dir,
net_name,
max(epoch_list),
)
return last_chkpts_path
# TODO: adding way to load pretrained weight or resume the training
# parsing the network and optimizer information
net_run_info = {}
net_info_opt = opt["run_info"]
for net_name, net_info in net_info_opt.items():
assert inspect.isclass(net_info["desc"]) or inspect.isfunction(
net_info["desc"]
), "`desc` must be a Class or Function which instantiate NEW objects !!!"
net_desc = net_info["desc"]()
# TODO: customize print-out for each run ?
# summary_string(net_desc, (3, 270, 270), device='cpu')
pretrained_path = net_info["pretrained"]
if pretrained_path is not None:
if pretrained_path == -1:
# * depend on logging format so may be broken if logging format has been changed
pretrained_path = get_last_chkpt_path(prev_log_dir, net_name)
net_state_dict = torch.load(pretrained_path)["desc"]
else:
chkpt_ext = os.path.basename(pretrained_path).split(".")[-1]
if chkpt_ext == "npz":
net_state_dict = dict(np.load(pretrained_path))
net_state_dict = {
k: torch.from_numpy(v) for k, v in net_state_dict.items()
}
elif chkpt_ext == "tar": # ! assume same saving format we desire
net_state_dict = torch.load(pretrained_path)["desc"]
elif chkpt_ext == "pth": # ! assume same saving format we desire
# weight_path = 'efficientnet_pytorch/efficientnetb0.pth'
net_state_dict = torch.load(pretrained_path)
net_state_dict = convert_encoder_checkpoint(net_state_dict)
net_state_dict = {k: v for k, v in net_state_dict.items()
if net_desc.state_dict()[k].numel() == v.numel()
}
colored_word = colored(net_name, color="red", attrs=["bold"])
print(
"Model `%s` pretrained path: %s" % (colored_word, pretrained_path)
)
# load_state_dict returns (missing keys, unexpected keys)
net_state_dict = convert_pytorch_checkpoint(net_state_dict)
load_feedback = net_desc.load_state_dict(net_state_dict, strict=False)
# if net_desc.freeze:
# for name, para in net_desc.named_parameters():
# if ("features.top" not in name) and ("classifier" not in name):
# para.requires_grad_(False)
# else:
# print(f"training {name}")
# else:
# for name, para in net_desc.named_parameters():
# para.requires_grad_()
# * uncomment for your convenience
print("Missing Variables: \n", load_feedback[0])
print("Detected Unknown Variables: \n", load_feedback[1])
# * extremely slow to pass this on DGX with 1 GPU, why (?)
net_desc = DataParallel(net_desc)
net_desc = net_desc.to("cuda")
# print(net_desc) # * dump network definition or not?
optimizer, optimizer_args = net_info["optimizer"]
optimizer = optimizer(net_desc.parameters(), **optimizer_args)
scheduler = net_info["lr_scheduler"](optimizer)
net_run_info[net_name] = {
"desc": net_desc,
"optimizer": optimizer,
"lr_scheduler": scheduler,
# TODO: standardize API for external hooks
"extra_info": net_info["extra_info"],
"dataset_name": self.dataset_name
}
runner_dict = {}
for runner_name, runner_opt in run_engine_opt.items():
runner_dict[runner_name] = RunEngine(
dataloader=loader_dict[runner_name],
engine_name=runner_name,
run_step=runner_opt["run_step"],
run_info=net_run_info,
log_info=log_info,
)
for runner_name, runner in runner_dict.items():
callback_info = run_engine_opt[runner_name]["callbacks"]
for event, callback_list, in callback_info.items():
for callback in callback_list:
if callback.engine_trigger:
triggered_runner_name = callback.triggered_engine_name
callback.triggered_engine = runner_dict[triggered_runner_name]
runner.add_event_handler(event, callback)
# retrieve main runner
main_runner = runner_dict["train"]
main_runner.state.logging = self.logging
main_runner.state.log_dir = log_dir
# start the run loop
main_runner.run(opt["nr_epochs"])
print("\n")
print("########################################################")
print("########################################################")
print("\n")
return
####
def run(self):
"""Define multi-stage run or cross-validation or whatever in here."""
self.nr_gpus = torch.cuda.device_count()
print('Detect #GPUS: %d' % self.nr_gpus)
phase_list = self.model_config["phase_list"]
engine_opt = self.model_config["run_engine"]
prev_save_path = None
for phase_idx, phase_info in enumerate(phase_list):
if len(phase_list) == 1:
save_path = self.log_dir
else:
save_path = self.log_dir + f"/{self.dataset_name}_{self.seed}/{self.dataset_name}_seed_rgb/%02d/" % (phase_idx)
# if phase_idx == 1:
self.run_once(
phase_info, engine_opt, save_path, prev_log_dir=prev_save_path
)
prev_save_path = save_path
# prev_save_path = self.log_dir + f"/{self.dataset_name}_{self.seed}/{self.dataset_name}_seed/00"
####
if __name__ == "__main__":
args = docopt(__doc__, version="Son-Net v1.0")
trainer = TrainManager()
os.environ["CUDA_VISIBLE_DEVICES"] = "4,5"
trainer.run()