forked from chuanqi129/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 4
/
ivalue.cpp
1230 lines (1138 loc) · 38.9 KB
/
ivalue.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <ATen/core/Dict.h>
#include <ATen/core/Formatting.h>
#include <ATen/core/class_type.h>
#include <ATen/core/enum_type.h>
#include <ATen/core/function.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/stack.h>
#include <ATen/core/type_factory.h>
#include <c10/util/StringUtil.h>
#include <c10/util/hash.h>
#include <c10/util/irange.h>
#include <cmath>
#include <iostream>
#include <utility>
namespace c10 {
bool _fastEqualsForContainer(const IValue& lhs, const IValue& rhs) {
if (lhs.is(rhs)) {
// Like Python, for containers we consider identity equality to be
// sufficient but not necessary for value equality
return true;
}
return lhs == rhs;
}
namespace ivalue {
// This is in ivalue.cpp because we need to access Type::annotation_str, which
// is declared in jit_type.h
void checkCustomClassType(const ClassType* expected_type, const Type* actual_type) {
// NB: doing pointer comparison here
// If in the future there ever arises a need to call operator== on custom class
// Type's, this needs to be changed!
TORCH_CHECK(actual_type == static_cast<const Type*>(expected_type),
"Tried to convert an IValue of type ",
actual_type ? actual_type->repr_str() : std::string("*NULL*"),
" to custom class type ",
expected_type ? expected_type->repr_str() : std::string("*NULL*"));
}
TORCH_API c10::intrusive_ptr<ConstantString> ConstantString::create(
std::string str_) {
return c10::make_intrusive<ConstantString>(std::move(str_));
}
TORCH_API c10::intrusive_ptr<ConstantString> ConstantString::create(
c10::string_view str_) {
return c10::make_intrusive<ConstantString>(std::string(str_));
}
TORCH_API c10::intrusive_ptr<ConstantString> ConstantString::create(
const char* str_) {
return c10::make_intrusive<ConstantString>(std::string(str_));
}
bool operator==(const ivalue::Tuple& lhs, const ivalue::Tuple& rhs) {
return lhs.size() == rhs.size() &&
// see [container equality]
std::equal(
lhs.elements().cbegin(),
lhs.elements().cend(),
rhs.elements().cbegin(),
_fastEqualsForContainer);
}
std::ostream& operator<<(std::ostream& out, const ivalue::EnumHolder& v) {
out << v.qualifiedClassName() << "." << v.name();
return out;
}
bool operator==(const ivalue::EnumHolder& lhs, const ivalue::EnumHolder& rhs) {
return lhs.name() == rhs.name() && *rhs.type() == *lhs.type();
}
const std::string ivalue::EnumHolder::qualifiedClassName() const {
return type_->qualifiedClassName().qualifiedName();
}
const std::string ivalue::EnumHolder::unqualifiedClassName() const {
return type_->qualifiedClassName().name();
}
} // namespace ivalue
c10::TypePtr IValue::TagType<c10::Type>::get(const IValue& v) {
switch (v.tag) {
case Tag::None:
return NoneType::get();
case Tag::Tensor:
return TensorType::create(v.toTensor());
case Tag::Storage:
return StorageType::get();
case Tag::Double:
return FloatType::get();
case Tag::ComplexDouble:
return ComplexType::get();
case Tag::Int:
return IntType::get();
case Tag::SymInt:
return c10::SymIntType::get();
case Tag::SymFloat:
return c10::SymFloatType::get();
case Tag::SymBool:
return c10::SymBoolType::get();
case Tag::Bool:
return BoolType::get();
case Tag::String:
return StringType::get();
case Tag::Blob:
return AnyType::get();
case Tag::GenericDict: {
auto d = v.toGenericDict();
return DictType::create(d.keyType(), d.valueType());
}
case Tag::GenericList:
return ListType::create(v.toList().elementType());
case Tag::Await:
return AwaitType::create(v.toAwait()->elementType());
case Tag::Future:
return FutureType::create(v.toFuture()->elementType());
case Tag::RRef:
return RRefType::create(v.toRRef()->type());
case Tag::Device:
return DeviceObjType::get();
case Tag::Stream:
return StreamObjType::get();
case Tag::Object:
return v.toObjectRef().type();
case Tag::PyObject:
return PyObjectType::get();
case Tag::Uninitialized:
return AnyType::get();
case Tag::Capsule:
return CapsuleType::get();
case Tag::Tuple:
return v.toTupleRef().type();
case Tag::Generator:
return GeneratorType::get();
case Tag::Quantizer:
return QuantizerType::get();
case Tag::Enum:
return v.toEnumHolder()->type();
}
// switch above is complete but this silences compiler warnings
TORCH_INTERNAL_ASSERT(false, "unhandled case in IValue::type()");
}
void IValue::visit(const std::function<bool (const IValue &)>& visitor) const {
if (visitor(*this)) {
// Shortcut
return;
}
switch (this->tag) {
case Tag::Tuple:
case Tag::GenericList: {
c10::ArrayRef<IValue> elems;
if (isTuple()) {
elems = this->toTupleRef().elements();
} else {
elems = this->toListRef();
}
for (auto& elem : elems) {
elem.visit(visitor);
}
break;
}
case Tag::GenericDict:
for (const auto& pair : this->toGenericDict()) {
pair.value().visit(visitor);
pair.key().visit(visitor);
}
break;
case Tag::Object: {
auto obj_type = type()->expect<ClassType>();
auto obj_value = toObject();
auto attributes = obj_type->getAttributes();
for (const auto& attr: attributes) {
auto attribute = obj_value->getAttr(attr.getName());
attribute.visit(visitor);
}
break;
}
case Tag::PyObject: {
c10::intrusive_ptr<at::ivalue::PyObjectHolder> py_obj = toPyObjectHolder();
auto match = py_obj->tryToInferType();
if (match.success()) {
auto contained_value = py_obj->toIValue(match.type());
contained_value.visit(visitor);
}
break;
}
default:
break;
}
}
void IValue::getSubValues(HashAliasedIValues& subValues) const {
switch (this->tag) {
case Tag::Tensor:
subValues.insert(*this);
return;
case Tag::Tuple:
case Tag::GenericList: {
subValues.insert(*this);
c10::ArrayRef<IValue> elems;
if (isTuple()) {
elems = this->toTupleRef().elements();
} else {
elems = this->toListRef();
}
for (auto& elem : elems) {
elem.getSubValues(subValues);
}
break;
}
case Tag::GenericDict:
subValues.insert(*this);
for (const auto& pair : this->toGenericDict()) {
pair.value().getSubValues(subValues);
pair.key().getSubValues(subValues);
}
break;
case Tag::Object: {
// Record Object IValue and its attributes.
subValues.insert(*this);
auto obj_type = type()->expect<ClassType>();
auto obj_value = toObject();
auto attributes = obj_type->getAttributes();
for (const auto& attr: attributes) {
auto attribute = obj_value->getAttr(attr.getName());
attribute.getSubValues(subValues);
}
break;
}
case Tag::PyObject: {
subValues.insert(*this);
c10::intrusive_ptr<at::ivalue::PyObjectHolder> py_obj = toPyObjectHolder();
auto match = py_obj->tryToInferType();
TORCH_CHECK_TYPE(match.success(),
"Cannot infer type of ", py_obj->toStr(), ": ", match.reason());
auto contained_value = py_obj->toIValue(match.type());
contained_value.getSubValues(subValues);
break;
}
case Tag::Future:
case Tag::Await:
case Tag::Device:
case Tag::Uninitialized:
case Tag::Capsule:
TORCH_CHECK_TYPE(
false, "Cannot inspect value of type ", this->tagKind());
[[fallthrough]];
default:
// don't record scalars.
break;
}
}
bool IValue::overlaps(const IValue& rhs) const {
HashAliasedIValues rhsSubValues, thisSubValues;
rhs.getSubValues(rhsSubValues);
getSubValues(thisSubValues);
for (auto& sub : thisSubValues) {
if (rhsSubValues.count(sub)) {
return true;
}
}
return false;
}
bool operator!=(const IValue& lhs, const IValue& rhs) {
return !(lhs == rhs);
}
bool operator==(const IValue& lhs, const IValue& rhs) {
IValue eq = lhs.equals(rhs);
if (eq.isBool()) {
return eq.toBool();
}
// The only case we don't return bool is for tensor comparison. In Python,
// `bool()` is called on the return value of `__eq__` if the return value is
// not a boolean. Mimic that behavior here.
TORCH_INTERNAL_ASSERT(eq.isTensor());
return eq.toTensor().is_nonzero();
}
bool IValue::ptrEqual(const IValue& lhs, const IValue& rhs) {
TORCH_INTERNAL_ASSERT(lhs.isIntrusivePtr());
TORCH_INTERNAL_ASSERT(rhs.isIntrusivePtr());
return lhs.tag == rhs.tag &&
lhs.payload.u.as_intrusive_ptr == rhs.payload.u.as_intrusive_ptr;
}
IValue IValue::equals(const IValue& rhs) const {
const IValue& lhs = *this;
switch (lhs.tag) {
case Tag::None:
// In Python you're not supposed to do this comparison apparently. Not
// sure if we should warn here or what
return rhs.isNone();
case Tag::Tensor: {
if (!rhs.isTensor()) {
return false;
}
return lhs.toTensor().eq(rhs.toTensor());
}
case Tag::Storage:
return rhs.isStorage() && lhs.toStorage().unsafeGetStorageImpl() == rhs.toStorage().unsafeGetStorageImpl();
case Tag::Double:
return rhs.isDouble() && lhs.toDouble() == rhs.toDouble();
case Tag::ComplexDouble:
return rhs.isComplexDouble() && lhs.toComplexDouble() == rhs.toComplexDouble();
case Tag::Int:
return rhs.isInt() && lhs.toInt() == rhs.toInt();
case Tag::SymInt:
return rhs.isSymInt() && lhs.toSymInt() == rhs.toSymInt();
case Tag::SymFloat:
return rhs.isSymFloat() && lhs.toSymFloat() == rhs.toSymFloat();
case Tag::SymBool:
return rhs.isSymBool() && lhs.toSymBool() == rhs.toSymBool();
case Tag::Bool:
return rhs.isBool() && lhs.toBool() == rhs.toBool();
case Tag::String:
return rhs.isString() && lhs.toStringRef() == rhs.toStringRef();
case Tag::GenericDict:
return rhs.isGenericDict() && lhs.toGenericDict() == rhs.toGenericDict();
case Tag::Tuple:
return rhs.isTuple() && *lhs.toTuple() == *rhs.toTuple();
case Tag::Stream:
return rhs.isStream() && lhs.toStream() == rhs.toStream();
case Tag::Device:
return rhs.isDevice() && lhs.toDevice() == rhs.toDevice();
case Tag::GenericList:
return rhs.isList() && lhs.toList() == rhs.toList();
case Tag::Blob:
case Tag::Future:
case Tag::Await:
case Tag::RRef:
case Tag::Object:
case Tag::PyObject:
case Tag::Capsule:
case Tag::Generator:
case Tag::Quantizer:
return ptrEqual(lhs, rhs);
case Tag::Enum:
return lhs.toEnumHolder()->is(*rhs.toEnumHolder());
case Tag::Uninitialized:
// Unitialized ivalues show up in no-ops when the compiler can prove a
// value will never be used. Just return false on any equality comparison.
return false;
}
// the above switch should be exhaustive
TORCH_INTERNAL_ASSERT(false, "we should never reach here")
}
size_t IValue::hash(const IValue& v) {
switch (v.tag) {
case Tag::None:
return 0;
case Tag::Bool:
return c10::get_hash(v.payload.u.as_bool);
case Tag::Double:
return c10::get_hash(v.payload.u.as_double);
case Tag::Tensor:
// Tensor __hash__ is equivalent to `id()`, so take the pointer value of
// the tensor to emulate it
return c10::get_hash(v.payload.as_tensor.unsafeGetTensorImpl());
// NOLINTNEXTLINE(bugprone-branch-clone)
case Tag::Storage:
return c10::get_hash(v.payload.u.as_int);
case Tag::Int:
return c10::get_hash(v.payload.u.as_int);
// NB: these are technically strict aliasing violations
case Tag::SymInt:
return c10::get_hash(v.payload.u.as_int);
case Tag::SymFloat:
return c10::get_hash(v.payload.u.as_int);
case Tag::SymBool:
return c10::get_hash(v.payload.u.as_int);
case Tag::String:
return c10::get_hash(v.toStringRef());
case Tag::Tuple:
return c10::get_hash(*v.toTuple());
case Tag::Device:
return c10::get_hash(v.toDevice());
case Tag::GenericDict:
case Tag::GenericList:
case Tag::Blob:
case Tag::Future:
case Tag::Await:
case Tag::RRef:
case Tag::Object:
case Tag::PyObject:
case Tag::Capsule:
case Tag::Generator:
case Tag::Quantizer:
case Tag::ComplexDouble:
case Tag::Enum:
case Tag::Stream:
case Tag::Uninitialized:
throw std::runtime_error(
"unhashable type: '" + v.type()->repr_str() + "'");
}
// the above switch should be exhaustive
TORCH_INTERNAL_ASSERT(false, "we should never reach here")
}
static bool isUndefinedTensor(const IValue& iv) {
return iv.isTensor() && !iv.toTensor().defined();
}
bool IValue::is(const IValue& rhs) const {
const IValue& lhs = *this;
// Special handling for undefined tensors:
// 1. Undefined_tensor is None and vice versa.
if ((isUndefinedTensor(lhs) && rhs.isNone()) ||
(lhs.isNone() && isUndefinedTensor(rhs))) {
return true;
}
// 2. Undefined_tensor is Undefined_tensor.
if (isUndefinedTensor(lhs) && isUndefinedTensor(rhs)) {
return true;
}
if (lhs.isTensor()) {
// Use the standard way of comparing two tensors for identity
return rhs.isTensor() && lhs.toTensor().is_same(rhs.toTensor());
}
if (lhs.isIntrusivePtr()) {
return rhs.isIntrusivePtr() && ptrEqual(lhs, rhs);
}
return lhs == rhs;
}
template <typename T>
inline bool IValue::isListOf() const {
// note: avoids calling type() to avoid extra referencing counting for the returned type.
if (!isList()) {
return false;
}
const auto& ty = static_cast<detail::ListImpl*>(payload.u.as_intrusive_ptr)->elementType;
if (ty->kind() == T::Kind) {
return true;
}
return *ty == *TypeFactory::get<T>();
}
bool IValue::isDoubleList() const {
return isListOf<c10::FloatType>();
}
bool IValue::isComplexDoubleList() const {
return isListOf<c10::ComplexType>();
}
bool IValue::isTensorList() const {
return isListOf<c10::TensorType>();
}
bool IValue::isOptionalTensorList() const {
if (!isList()) {
return false;
}
const auto& ty = static_cast<detail::ListImpl*>(payload.u.as_intrusive_ptr)->elementType;
const auto& expected_ty = c10::getTypePtr<c10::optional<at::Tensor>>();
return expected_ty == ty;
}
bool IValue::isIntList() const {
return isListOf<c10::IntType>();
}
bool IValue::isSymIntList() const {
return isListOf<c10::SymIntType>();
}
bool IValue::isBoolList() const {
return isListOf<c10::BoolType>();
}
namespace {
using IValueFormatter = std::function<void(std::ostream&, const IValue&)>;
template <class T>
std::ostream& printList(
std::ostream& out,
const T& list,
const std::string& start,
const std::string& finish,
const IValueFormatter& formatter) {
out << start;
for (const auto i : c10::irange(list.size())) {
if (i > 0) {
out << ", ";
}
formatter(out, IValue(list[i]));
}
out << finish;
return out;
}
// Properly disambiguate the type of an empty list
std::ostream& printMaybeAnnotatedList(
std::ostream& out,
const IValue& the_list,
const IValueFormatter& formatter) {
auto list_elem_type = the_list.type()->containedType(0);
if (the_list.toListRef().empty() ||
!elementTypeCanBeInferredFromMembers(list_elem_type)) {
out << "annotate(" << the_list.type<c10::Type>()->annotation_str() << ", ";
printList(out, the_list.toListRef(), "[", "]", formatter);
out << ")";
return out;
} else {
return printList(out, the_list.toListRef(), "[", "]", formatter);
}
}
template <typename Dict>
std::ostream& printDict(
std::ostream& out,
const Dict& v,
const IValueFormatter& formatter) {
out << "{";
bool first = true;
for (const auto& pair : v) {
if (!first) {
out << ", ";
}
formatter(out, pair.key());
out << ": ";
formatter(out, pair.value());
first = false;
}
out << "}";
return out;
}
}
// Properly disambiguate the type of an empty dict
static std::ostream& printMaybeAnnotatedDict(
std::ostream& out,
const IValue& the_dict,
const IValueFormatter& formatter) {
auto value_type = the_dict.type()->castRaw<DictType>()->getValueType();
if (the_dict.toGenericDict().empty() ||
!elementTypeCanBeInferredFromMembers(value_type)) {
out << "annotate(" << the_dict.type<c10::Type>()->annotation_str() << ",";
printDict(out, the_dict.toGenericDict(), formatter) << ")";
} else {
return printDict(out, the_dict.toGenericDict(), formatter);
}
return out;
}
static std::ostream& printComplex(std::ostream & out, const IValue & v) {
c10::complex<double> d = v.toComplexDouble();
IValue real(d.real()), imag(std::abs(d.imag()));
auto sign = "";
if (d.imag() >= 0) {
sign = "+";
} else {
sign = "-";
}
return out << real << sign << imag << "j";
}
std::ostream& IValue::repr(
std::ostream& out,
std::function<bool(std::ostream&, const IValue& v)>
customFormatter) const {
// First check if the caller has provided a custom formatter. Use that if possible.
if (customFormatter(out, *this)) {
return out;
}
const IValue& v = *this;
// continue to use custom formatter in recursion
auto formatter = [&](std::ostream& out, const IValue& input) {
input.repr(out, customFormatter);
};
switch (v.tag) {
case IValue::Tag::None:
return out << v.toNone();
case IValue::Tag::Double: {
double d = v.toDouble();
int c = std::fpclassify(d);
if ((c == FP_NORMAL || c == FP_ZERO ) && std::abs(d) < 1e10) {
int64_t i = int64_t(d);
if (double(i) == d) {
// -0.0 (signed zero) needs to be parsed as -0.
if (i == 0 && std::signbit(d)) {
return out << "-" << i << ".";
}
return out << i << ".";
}
}
auto orig_prec = out.precision();
return out << std::setprecision(std::numeric_limits<double>::max_digits10)
<< d << std::setprecision(orig_prec);
}
case IValue::Tag::ComplexDouble: {
return printComplex(out, v);
}
case IValue::Tag::Int:
return out << v.toInt();
case IValue::Tag::SymInt:
return out << v.toSymInt();
case IValue::Tag::SymFloat:
return out << v.toSymFloat();
case IValue::Tag::SymBool:
return out << v.toSymBool();
case IValue::Tag::Bool:
return out << (v.toBool() ? "True" : "False");
case IValue::Tag::Tuple: {
const auto& elements = v.toTupleRef().elements();
const auto& finish = elements.size() == 1 ? ",)" : ")";
return printList(out, elements, "(", finish, formatter);
}
case IValue::Tag::String:
c10::printQuotedString(out, v.toStringRef());
return out;
case IValue::Tag::GenericList: {
return printMaybeAnnotatedList(out, *this, formatter);
}
case IValue::Tag::Device: {
std::stringstream device_stream;
device_stream << v.toDevice();
out << "torch.device(";
c10::printQuotedString(out, device_stream.str());
return out << ")";
}
case IValue::Tag::GenericDict:
return printMaybeAnnotatedDict(out, v, formatter);
case IValue::Tag::Enum: {
auto enum_holder = v.toEnumHolder();
return out << enum_holder->qualifiedClassName() << "." <<
enum_holder->name();
}
case IValue::Tag::Object: {
TORCH_INTERNAL_ASSERT(false, "repr() not defined on: ", v.tagKind(), ". Perhaps you've frozen a module with custom classes?");
}
default:
TORCH_INTERNAL_ASSERT(false, "repr() not defined on: ", v.tagKind());
}
}
static bool simpleClassTypeArg(const Argument& arg, const ClassTypePtr& type) {
return arg.type() == type && !arg.kwarg_only() && !arg.default_value();
}
torch::jit::Function* checkObjectSortSchema(const c10::ClassTypePtr& t, std::stringstream& why_not) {
if (auto method = t->findMethod("__lt__")) {
const auto& lt_schema = method->getSchema();
const auto& schema_args = lt_schema.arguments();
bool error =
(schema_args.size() != 2 ||
!simpleClassTypeArg(schema_args[0], t) ||
!simpleClassTypeArg(schema_args[1], t) ||
lt_schema.returns().size() != 1 ||
lt_schema.returns()[0].type() != BoolType::get());
if (!error) {
return method;
}
}
why_not << "To sort a list of " << t->repr_str()
<< " it must define a "
<< "__lt__ method with two inputs of type "
<< t->repr_str() << " that "
<< "returns a bool";
return nullptr;
}
IValueComparator getLessThanComparator(const IValue& v) {
if (v.isTensor()) {
return [](const IValue& a, const IValue& b) {
return a.toTensor().lt(b.toTensor()).is_nonzero();
};
}
if (v.isDouble()) {
return [](const IValue& a, const IValue& b) {
return a.toDouble() < b.toDouble();
};
}
if (v.isInt()) {
return [](const IValue& a, const IValue& b) {
return a.toInt() < b.toInt();
};
}
if (v.isBool()) {
return [](const IValue& a, const IValue& b) {
return a.toBool() == false && b.toBool() == true;
};
}
if (v.isString()) {
return [](const IValue& a, const IValue& b) {
return a.toStringRef() < b.toStringRef();
};
}
if (v.isTuple()) {
const auto& elements = v.toTupleRef().elements();
size_t n = elements.size();
std::vector<IValueComparator> elements_lts;
elements_lts.reserve(n);
for (const auto i : c10::irange(n)) {
elements_lts.push_back(getLessThanComparator(elements[i]));
}
return [elements_lts=std::move(elements_lts), n](const IValue& a, const IValue& b) {
const auto& a_elements = a.toTupleRef().elements();
const auto& b_elements = b.toTupleRef().elements();
for (const auto i : c10::irange(n)) {
if (elements_lts[i](a_elements[i], b_elements[i])) {
return true;
}
if (a_elements[i] == b_elements[i]) {
continue;
}
return false;
}
// Reaching here means two tuples are equal.
return false;
};
}
if (v.isObject()) {
std::stringstream why_not;
torch::jit::Function* lt_func =
checkObjectSortSchema(v.type()->expect<ClassType>(), why_not);
if (!lt_func) {
AT_ERROR(why_not.str());
}
return [lt_func](const IValue& a, const IValue& b) {
// Quick pass to satisfy "strict weak ordering" requirement
if (a.is(b)) {
return false;
}
torch::jit::Stack sort_stack;
sort_stack.push_back(a);
sort_stack.push_back(b);
lt_func->run(sort_stack);
return torch::jit::pop(sort_stack).toBool();
};
}
AT_ERROR("IValues of type: ", v.tagKind(), " are not comparable");
}
IValueComparator getGreaterThanComparator(const IValue& v) {
auto lt = getLessThanComparator(v);
return [lt = std::move(lt)](const IValue& a, const IValue& b) {
return lt(b, a); // gt(a, b) === lt(b, a)
};
}
std::ostream& operator<<(std::ostream & out, const IValue & v) {
auto formatter = [&](std::ostream& out, const IValue& v) {
out << v;
};
switch(v.tag) {
case IValue::Tag::None:
return out << v.toNone();
case IValue::Tag::Tensor:
return out << v.toTensor();
case IValue::Tag::Storage:
return out << v.toStorage().unsafeGetStorageImpl();
case IValue::Tag::Double: {
double d = v.toDouble();
int c = std::fpclassify(d);
if (c == FP_NORMAL || c == FP_ZERO) {
int64_t i = int64_t(d);
if (double(i) == d) {
return out << i << ".";
}
}
auto orig_prec = out.precision();
return out
<< std::setprecision(std::numeric_limits<double>::max_digits10)
<< v.toDouble()
<< std::setprecision(orig_prec);
} case IValue::Tag::ComplexDouble: {
return printComplex(out, v);
} case IValue::Tag::Int:
return out << v.toInt();
case IValue::Tag::SymInt:
return out << v.toSymInt();
case IValue::Tag::SymFloat:
return out << v.toSymFloat();
case IValue::Tag::SymBool:
return out << v.toSymBool();
case IValue::Tag::Bool:
return out << (v.toBool() ? "True" : "False");
case IValue::Tag::Tuple: {
const auto& elements = v.toTupleRef().elements();
const auto& finish = elements.size() == 1 ? ",)" : ")";
return printList(out, elements, "(", finish, formatter);
}
case IValue::Tag::String:
return out << v.toStringRef();
case IValue::Tag::Blob:
return out << *v.toBlob();
case IValue::Tag::Capsule:
return out << "Capsule";
case IValue::Tag::GenericList:
return printList(out, v.toList(), "[", "]", formatter);
case IValue::Tag::RRef:
return out << "RRef";
case IValue::Tag::Future:
return out << "Future";
case IValue::Tag::Await:
return out << "Await";
case IValue::Tag::Uninitialized:
return out << "Uninitialized";
case IValue::Tag::Device:
return out << v.toDevice();
case IValue::Tag::Stream:
return out << v.toStream();
case IValue::Tag::GenericDict:
return printDict(out, v.toGenericDict(), formatter);
case IValue::Tag::PyObject: {
auto py_obj = v.toPyObject();
return out << "<PyObject at" << py_obj << ">";
}
case IValue::Tag::Generator:
return out << "Generator";
case IValue::Tag::Quantizer:
return out << "Quantizer";
case IValue::Tag::Object: {
// TODO we should attempt to call __str__ if the object defines it.
auto obj = v.toObject();
// print this out the way python would do it
return out << "<" << obj->name() << " object at " << obj.get() << ">";
}
case IValue::Tag::Enum: {
auto enum_holder = v.toEnumHolder();
return out << "Enum<" << enum_holder->unqualifiedClassName() << "." <<
enum_holder->name() << ">";
}
}
AT_ERROR("Tag not found: ", v.tagKind());
}
#undef TORCH_FORALL_TAGS
void IValue::dump() const {
std::cout << *this << "\n";
}
std::shared_ptr<ClassType> ivalue::Object::type() const {
return type_.type_->expect<ClassType>();
}
c10::intrusive_ptr<ivalue::Object> ivalue::Object::create(
ClassTypePtr classType, size_t numSlots) {
return ivalue::Object::create(
StrongTypePtr(nullptr, std::move(classType)), numSlots);
}
IValue IValue::deepcopy(c10::optional<at::Device> device) const {
IValue::HashAliasedIValueMap memo;
return deepcopy(memo, device);
}
IValue IValue::deepcopy(
IValue::HashAliasedIValueMap& memo,
c10::optional<at::Device> device) const {
if (memo.count(*this)) {
return memo.at(*this);
}
IValue copy;
switch(tag) {
case IValue::Tag::Tensor: {
const at::Tensor& src_tensor = toTensor();
copy = device.has_value() && !src_tensor.device().is_meta()
? IValue(src_tensor.to(*device))
: IValue(src_tensor.clone());
} break;
case IValue::Tag::Tuple: {
std::vector<IValue> copied_tuple;
for (const auto& e : toTupleRef().elements()) {
copied_tuple.emplace_back(e.deepcopy(memo, device));
}
copy = IValue(ivalue::Tuple::create(std::move(copied_tuple)));
}
break;
case IValue::Tag::GenericList: {
auto list = toList();
auto copied_list = c10::impl::GenericList(list.elementType());
for (IValue v : list) {
copied_list.push_back(v.deepcopy(memo, device));
}
copy = IValue(copied_list);
}
break;
case IValue::Tag::GenericDict: {
auto dict = toGenericDict();
auto copied_dict = c10::impl::GenericDict(dict.keyType(), dict.valueType());
for (const auto& entry : dict) {
copied_dict.insert(
entry.key().deepcopy(memo, device),
entry.value().deepcopy(memo, device));
}
copy = IValue(copied_dict);
}
break;
case IValue::Tag::Object: {
auto class_type = type()->expect<ClassType>();
if (class_type->hasMethod("__getstate__") &&
class_type->hasMethod("__setstate__")) {
copy = ivalue::Object::create(
c10::StrongTypePtr(class_type->compilation_unit(), type()),
class_type->numAttributes());
auto state = class_type->getMethod("__getstate__")({*this});
class_type->getMethod("__setstate__")({copy, std::move(state)});
} else {
copy = IValue(toObject()->deepcopy(memo, device));
}
} break;
case IValue::Tag::Enum: {
auto enum_holder = toEnumHolder();
copy = IValue(c10::make_intrusive<ivalue::EnumHolder>(
enum_holder->type(),
enum_holder->name(),
enum_holder->value().deepcopy(memo, device)));
} break;
case IValue::Tag::String:
case IValue::Tag::None:
case IValue::Tag::Double:
case IValue::Tag::Int:
case IValue::Tag::SymInt:
case IValue::Tag::SymFloat:
case IValue::Tag::SymBool:
case IValue::Tag::Bool:
case IValue::Tag::Device:
case IValue::Tag::Uninitialized: {
copy = *this;
} break;
default: {
AT_ERROR("Can't deepcopy IValue with tag: ", tagKind());
}
}
// NB: this doesn't work if an object contains itself, and it may
// come up in the future when we expand the object system, we will
// have a follow up PR to fix this when it becomes an issue.
if (!isAliasOf(copy)) {
memo[*this] = copy;
}
return copy;
}
void IValue::reportToTensorTypeError() const {
TORCH_CHECK(false, "Expected Tensor but got ", tagKind());
}
std::string ivalue::Object::name() const {
return type()->name()->qualifiedName();
}
IValue ivalue::Object::getAttr(const std::string& name) const {
const size_t slot = type()->getAttributeSlot(name);
return getSlot(slot);
}
void ivalue::Object::setAttr(const std::string& name, IValue v) {
const size_t slot = type()->getAttributeSlot(name);
setSlot(slot, std::move(v));
}
void ivalue::Object::unsafeRemoveAttr(const std::string& name) {
const size_t slot = type()->getAttributeSlot(name);
unsafeRemoveSlot(slot);
}
void ivalue::Object::resizeObject(size_t slot) {
AT_ASSERT(slot < type()->numAttributes());
slots_.resize(type()->numAttributes());
}
c10::intrusive_ptr<ivalue::Object> ivalue::Object::copy() const {
auto object = ivalue::Object::create(type_, type()->numAttributes());
for (const auto i : c10::irange(slots_.size())) {
object->setSlot(i, slots_[i]);
}