Skip to content

Latest commit

 

History

History
217 lines (152 loc) · 10.3 KB

README.md

File metadata and controls

217 lines (152 loc) · 10.3 KB

ReadMe

This is the repository for the Remote Sensing of Environment article: Deep Point Cloud Regression for Above-Ground Forest Biomass Estimation from Airborne LiDAR.

When cloning the repository, make sure to also get submodules:

git clone --recurse-submodules https://github.com/StefOe/DPCR-AGB.git

We include code, evaluation scripts, model weights (soon), and the dataset.

Regarding the code: We forked the torch-points3d framework and added support for regression tasks including datasets, tracking, and models on our own. In the process, we also simplified the usage of package.

In addition, we also included our code to load the trained linear regression and random forest in the pointcloud_stats_method folder. Just run the notebook learn_with_stats.ipynb.

Finally, the results/plots for each method can be seen in the eval_scripts folder within the eval_deep_learning_v2.ipynb. The results for the network size experiment are in eval_deep_learning_v2_size.ipynb.

results on the test set:

target model treeadd $R^2$ RMSE MAPE mean bias
median max median min median min median min
biomass KPConv False 0.800 0.815 45.264 43.540 396.685 272.288 0.460 0.389
True 0.780 0.803 47.526 44.975 467.581 246.927 3.660 -0.707
MSENet14 False 0.825 0.829 42.373 41.806 299.497 192.777 0.666 -0.291
True 0.823 0.829 42.596 41.851 271.716 131.120 0.313 0.122
MSENet50 False 0.827 0.835 42.140 41.083 469.104 174.245 0.837 -0.114
True 0.824 0.837 42.481 40.909 339.700 119.264 0.889 0.596
PointNet False 0.770 0.772 48.565 48.288 889.293 625.091 0.539 0.119
True 0.766 0.768 48.932 48.753 896.835 622.713 2.464 1.774
RF False 0.754 0.754 50.188 50.158 625.439 616.635 1.470 1.459
True 0.151 0.157 93.238 92.930 7644.787 7423.094 47.625 -47.521
power False 0.761 0.761 49.509 49.509 365.606 365.606 2.027 2.027
True 0.034 0.034 99.478 99.478 7604.844 7604.844 57.525 -57.525
linear False 0.762 0.762 49.420 49.420 425.605 425.605 1.894 1.894
True 0.195 0.195 90.801 90.801 11448.501 11448.501 39.149 -39.149
wood volume KPConv False 0.799 0.805 85.434 84.255 103.866 85.633 0.377 0.285
True 0.778 0.792 89.808 87.002 126.543 85.812 7.885 -1.012
MSENet14 False 0.823 0.826 80.309 79.631 99.105 72.597 0.515 0.389
True 0.821 0.825 80.750 79.716 84.473 70.097 2.577 1.829
MSENet50 False 0.824 0.831 79.986 78.344 131.525 72.381 0.169 0.123
True 0.822 0.832 80.571 78.177 115.634 78.422 3.572 2.646
PointNet False 0.777 0.781 90.183 89.198 205.366 162.049 1.991 1.369
True 0.773 0.776 90.844 90.220 236.383 174.903 5.708 4.578
RF False 0.757 0.757 94.091 94.070 223.652 222.600 3.979 3.955
True 0.192 0.197 171.475 170.930 1683.778 1676.524 85.629 -85.465
power False 0.763 0.763 92.819 92.819 223.654 223.654 4.497 4.497
True 0.120 0.120 178.973 178.973 1793.822 1793.822 101.104 -101.104
linear False 0.766 0.766 92.292 92.292 171.483 171.483 4.602 4.602
True 0.243 0.243 166.034 166.034 1747.807 1747.807 72.340 -72.340

Install torch-points3d

We setup our environment in the following way (conda is already installed):

  1. go to pointcloud-biomass-estimator/torch-points3d
  2. Make sure to install cuda 11.8 (don't forget to deselect the driver install if your drivers are current)
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
sudo sh cuda_11.8.0_520.61.05_linux.run
  1. after installing close and reopen the terminal to check if the PATH is set correctly with echo $PATH. It should not have /usr/local/cuda-10.2 but should have something like /usr/local/cuda-11.8 in there

  2. install mamba (optional but highly recommended)

conda install mamba -c conda-forge
  1. create conda environment:
mamba env create -f env.yml

or for cpu-version:

mamba env create -f env_cpu.yml
  1. activate environment:
mamba activate pts
  1. install missing pip packages for Minkowski networks
pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps --config-settings blas_include_dirs=${CONDA_PREFIX}/include blas=openblas

or for cpu-version:

pip install -U git+https://github.com/NVIDIA/MinkowskiEngine -v --no-deps --config-settings blas=openblas

  1. compile KPConv scripts
sh compile_wrappers.sh

Get the Data

to get the preprocessed lidar and nfi data, go to the torch-points3d folder (cd torch-points3d) and download:

wget https://sid.erda.dk/share_redirect/bB1TBPTsEk
mv bB1TBPTsEk nfi_preprocessed_data.zip
unzip nfi_preprocessed_data.zip

the data should now be in data/biomass/processed_nfi_reg/ given the root folder is torch-points3d.

Training for Regression

run from within the torch-points3d folder.

MSENet50:

python -u train.py task=instance models=instance/minkowski_baseline model_name=SENet50 data=instance/NFI/reg data.transform_type=sparse_xy training=nfi/minkowski lr_scheduler=cosineawr update_lr_scheduler_on=on_num_batch

MSENet14:

python -u train.py task=instance models=instance/minkowski_baseline model_name=SENet14 data=instance/NFI/reg data.transform_type=sparse_xy training=nfi/minkowski lr_scheduler=cosineawr update_lr_scheduler_on=on_num_batch

KPConv:

python -u train.py task=instance models=instance/kpconv model_name=KPConv data=instance/NFI/reg training=nfi/kpconv data.transform_type=xy lr_scheduler=cosineawr update_lr_scheduler_on=on_num_batch

PointNet:

python -u train.py task=instance models=instance/minkowski_baseline model_name=MPointNet data=instance/NFI/reg training=nfi/pointnet data.transform_type=sparse_xy lr_scheduler=cosineawr update_lr_scheduler_on=on_num_batch

Calibration batch normalization

to calibrate the trained models batch norm statistics. Note that the checkpoint directory has to be an absolute path, e.g.: checkpoint_dir=/home/user/torch-points3d/weights/SENet50/0

for Minkowski or Pointnet (model_name=SENet50, model_name=SENet14, or model_name=MPointNet):

python calibrate_bn.py model_name=${model_name} checkpoint_dir=${checkpoint_dir} data=instance/NFI/reg num_workers=4 task=instance weight_name="total_BMag_ha_rmse" batch_size=64 num_workers=4 data.transform_type=sparse_xy epochs=20

for KPConv:

python calibrate_bn.py model_name=KPConv checkpoint_dir=${checkpoint_dir} data=instance/NFI/reg num_workers=4 task=instance weight_name="total_BMag_ha_rmse" batch_size=64 num_workers=4 data.transform_type=xy epochs=20

Evaluating our models

run from within the torch-points3d folder. Note that the checkpoint directory has to be an absolute path, e.g.: PATHTOFRAMEWORK=/home/user/torch-points3d Also, there are 5 weights for each model (from different trials): TRIAL=1

MSENet50:

python eval.py model_name=SENet50 checkpoint_dir=${PATHTOFRAMEWORK}/weights/SENet50/${TRIAL}/ weight_name="latest" batch_size=32 num_workers=4 eval_stages=["train","val","test"] data.transform_type=sparse_xy_eval data=instance/NFI/reg task=instance

the save folder location is weights/msenet50/eval.

MSENet14:

python eval.py model_name=SENet14 checkpoint_dir=${PATHTOFRAMEWORK}/weights/SENet14/${TRIAL}/ weight_name="latest" batch_size=32 num_workers=4 eval_stages=["train","val","test"] data.transform_type=sparse_xy_eval data=instance/NFI/reg task=instance

the save folder location is weights/msenet14/eval.

KPConv:

python eval.py model_name=KPConv checkpoint_dir=${PATHTOFRAMEWORK}/weights/KPConv/${TRIAL}/ weight_name="latest" batch_size=32 num_workers=4 eval_stages=["train","val","test"] data.transform_type=xy_eval data=instance/NFI/reg task=instance

the save folder location is weights/kpconv/eval.

PointNet:

python eval.py model_name=MPointNet checkpoint_dir=${PATHTOFRAMEWORK}/weights/PointNet/${TRIAL}/ weight_name="latest" batch_size=32 num_workers=4 eval_stages=["train","val","test"] data.transform_type=sparse_xy_eval data=instance/NFI/reg task=instance

the save folder location is weights/pointnet/eval.

Using tree-adding augmentations during test

same as before, but the transform type changes to use tree augmentations, e.g.:

python eval.py model_name=MPointNet checkpoint_dir=${PATHTOFRAMEWORK}/weights/pointnet/ weight_name="total_rmse" batch_size=32 num_workers=4 eval_stages=["train","val","test"] data.transform_type=sparse_xy_eval_treeadd