-
Notifications
You must be signed in to change notification settings - Fork 9
/
glm-finetunejsonl.py
155 lines (120 loc) · 4.32 KB
/
glm-finetunejsonl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from transformers.integrations import TensorBoardCallback
from torch.utils.tensorboard import SummaryWriter
from transformers import TrainingArguments
from transformers import Trainer, HfArgumentParser
from transformers import AutoTokenizer, AutoModel,DataCollatorForLanguageModeling,DataCollatorForSeq2Seq
import torch
import torch.nn as nn
from peft import get_peft_model, LoraConfig, TaskType
from dataclasses import dataclass, field
import datasets
import os
#使用jsonl作为数据集
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
tokenizer = AutoTokenizer.from_pretrained("chatglm-6b", trust_remote_code=True,device_map='auto')
@dataclass
class FinetuneArguments:
dataset_path: str = field(default="data/alpaca_data")
model_path: str = field(default="output")
lora_rank: int = field(default=16) #这里原本是8,要改为16
class CastOutputToFloat(nn.Sequential):
def forward(self, x):
return super().forward(x).to(torch.float32)
def data_collator(features: list) -> dict:
len_ids = [len(feature["input_ids"]) for feature in features]
longest = max(len_ids)
input_ids = []
labels_list = []
#print(features)
for ids_l, feature in sorted(zip(len_ids, features), key=lambda x: -x[0]):
ids = feature["input_ids"]
seq_len = feature["seq_len"]
labels = (
[-100] * (seq_len - 1) + ids[(seq_len - 1) :] + [-100] * (longest - ids_l)
)
ids = ids + [tokenizer.pad_token_id] * (longest - ids_l)
_ids = torch.LongTensor(ids)
labels_list.append(torch.LongTensor(labels))
input_ids.append(_ids)
input_ids = torch.stack(input_ids)
labels = torch.stack(labels_list)
return {
"input_ids": input_ids,
"labels": labels,
}
class ModifiedTrainer(Trainer):
def compute_loss(self, model, inputs, return_outputs=False):
return model(
input_ids=inputs["input_ids"],
labels=inputs["labels"],
).loss
def save_model(self, output_dir=None, _internal_call=False):
from transformers.trainer import TRAINING_ARGS_NAME
os.makedirs(output_dir, exist_ok=True)
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
saved_params = {
k: v.to("cpu") for k, v in self.model.named_parameters() if v.requires_grad
}
torch.save(saved_params, os.path.join(output_dir, "adapter_model.bin"))
def main():
writer = SummaryWriter()
finetune_args = FinetuneArguments
# init model
model = AutoModel.from_pretrained(
"chatglm-6b", load_in_8bit=False, trust_remote_code=True, device_map="auto"
)
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
model.is_parallelizable = True
model.model_parallel = True
model.lm_head = CastOutputToFloat(model.lm_head)
model.config.use_cache = (
False # silence the warnings. Please re-enable for inference!
)
# setup peft
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=finetune_args.lora_rank,
lora_alpha=32,
lora_dropout=0.1,
target_modules=['query_key_value']
)
model = get_peft_model(model, peft_config)
model = model.cuda()
# load dataset
dataset = datasets.load_from_disk(finetune_args.dataset_path)
#print(dataset.features)
#print(f"\n{len(dataset)=}\n")
# start train
training_args = TrainingArguments(
output_dir="lora-out",
fp16 =True,
gradient_accumulation_steps=1,
per_device_train_batch_size = 1,
learning_rate = 1e-4,
#num_train_epochs = 1,
#max_steps=1500,
max_steps=100,
logging_steps=50,
remove_unused_columns=False,
seed=0,
data_seed=0,
group_by_length=False,
)
trainer = ModifiedTrainer(
model=model,
args=training_args,
train_dataset=dataset,
callbacks=[TensorBoardCallback(writer)],
#法1:GLM微调方法
data_collator=data_collator,
#法2:GPT微调方法
#data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
trainer.train()
writer.close()
# save model
model.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
main()