-
Notifications
You must be signed in to change notification settings - Fork 0
/
tokenize_news.py
161 lines (131 loc) · 5.57 KB
/
tokenize_news.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Check this out to build sopme more functions in there
# https://github.com/nltk/nltk/wiki/Sentiment-Analysis
#you should INCLUDE VADER LIBRARY
#http://www.nltk.org/api/nltk.sentiment.html#module-nltk.sentiment.util
#example http://www.nltk.org/howto/sentiment.html
##!/usr/bin/env python3
import os
import operator
import argparse
import json
import numpy as np
import nltk
import util
""" Use pretrained word vector to generate our target features
Required input data:
./input/stopWords
./input/stockReturns.json
./input/news/*/*
Output file name:
input/featureMatrix_train
input/featureMatrix_test
input/word2idx"""
# credit: https://github.com/lazyprogrammer/machine_learning_examples/tree/master/nlp_class2
def tokenize(news_file, price_file, stopWords_file, output, output_wd2idx, sen_len, term_type, n_vocab, mtype):
# load price data
with open(price_file) as file:
print("Loading price info ... " + mtype)
priceDt = json.load(file)[term_type]
testDates = util.dateGenerator(90) # the most recent days are used for testing
os.system('rm ' + output + mtype)
# load stop words
stopWords = set()
with open(stopWords_file) as file:
for word in file:
stopWords.add(word.strip())
# build feature matrix
word2idx = {'START': 0, 'END': 1}
idx2word = ['START', 'END']
current_idx = 2
word_idx_count = {0: float('inf'), 1: float('inf')}
sentences, labels = [], []
os.system('cat ./input/news/*/* > ./input/news_reuters.csv')
with open(news_file) as f:
for num, line in enumerate(f):
line = line.strip().split(',')
if len(line) not in [6, 7]:
continue
if len(line) == 6:
ticker, name, day, headline, body, newsType = line
else:
ticker, name, day, headline, body, newsType, suggestion = line
if newsType != 'topStory': # newsType: [topStory, normal]
continue # skip normal news
if ticker not in priceDt:
continue # skip if no corresponding company found
if day not in priceDt[ticker]:
continue # skip if no corresponding date found
if num % 10000 == 0:
print("%sing samples %d" % (mtype, num))
if mtype == "test" and day not in testDates:
continue
if mtype == "train" and day in testDates:
continue
content = headline + ' ' + body
content = content.replace("-", " ")
tokens = util.tokenize_news(content, stopWords)
for t in tokens:
if t not in word2idx:
word2idx[t] = current_idx
idx2word.append(t)
current_idx += 1
idx = word2idx[t]
word_idx_count[idx] = word_idx_count.get(idx, 0) + 1
sentence_by_idx = [word2idx[t] for t in tokens if t not in stopWords]
sentences.append(sentence_by_idx)
labels.append(round(priceDt[ticker][day], 6))
# restrict vocab size
sorted_word_idx_count = sorted(word_idx_count.items(), key=operator.itemgetter(1), reverse=True)
word2idx_small = {}
new_idx = 0
idx_new_idx_map = {}
total_num, cdf = 0.0, 0.0
for idx, count in sorted_word_idx_count[:n_vocab]:
if count == "inf" or count == float('inf'):
continue
total_num += count
for idx, count in sorted_word_idx_count[:n_vocab]:
word = idx2word[idx]
if count == "inf" or count == float('inf'):
continue
cdf += (count * 1.0 / (total_num * 1.0))
print(word, count, str(cdf)[:5])
word2idx_small[word] = new_idx
idx_new_idx_map[idx] = new_idx
new_idx += 1
# let 'unknown' be the last token
word2idx_small['UNKNOWN'] = new_idx
unknown = new_idx
# map old idx to new idx
features = [] # shorter sentence idx
for num, sentence in enumerate(sentences):
if len(sentence) > 1:
new_sentence = [idx_new_idx_map[idx] if idx in idx_new_idx_map else unknown for idx in sentence]
# padding
if len(new_sentence) > sen_len:
new_sentence = new_sentence[:sen_len]
else:
new_sentence = new_sentence + [1] * (sen_len - len(new_sentence))
new_sentence.append(labels[num])
features.append(new_sentence)
features = np.matrix(features)
print(features.shape)
with open(output_wd2idx, 'w') as fp:
json.dump(word2idx_small, fp)
with open(output + mtype, 'a+') as file:
np.savetxt(file, features, fmt="%s")
def main():
news_file = "./input/news_reuters.csv"
stopWords_file = "./input/stopWords"
price_file = "./input/stockReturns.json"
output = './input/featureMatrix_'
output_wd2idx = "./input/word2idx"
parser = argparse.ArgumentParser(description='Tokenize Reuters news')
parser.add_argument('-vocabs', type=int, default=6000, help='total number of vocabularies [default: 1000]')
parser.add_argument('-words', type=int, default=40, help='max number of words in a sentence [default: 20]')
parser.add_argument('-term', type=str, default='short', help='return type [short mid long] [default: short]')
args = parser.parse_args()
tokenize(news_file, price_file, stopWords_file, output, output_wd2idx, args.words, args.term, args.vocabs, 'train')
tokenize(news_file, price_file, stopWords_file, output, output_wd2idx, args.words, args.term, args.vocabs, 'test')
if __name__ == "__main__":
main()