-
Notifications
You must be signed in to change notification settings - Fork 326
/
configure_data.py
418 lines (378 loc) · 17.9 KB
/
configure_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# coding=utf-8
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""parses arguments and preps data loader"""
import os
import copy
import random
import numpy as np
import torch
import torch.utils.data
import data_utils
from blocklm_utils import ConstructBlockStrategy
from data_utils.tokenization import make_tokenizer
from utils import print_rank_0
from itertools import accumulate
from bisect import bisect_right
from tasks.superglue.dataset import SuperGlueDataset
import mpu
class MultiTaskDataset(torch.utils.data.Dataset):
def __init__(self, tasks, datasets, reweight=True, temperature=0.8, max_limit=200000):
super(MultiTaskDataset, self).__init__()
self.tasks = tasks
self.datasets = datasets
self.reweight = reweight
self.temperature = temperature
self.lens = [len(dataset) for dataset in datasets]
self.weights = np.array([min(l, max_limit) ** temperature for l in self.lens])
self.total_len = sum(self.lens)
self.cumulative_lens = list(accumulate(self.lens))
if self.reweight:
print_rank_0(list(zip(self.tasks, self.lens, self.weights)))
else:
print_rank_0(list(zip(self.tasks, self.lens)))
self.weights /= self.weights.sum()
def __len__(self):
return self.total_len * 1000
@staticmethod
def pet_wrapper(data):
text = data['text']
loss_mask = data['logit_mask']
target = data['target']
attention_mask = data['mask']
position_id = data['position']
label = data['label']
if len(text.shape) == 2:
text = text[label]
loss_mask = loss_mask[label]
target = target[label]
attention_mask = attention_mask[label]
position_id = position_id[label]
else:
target = target[label]
if not target.shape:
target = target.repeat(len(text))
return {'text': text, 'target': target, 'loss_mask': loss_mask, 'position_id': position_id,
'attention_mask': attention_mask}
def __getitem__(self, idx):
if self.reweight:
rng = random.Random(idx)
rng = np.random.RandomState(seed=[rng.randint(0, 2 ** 32 - 1) for _ in range(16)])
dataset_idx = rng.choice(np.arange(len(self.datasets)), p=self.weights)
dataset = self.datasets[dataset_idx]
sample_idx = rng.choice(np.arange(len(dataset)))
item = self.datasets[dataset_idx][sample_idx]
else:
dataset_idx = bisect_right(self.cumulative_lens, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_lens[dataset_idx - 1]
item = self.datasets[dataset_idx][sample_idx]
item = self.pet_wrapper(item)
return item
class DataConfig:
def __init__(self, defaults=None):
super(DataConfig, self).__init__()
if defaults is None:
defaults = {}
self.defaults = defaults
def apply(self, args, tokenizer):
if torch.distributed.get_rank() == 0:
print('configuring data')
self.apply_defaults(args)
return make_loaders(args, tokenizer)
def set_defaults(self, **kwargs):
for k, v in kwargs.items():
self.defaults[k] = v
def apply_defaults(self, args):
for k, v in self.defaults.items():
k = k.replace('-', '_')
if not hasattr(args, k):
setattr(args, k, v)
def prepare_tokenizer(args):
add_sentinel_token = 0
if args.sentinel_token:
add_sentinel_token = args.max_position_embeddings
tokenizer = make_tokenizer(args.tokenizer_type, None, args.tokenizer_path, args.vocab_size,
args.tokenizer_model_type, add_block_symbols=args.block_lm, cache_dir=args.cache_dir,
add_sentinel_token=add_sentinel_token, add_task_mask=args.task_mask,
add_decoder_mask=args.block_mask_prob > 0.0 or args.context_mask_ratio > 0.0,
fix_command_token=args.fix_command_token)
if mpu.get_model_parallel_rank() == 0:
num_tokens = tokenizer.num_tokens
eod_token = tokenizer.get_command('eos').Id
assert eod_token == tokenizer.get_command('pad').Id
before = num_tokens
after = before
multiple = args.make_vocab_size_divisible_by
while (after % multiple) != 0:
after += 1
print_rank_0('> padded vocab (size: {}) with {} dummy '
'tokens (new size: {})'.format(before, after - before, after))
print_rank_0('> found end-of-document token: {}'.format(eod_token))
token_counts = torch.cuda.LongTensor([after, eod_token])
else:
token_counts = torch.cuda.LongTensor([0, 0])
# Broadcast num tokens.
torch.distributed.broadcast(token_counts,
mpu.get_model_parallel_src_rank(),
group=mpu.get_model_parallel_group())
num_tokens = token_counts[0].item()
eod_token = token_counts[1].item()
args.vocab_size, args.eod_token = num_tokens, eod_token
return tokenizer
def make_data_loader(dataset, tokenizer, batch_size, num_iters, args, shuffle=False, block_collate=False):
world_size = torch.distributed.get_world_size(group=mpu.get_data_parallel_group())
rank = torch.distributed.get_rank(group=mpu.get_data_parallel_group())
if args.loader_scatter is not None:
rank = rank // args.loader_scatter
world_size = world_size // args.loader_scatter
batch_size = batch_size // args.loader_scatter
distributed = world_size > 1
if args.transformer_xl:
batch_sampler = data_utils.samplers.DistributedSequentialSampler(len(dataset),
num_iters,
batch_size,
rank,
world_size)
else:
if shuffle:
sampler = data_utils.samplers.RandomSampler(dataset, replacement=True,
num_samples=batch_size * args.train_iters * args.gradient_accumulation_steps)
else:
sampler = torch.utils.data.SequentialSampler(dataset)
drop_last = distributed
# the GPUs in the same model parallel group receive the same data
if distributed:
batch_sampler = data_utils.samplers.DistributedBatchSampler(sampler, batch_size, drop_last, rank,
world_size,
gradient_accumulation_steps=args.gradient_accumulation_steps)
else:
batch_sampler = torch.utils.data.BatchSampler(sampler,
batch_size,
drop_last)
collate_fn = None
if block_collate:
collate_fn = ConstructBlockStrategy(args, tokenizer, args.seq_length, bert_prob=args.bert_prob,
gap_sentence_prob=args.gap_sentence_prob,
gap_sentence_ratio=args.gap_sentence_ratio,
gpt_infill_prob=args.gpt_infill_prob,
average_block_length=args.avg_block_length,
gpt_min_ratio=args.gpt_min_ratio,
block_mask_prob=args.block_mask_prob,
context_mask_ratio=args.context_mask_ratio,
short_seq_prob=args.short_seq_prob,
single_span_prob=args.single_span_prob,
shuffle_blocks=not args.no_shuffle_block,
block_position_encoding=not args.no_block_position,
sentinel_token=args.sentinel_token,
encoder_decoder=args.encoder_decoder,
task_mask=args.task_mask, random_position=args.random_position,
masked_lm=args.masked_lm).construct_blocks
data_loader = torch.utils.data.DataLoader(dataset,
batch_sampler=batch_sampler,
num_workers=args.num_workers,
pin_memory=True,
collate_fn=collate_fn)
return data_loader
def make_tfrecord_loaders(args):
"""Load train/val/test dataset from shuffled TFRecords"""
import data_utils.tf_dl
data_set_args = {'batch_size': args.batch_size,
'max_seq_len': args.seq_length,
'max_preds_per_seq': args.max_preds_per_seq,
'train': True,
'num_workers': max(args.num_workers, 1),
'seed': args.seed + args.rank + 1,
'threaded_dl': args.num_workers > 0
}
train = data_utils.tf_dl.TFRecordDataLoader(args.train_data,
**data_set_args)
data_set_args['train'] = False
if args.eval_seq_length is not None:
data_set_args['max_seq_len'] = args.eval_seq_length
if args.eval_max_preds_per_seq is not None:
data_set_args['max_preds_per_seq'] = args.eval_max_preds_per_seq
valid = None
if args.valid_data is not None:
valid = data_utils.tf_dl.TFRecordDataLoader(args.valid_data,
**data_set_args)
test = None
if args.test_data is not None:
test = data_utils.tf_dl.TFRecordDataLoader(args.test_data,
**data_set_args)
tokenizer = data_utils.make_tokenizer(args.tokenizer_type,
train,
args.tokenizer_path,
args.vocab_size,
args.tokenizer_model_type,
cache_dir=args.cache_dir)
return (train, valid, test), tokenizer
def make_loaders(args, tokenizer):
"""makes training/val/test"""
if args.use_tfrecords:
return make_tfrecord_loaders(args)
world_size = torch.distributed.get_world_size(group=mpu.get_data_parallel_group())
if args.loader_scatter is not None:
assert world_size % args.loader_scatter == 0
batch_size = args.batch_size * world_size
eval_batch_size = batch_size
if args.eval_batch_size is not None:
eval_batch_size = args.eval_batch_size * world_size
seq_length = args.seq_length
if seq_length < 0:
seq_length = seq_length * world_size
eval_seq_length = args.eval_seq_length
if eval_seq_length is not None and eval_seq_length < 0:
eval_seq_length = eval_seq_length * world_size
split = get_split(args)
data_set_args = {
'path': args.train_data,
'seq_length': seq_length,
'mem_length': args.mem_length,
'delim': args.delim,
'text_key': args.text_key,
'label_key': 'label',
'ds_type': args.data_set_type,
'split': split,
'loose': args.loose_json,
'max_preds_per_seq': args.max_preds_per_seq,
'presplit_sentences': args.presplit_sentences,
'sample_one_document': args.sample_one_document,
'filter_english': args.filter_english,
'pre_tokenize': not args.no_pre_tokenize,
'tokenizer': tokenizer,
'save_splits': args.save_splits,
'load_splits': args.load_splits,
'save_test_data': args.save_test_data,
'no_lazy_loader': args.no_lazy_loader,
'loader_scatter': args.loader_scatter,
'data_parallel_rank': mpu.get_data_parallel_rank(),
"non_sentence_start": args.non_sentence_start,
"half_lazy_loader": args.half_lazy_loader
}
eval_set_args = copy.copy(data_set_args)
eval_set_args['split'] = [1.]
# if optional eval args were set then replace their
# equivalent values in the arg dict
if eval_seq_length:
eval_set_args['seq_length'] = eval_seq_length
if args.eval_max_preds_per_seq:
eval_set_args['max_preds_per_seq'] = args.eval_max_preds_per_seq
if args.eval_text_key is not None:
eval_set_args['text_key'] = args.eval_text_key
# make datasets splits and tokenizer
train, valid, test = None, None, None
if args.train_data is not None:
train = data_utils.make_dataset(**data_set_args)
if data_utils.should_split(split):
train, valid, test = train
eval_set_args['tokenizer'] = tokenizer
# make training and val dataset if necessary
if valid is None and args.valid_data is not None:
eval_set_args['path'] = args.valid_data
valid = data_utils.make_dataset(**eval_set_args)
eval_set_args['tokenizer'] = tokenizer
if test is None and args.test_data is not None:
eval_set_args['path'] = args.test_data
test = data_utils.make_dataset(**eval_set_args)
# wrap datasets with data loader
use_block = args.block_lm or args.encoder_decoder
if train is not None and args.batch_size > 0:
train = make_data_loader(train, tokenizer, batch_size, args.train_iters, args, shuffle=args.shuffle,
block_collate=use_block)
args.do_train = True
else:
args.do_train = False
eval_batch_size = eval_batch_size if eval_batch_size != 0 else batch_size
if valid is not None:
valid = make_data_loader(valid, tokenizer, eval_batch_size, args.train_iters, args, shuffle=args.shuffle,
block_collate=use_block)
args.do_valid = True
else:
args.do_valid = False
if test is not None:
test = make_data_loader(test, tokenizer, eval_batch_size, len(test) // eval_batch_size + 1, args,
shuffle=args.shuffle, block_collate=use_block)
args.do_test = True
else:
args.do_test = False
return train, valid, test
def build_multi_task_dataset(args, tokenizer):
task_dirs = {"mnli": "MNLI", "cola": "CoLA", "mrpc": "MRPC", "qnli": "QNLI", "qqp": "QQP", "sst2": "SST-2",
"agnews": "Agnews", "yelp-polarity": "yelp_review_polarity_csv", "yelp-full": "yelp_review_full_csv",
"yahoo": "Yahoo", "squad": "SQuAD", "race": "RACE"}
train, valid = None, None
if mpu.get_model_parallel_rank() == 0:
multi_seq_length = args.seq_length
if args.multi_seq_length is not None:
multi_seq_length = args.multi_seq_length
train_datasets, valid_datasets = [], []
for task in args.multi_task_data:
task = task.lower()
data_dir = os.path.join(args.data_dir, task_dirs[task])
train_datasets.append(
SuperGlueDataset(args, task, data_dir, multi_seq_length, "train", tokenizer, pattern_ensemble=True))
valid_datasets.append(
SuperGlueDataset(args, task, data_dir, multi_seq_length, "dev", tokenizer, pattern_ensemble=True))
train = MultiTaskDataset(args.multi_task_data, train_datasets)
valid = MultiTaskDataset(args.multi_task_data, valid_datasets)
world_size = torch.distributed.get_world_size(group=mpu.get_data_parallel_group())
multi_batch_size = args.batch_size * world_size
if args.multi_batch_size is not None:
multi_batch_size = args.multi_batch_size * world_size
train = make_data_loader(train, tokenizer, multi_batch_size, args.train_iters, args, shuffle=True)
valid = make_data_loader(valid, tokenizer, multi_batch_size, args.train_iters, args, shuffle=True)
return train, valid
def get_split(args):
"""
Get dataset splits from comma separated string list
"""
splits = []
if args.split.find(',') != -1:
splits = [float(s) for s in args.split.split(',')]
elif args.split.find('/') != -1:
splits = [float(s) for s in args.split.split('/')]
else:
splits = [float(args.split)]
split_total = sum(splits)
if split_total < 1.:
splits.append(1 - split_total)
while len(splits) < 3:
splits.append(0.)
splits = splits[:3]
if args.valid_data is not None:
splits[1] = 0.
if args.test_data is not None:
splits[2] = 0.
final_sum = sum(splits)
return [s / final_sum for s in splits]
def configure_data():
"""add cmdline flags for configuring datasets"""
# These are options that are used by data_utils, but are either
# deprecated or not meant to be exposed to the command line user.
# These options are intneded to be set in code by specific scripts.
defaults = {
'world_size': 1,
'rank': -1,
'persist_state': 0,
'lazy': False,
'transpose': False,
'data_set_type': 'supervised',
'seq_length': 256,
'eval_seq_length': 256,
'samples_per_shard': 100
}
return DataConfig(defaults=defaults)