forked from chuanqi129/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 4
/
guard_elimination.cpp
467 lines (440 loc) · 15.8 KB
/
guard_elimination.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
#include <torch/csrc/jit/passes/guard_elimination.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/passes/peephole.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <memory>
#include <unordered_set>
namespace torch {
namespace jit {
struct GuardElimination {
GuardElimination(std::shared_ptr<Graph> graph)
: graph_(std::move(graph)), aliasDb_(std::make_unique<AliasDb>(graph_)) {}
void run() {
const size_t MAX_ATTEMPTS = 5;
size_t attempts = MAX_ATTEMPTS;
while (attempts-- && moveGuardsToDefs(graph_->block())) {
}
GRAPH_DUMP("After moveGuardsToDefs", graph_);
coalesceGuards(graph_->block());
GRAPH_DUMP("After coalesceGuards", graph_);
removeDominatedGuards(graph_->block());
GRAPH_DUMP("After removeDominatedGuards", graph_);
eliminateRedundantGuards(graph_->block());
GRAPH_DUMP("After eliminateRedundantGuards", graph_);
}
static bool isLoweredGradOf(Node* n) {
if (n->kind() != prim::If) {
return false;
}
return n->input(0)->node()->kind() == prim::AutogradAnyNonZero;
}
bool moveGuardsToDefs(Block* b) {
bool changed = false;
for (auto it = b->nodes().begin(); it != b->nodes().end();) {
auto n = *it;
if (n->kind() == prim::Guard) {
// grab the next node before we move this one all the way back
it++;
auto guardee = n->inputs().at(0)->node();
// alias analysis will try to hoist a node out of a loop
// if asked. if guardee is in a loop, it should only
// be moved to the beginning of the basic block
// given the current implementation of AliasAnalysis
if (guardee->owningBlock() != n->owningBlock()) {
guardee = *n->owningBlock()->nodes().begin();
}
bool moved = aliasDb_->moveAfterTopologicallyValid(n, guardee);
changed |= moved;
if (moved) {
GRAPH_UPDATE(
"Moved ",
n->output()->debugName(),
" to ",
n->inputs().at(0)->debugName());
}
} else {
it++;
for (Block* ib : n->blocks()) {
moveGuardsToDefs(ib);
}
}
}
if (b->owningNode() &&
isLoweredGradOf(
b->owningNode()) /*b->owningNode()->kind() == prim::If*/) {
for (auto it = b->nodes().begin(); it != b->nodes().end();) {
auto block_node = *it++;
if (block_node->kind() != prim::Guard) {
break;
}
block_node->moveBefore(b->owningNode());
changed = true;
}
}
return changed;
}
void coalesceGuards(Block* b) {
// uses on *all* parameters are moved to the same anchor node
// and they may come in different order after the anchor node
// e.g. (anchor, guard_x, guard_y, guard_x, guard_y)
// this pass recognizes contiguous stretches of guards and
// keeps track of the guards it's seen for each def. the next time
// the guard on the same def, it simply removes it.
std::unordered_map<Value*, Node*> inputs_to_guards;
for (auto it = b->nodes().begin(); it != b->nodes().end(); it++) {
auto n = *it;
if (n->kind() == prim::Guard) {
if (inputs_to_guards.count(n->input())) {
auto prev = inputs_to_guards[n->input()];
n->output()->replaceAllUsesWith(prev->output());
GRAPH_UPDATE(
"Replacing ",
n->output()->debugName(),
" with ",
prev->output()->debugName());
it.destroyCurrent();
} else {
inputs_to_guards.insert({n->input(), n});
}
} else if (n->kind() != prim::Constant) {
inputs_to_guards.clear();
for (Block* ib : n->blocks()) {
coalesceGuards(ib);
}
}
}
}
void removeDominatedGuards(Block* b) {
// If a Node guards a value which isn't mutated, then that node
// can replace all other guards of the value which it dominates
for (auto it = b->nodes().begin(); it != b->nodes().end(); it++) {
auto n = *it;
if (n->kind() == prim::Guard) {
Value* input = n->input();
if (aliasDb_->hasWriters(input)) {
continue;
}
Value* guard_output = n->output();
// find all uses of the input that the guard node dominates
std::vector<Use> uses = input->uses();
while (!uses.empty()) {
auto use = uses.at(uses.size() - 1);
uses.pop_back();
// not all uses are guarded
if (use.user->kind() != prim::Guard) {
continue;
}
if (!use.user->isDominatedBy(n)) {
continue;
}
// the dominated guard type may be different from the dominator
// if it is only executed for a subtype, or if it is executed
// in a different global context for grad enabled
// check that the types are equal before continuing
auto dominator_type = guard_output->type();
auto dominated_type = use.user->output()->type();
if (*dominator_type == *dominated_type) {
use.user->replaceInput(use.offset, guard_output);
}
}
// remove redundant dominated guards
std::vector<Use> users = n->output()->uses();
for (auto use : users) {
auto user = use.user;
if (user->kind() == prim::Guard) {
GRAPH_UPDATE(
"Removing dominated guard ", user, " and replacing with ", n);
user->output()->replaceAllUsesWith(guard_output);
user->destroy();
}
}
} else {
for (Block* ib : n->blocks()) {
removeDominatedGuards(ib);
}
}
}
}
// we need to make sure there are no ops in between guardee's
// output and its guard except for other guards as they can
// invalidate shape information.
bool guardsOutput(Node* guard) {
auto output = guard->input()->node();
auto it = guard;
while (it != output) {
if (it->kind() != prim::Guard && it->kind() != prim::Constant) {
GRAPH_DEBUG(
"found an unexpected node ",
*it,
" while trying to eliminate ",
*guard);
return false;
}
it = it->prev();
}
return true;
}
void eliminateRedundantGuards(Block* b) {
// a very simple pass to eliminate redundant guards for ops
// whose outputs are fully determined by their inputs
// i.e. if inputs to such ops are guarded we are allowed
// to remove a guard on ops' outputs
for (auto it = b->nodes().rbegin(); it != b->nodes().rend();) {
auto n = *it;
if (n->kind() == prim::Guard && guardsOutput(n) &&
removableGuard(n->inputs().at(0)->node())) {
auto pttp = n->output()->type();
n->output()->replaceAllUsesWith(n->inputs().at(0));
n->inputs().at(0)->setType(pttp);
GRAPH_UPDATE(
"Eliminating the redundant guard ", n->output()->debugName());
it.destroyCurrent();
} else {
it++;
for (Block* ib : n->blocks()) {
eliminateRedundantGuards(ib);
}
}
}
}
// `checkInputs` check the invariants specified in `removableGuard`
// on inputs to `n`. The invariants must hold, or an input must
// be a `prim::Constant` or be included as an exception in `except`
bool checkInputs(
Node* n,
const std::unordered_set<size_t>& except,
bool allow_numbers) {
bool all_inputs_guarded = true;
size_t i = 0;
for (auto input : n->inputs()) {
if ((input->node()->kind() == prim::Guard &&
!input->type()->expectRef<TensorType>().isSummarized()) ||
input->node()->kind() == prim::Constant ||
(allow_numbers && input->type()->isSubtypeOf(*NumberType::get())) ||
except.count(i) != 0) {
AT_ASSERT(
input->node()->kind() != prim::Guard ||
input->type()->expect<TensorType>());
} else {
GRAPH_DEBUG(
"input ",
input->debugName(),
" isn't guarded, type ",
*input->type());
all_inputs_guarded = false;
break;
}
i++;
}
return all_inputs_guarded;
}
private:
// `removableGuard` relies on the properties checked by `isSummarized()`
// and passes shouldn't insert nodes between a guard and its uses that
// may alter those properties.
// `removableGuard` expects type information to come directly from
// Profiler. Passes shouldn't try to alter type information provided by
// profiling
// While we can derive very simple rules stating when it's valid to remove
// `prim::Guard` on operation's output if all of its inputs are guarded for
// some
// categories of operations
// there's no comprehensive set of rules that covers all the operations
// available in PyTorch
// If your operation falls into one of the categories described below, you
// should add it
// to switch statement below that contains the other operations in the said
// category.
// Otherwise, you will need to derive the rules for your case on your own.
// Generally, any operation that is stateful in any way or uses its underlying
// data
// to compute any properties `isSummarized()` isn't amenable to guard
// elimination.
// Categories:
// * Functional-like(e.g. add, sub, le) operations with broadcast semenatics
// Guards can be removed if all inputs are guarded and `isSummarized()`
// returns
// false or inputs are `prim::Constant`
bool removableGuard(Node* n) {
const static auto no_exceptions = std::unordered_set<size_t>{};
switch (n->kind()) {
case aten::add:
case aten::add_:
case aten::sub:
case aten::mul:
case aten::div:
case aten::t:
case aten::sigmoid:
case aten::sin:
case aten::cos:
case aten::tan:
case aten::sinh:
case aten::cosh:
case aten::tanh:
case aten::asin:
case aten::acos:
case aten::atan:
case aten::atan2:
case aten::floor:
case aten::fmod:
case aten::ceil:
case aten::trunc:
case aten::sqrt:
case aten::rsqrt:
case aten::remainder:
case aten::mm:
case aten::min:
case aten::max:
case aten::type_as:
case aten::ge:
case aten::gt:
case aten::lt:
case aten::le:
case aten::eq:
case aten::ne:
case aten::neg:
case prim::ConstantChunk:
case aten::size:
case aten::abs:
case aten::sign:
case aten::pow:
case aten::relu:
case aten::threshold:
case prim::AutogradAdd:
case prim::AutogradZero:
case aten::rand_like:
case aten::erf:
case aten::erfc:
case aten::exp:
case aten::expm1:
case aten::log:
case aten::log2:
case aten::log10:
case aten::frac:
case aten::lerp:
case aten::lgamma:
case aten::reciprocal:
case aten::addcmul:
case aten::where:
case aten::_cast_Float:
case aten::_cast_Long:
case aten::__and__:
case aten::__or__:
case aten::__xor__:
case aten::__lshift__:
case aten::__rshift__:
case aten::bitwise_not:
case aten::bitwise_and:
case aten::bitwise_or:
case aten::bitwise_xor:
return checkInputs(n, no_exceptions, true);
case aten::softmax:
return checkInputs(n, std::unordered_set<size_t>{1}, true);
case aten::multinomial:
return checkInputs(n, std::unordered_set<size_t>{2, 3}, false);
case aten::flatten:
case aten::argmax:
case aten::squeeze:
case aten::avg_pool2d:
return checkInputs(n, no_exceptions, false);
case aten::conv1d:
case aten::conv2d:
case aten::conv3d:
return checkInputs(n, std::unordered_set<size_t>{2, 6}, false);
case aten::slice:
return !n->input(0)->type()->expectRef<TensorType>().isSummarized() &&
// check that the dimension argument is constant
n->input(1)->node()->kind() == prim::Constant &&
// the start offset is constant
n->input(2)->node()->kind() == prim::Constant &&
// the end offset is constant
n->input(3)->node()->kind() == prim::Constant &&
// the stride is constant
n->input(4)->node()->kind() == prim::Constant;
case aten::max_pool1d:
case aten::max_pool2d:
case aten::max_pool3d:
return !n->input(0)->type()->expectRef<TensorType>().isSummarized() &&
// check that the kernel size is constant
n->input(1)->node()->kind() == prim::Constant &&
// check that the stride is constant
n->input(2)->node()->kind() == prim::Constant &&
// check that the padding is constant
n->input(3)->node()->kind() == prim::Constant &&
// check that the dilation is constant
n->input(4)->node()->kind() == prim::Constant &&
// check that the ceil_mode is constant
n->input(5)->node()->kind() == prim::Constant;
case aten::unsqueeze:
// check that the dimension argument is constant
return !n->input(0)->type()->expectRef<TensorType>().isSummarized() &&
n->input(1)->node()->kind() == prim::Constant;
case aten::cat:
// check that the dimension argument is constant
return n->input(1)->node()->kind() == prim::Constant &&
n->input(0)->node()->kind() == prim::ListConstruct &&
// no extra nodes in between aten::cat and prim::ListConstruct
n->prev() == n->input(0)->node() &&
// check the inputs to prim::ListConstruct (not aten::cat)
checkInputs(n->input(0)->node(), no_exceptions, false);
case aten::clamp:
// the second and third args do not affect shapes
return checkInputs(n, std::unordered_set<size_t>{1, 2}, false);
// after some optimizations we might end up with two Guards back-to-back
// which case we can remove the one whose input is also prim::Guard
case aten::_grad_sum_to_size:
// skip checking size argument
if (checkInputs(n, std::unordered_set<size_t>{1}, false)) {
auto asize = n->input(1)->node();
if (asize->kind() == prim::Constant) {
return true;
} else if (asize->matches("aten::size(Tensor self) -> int[]")) {
// aten::size is effectively a constant
if (asize->input()
->type()
->expectRef<TensorType>()
.sizes()
.concrete_sizes()) {
return true;
}
}
}
return false;
// this is checked by one of the tests in test_jit_fuser.py
case prim::ListUnpack: {
// check if the input is a constant chunk
// used for LSTM fusions
auto chunk = n->input(0)->node();
if (chunk->kind() != aten::chunk) {
return false;
}
return checkInputs(chunk, no_exceptions, false);
}
// this is checked by one of the tests in test_jit_fuser.py
case aten::broadcast_tensors: {
auto list_construct = n->input(0)->node();
if (list_construct->kind() != prim::ListConstruct) {
return false;
}
return checkInputs(list_construct, no_exceptions, false);
}
case prim::Guard:
case prim::GradOf:
return true;
default:
GRAPH_DEBUG("cannot remove ", n->kind().toQualString());
return false;
}
}
std::shared_ptr<Graph> graph_;
std::unique_ptr<AliasDb> aliasDb_;
static std::unordered_set<Symbol> simple_ops_;
};
void EliminateRedundantGuards(std::shared_ptr<Graph> graph) {
GuardElimination ge(std::move(graph));
ge.run();
}
} // namespace jit
} // namespace torch