forked from HRGV/phyloFlash
-
Notifications
You must be signed in to change notification settings - Fork 0
/
phyloFlash_compare.pl
executable file
·991 lines (790 loc) · 34.4 KB
/
phyloFlash_compare.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
#!/usr/bin/env perl
use strict;
use warnings;
=head1 NAME
phyloFlash_compare.pl - Compare phyloFlash NTU results for multiple libraries
=head1 SYNOPSIS
# NTU abundance table CSV files as input
phyloFlash_compare.pl --csv LIB1.phyloFlash.NTUabundance.csv,LIB2.phyloFlash.NTUabundance.csv -task barplot
phyloFlash_compare.pl --csv LIB1.phyloFlash.NTUabundance.csv,LIB2.phyloFlash.NTUabundance.csv -task heatmap
# phyloFlash tar.gz archives as input
phyloFlash_compare.pl --zip LIB1.phyloFlash.tar.gz,LIB2.phyloFlash.tar.gz -task barplot
phyloFlash_compare.pl --zip LIB1.phyloFlash.tar.gz,LIB2.phyloFlash.tar.gz -task heatmap
# Help/manual pages
phyloFlash_compare.pl --help
phyloFlash_compare.pl --man
=head1 DESCRIPTION
Compare the taxonomic composition multiple metagenomic/transcriptomic libraries
using the phyloFlash NTU abundance results. Three types of comparison are
available: I<heatmap> (taxa vs samples), I<barplot> (relative taxon abundance by
sample), or distance I<matrix> (Unifrac-like abundance-weighted taxonomic
distances).
The I<phyloFlash.pl> pipeline rapidly screens metagenomic/transcriptomic
libraries for SSU rRNA reads by mapping against the SILVA SSU Ref NR database.
The top reference hits per read are used to report an approximate taxonomic
affiliation. Read counts per NTU (named taxonomic units) are reported by the
pipeline to give an overview of the taxonomic diversity in the sample. These
NTU abundances are the basis for the comparison tools in I<phyloFlash_compare.pl>.
Users should be aware that taxonomic affiliations are only approximate and are
probably inaccurate at lower taxonomic levels, and that taxonomic groups are
not necessarily monophyletic. For more accurate (but slower) taxonomic or
phylogenetic classifications, one should reanalyze the extracted reads with a
dedicated method, e.g. using a phylogenetic placement algorithm on a curated
reference tree.
This script is a convenient wrapper for the R scripts I<phyloFlash_heatmap.R> and
I<phyloFlash_barplot.R>. More options are available when running those scripts
separately (see help messages by running the commands without arguments).
=cut
# This is a file reading and data-munging wrapper for the R scripts that are
# actually producing the plots
use Pod::Usage;
use Getopt::Long;
use FindBin qw($Bin);
use lib $FindBin::RealBin;
use PhyloFlash;
use Cwd;
use File::Basename;
use File::Temp qw(tempfile tempdir);
use Data::Dumper;
use Archive::Tar;
# About me
my $progname = $FindBin::Script; # Current script name
my $cwd = getcwd; # Current working folder
my $progcmd = join " ", ($progname, @ARGV) ; # How the script was called
# Input files
my ($csvfiles_str, $tarfiles_str); # Raw comma-separated input string
my ($csvfiles_aref, $tarfiles_aref); # Refs to arrays of input file paths
my @csvfiles_arr;
my @tarfiles_arr;
my $tempdir; # Temp folder to put extracted files, if using -zip option
my $tempdir_recalc; # Temp folder to put recalculated extracted files
my $task_opt;
my %task_hash;
my $allzip;
my $useSAM;
my $taxlevel = 4;
my $barplot_display = 5;
my $barplot_palette = 'Set3';
my $barplot_subset;
my $barplot_rawval;
my $barplot_scaleplotwidth;
my $out_prefix = 'test.phyloFlash_compare';
my $outfmt = "pdf";
my $keeptmp;
my $keeplog;
my $heatmap_clustersamples = 'ward.D';
my $heatmap_clustertaxa = 'ward.D';
my $heatmap_longtaxnames;
my $heatmap_minntucount = 50;
my %ntuhash; # Hash of counts per taxon (primary key) and sample (secondary key)
my %ntubysamplehash; # Hash of counts per sample (primary key) and taxon (secondary key)
my %totalreads_per_sample; # Hash of total reads counted per sample
=head1 ARGUMENTS
=head2 INPUT FILES
Specify the output files from phyloFlash runs for the libraries that you wish
to compare.
The options I<-csv> and I<-zip> are mutually exclusive. If phyloFlash is run with the
I<-zip> option, the archives containing the results of each separate run can be
specified with the -zip option below. If the results are not compressed, you can
specify the NTU classification tables in CSV format.
=over 8
=item --csv I<FILES>
Comma-separated list of NTU abundance tables from phyloFlash runs. The files
should be named [LIBNAME].phyloFlash.NTUabundance.csv or
[LIBNAME].phyloFlash.NTUfull_abundance.csv
=item --zip I<FILES>
Comma-separated list of tar.gz archives from phyloFlash runs. These will be
parsed to search for the [LIBNAME].phyloFlash.NTUabundance.csv files
within the archive, to extract the NTU classifications. This assumes that the
archive filenames are named [LIBNAME].phyloFlash.tar.gz, and that the LIBNAME
matches the contents of the archive.
=item --allzip
Use all phyloFlash tar.gz archives in the current folder (by matching filename
*.phyloFlash.tar.gz) for a comparison run. Overrides anything passed to option
I<--zip>.
=item --use_SAM
Ignore NTU abundance tables in CSV format, and recalculate the NTU abundances
from SAM files in the compressed tar.gz phyloFlash archives. Useful if e.g.
phyloFlash was originally called to summarize the taxonomy at a higher level than
you want to use for the comparison.
Only works if the tar.gz archives from phyloFlash runs are specified with the
I<--zip> option above.
Default: No.
=back
=head2 ANALYSIS OPTIONS
=over 8
=item --task I<STRING>
Type of analysis to be run. Options: "heatmap", "barplot", "matrix", "ntu_table"
or a recognizable substring thereof. Supply more than one option as comma-
separated list.
Default: None
=item --out I<STRING>
Prefix for output files.
Default: "test.phyloFlash_compare"
=item --outfmt I<STRING>
Format for plots (tasks 'barplot' and 'heatmap' only). Options: "pdf", "png"
Default: "pdf"
=item --level I<INTEGER>
Taxonomic level to perform the comparison. Must be an integer between 1 and 7.
Default: 4 ('Order')
=item --keeptmp
Keep temporary files
Default: No
=item --log
Save log file to file I<[OUTPREFIX].log>
Default: No
=back
=head2 ARGUMENTS FOR BARPLOT
The R script I<phyloFlash_barplot.R> can be run directly; run the script without
arguments to see the built-in help message. However, the input file to the
barplot script is produced by I<phyloFlash_compare.pl> (i.e. this script).
=over 8
=item --displaytaxa I<INTEGER>
Number of top taxa to display in barplot. Integer between 3 and 12 is preferable.
Default: 5
=item --barplot_palette I<STRING>
Palette to color taxa in barplot. Should be one of the qualitative ColorBrewer2
palettes: Accent, Dark2, Paired, Pastel1, Pastel2, Set1, Set2, or Set3.
Default: "Set3"
=item --barplot_subset I<STRING>
Display only the subset from this taxon, e.g. "Bacteria". Should be a taxon
string excluding trailing semicolon, e.g. "Bacteria;Proteobacteria".
Default: None (show all)
=item --barplot_rawval
Logical: Display counts rather than proportions in barplot, i.e. bars will not be
rescaled to 100% for each sample.
Default: False
=item --barplot_scaleplotwidth
Numeric: Change plot width by this scaling factor (e.g. 2 makes it twice as wide).
Allows adjustment when bars are hidden because the legend labels are too long.
Default: 1
=back
=head2 ARGUMENTS FOR HEATMAP
More options are available by using the R script I<phyloFlash_heatmap.R> directly,
or by sourcing it in the R environment. Run the R script without arguments to
see the built-in help message.
=over 8
=item --cluster-samples I<STRING>
Clustering method to use for clustering/sorting samples in heatmap. Options:
"alpha", "ward.D", "single", "complete", "average", "mcquitty", "median", "centroid",
or "custom".
"custom" will use the Unifrac-like abundance weighted taxonomic distances (the
distance matrix can be separately output with I<--task matrix>). This is an
experimental (unpublished) metric similar to Unifrac, but using a taxonomy tree
instead of a real phylogeny.
Default: "ward.D"
=item --cluster-taxa I<STRING>
Clustering method to use for clustering/sorting taxa. Options: "alpha", "ward",
"single", "complete", "average", "mcquitty", "median", "centroid".
Default: "ward.D"
=item --long-taxnames
Do not shorten taxa names to two last groups
=item --min-ntu-count I<INTEGER>
Sum up NTUs with fewer counts into a pseudo-NTU "Other".
Default: 50
=back
=head1 OUTPUT
=over 8
=item "heatmap"
PDF or PNG heatmap of taxa vs. samples, with abundance per taxon coded by a
color scale, and the samples/taxa clustered by the distance metric and
hierarchical clustering method specified by options I<--cluster-samples> and
I<--cluster_taxa>.
Output filename: I<[PREFIX].heatmap.[png|pdf]>
=item "barplot"
PDF or PNG plot of top N taxa (default N = 5) in the libraries being compared,
as bar plots showing proportional abundances in each library.
Output filename: I<[PREFIX].barplot.[png|pdf]>
=item "matrix"
Outputs a tab-separated table containing pairwise distances of all possible pairs
of samples. The distances are abundance-weighted Unifrac-like, using the
taxonomy tree in place of a phylogenetic tree, and treating all branches in the
taxonomy tree as having length 1.
Output columns are "library 1", "library 2", "distance"
Output filename: I<[PREFIX].matrix.tsv>
=item "ntu_table"
Outputs a tab-separated table of NTU counts per sample. This is the raw data
used to draw the barplot and may be useful for users who wish to plot the data
themselves with some other program.
Output columns are taxon string, sample, counts.
Output filename: I<[PREFIX].ntu_table.tsv>
=back
=head2 HELP MESSAGES
=over 8
=item --help|-h
Help message
=item --man
Manual page in pager
=item --version|-v
Report phyloFlash version
=back
=cut
pod2usage (-verbose=>0, -exit=>1) if (!@ARGV);
GetOptions ("csv=s" => \$csvfiles_str,
"zip=s" => \$tarfiles_str,
"allzip" => \$allzip,
"task=s" => \$task_opt,
"level=i" => \$taxlevel,
"use_SAM" => \$useSAM,
"displaytaxa=i" => \$barplot_display,
"barplot_palette=s" => \$barplot_palette,
"barplot_subset=s" => \$barplot_subset,
"barplot_rawval" => \$barplot_rawval,
"barplot_scaleplotwidth=f" => \$barplot_scaleplotwidth,
"cluster-samples=s" => \$heatmap_clustersamples,
"cluster-taxa=s" => \$heatmap_clustertaxa,
"long-taxnames" => \$heatmap_longtaxnames,
"min-ntu-count=i" => \$heatmap_minntucount,
"out=s" => \$out_prefix,
"outfmt=s" => \$outfmt,
"keeptmp" => \$keeptmp,
"log" => \$keeplog,
"help|h" => sub { pod2usage(-verbose=>1); },
"man" => sub { pod2usage(-verbose=>2); },
"version|v" => sub { welcome(); exit; },
) or pod2usage(-verbose=>0, -exit=>1);
# Paths to R scripts
my $barplot_script = "$Bin/phyloFlash_barplot.R";
my $heatmap_script = "$Bin/phyloFlash_heatmap.R";
## MAIN ########################################################################
## Catch exceptions ############################################################
if (!defined $task_opt) {
pod2usage ("ERROR: Please specify tasks [barplot, heatmap, matrix, ntu_table] to option --task");
pod2usage(-verbose=>0,-exit=>1);
}
if ($taxlevel > 7) {
msg ("Taxonomic level is > 7, this is unlikely to provide a meaningful result");
exit;
}
if ($barplot_display > 20) {
msg ("Number of taxa to display in barplot is > 20, this is unlikely to be legible, but continuing anyway...");
}
if ($outfmt ne 'pdf' && $outfmt ne 'png') {
msg ("WARNING: Invalid output format $outfmt specified. Should be either \"pdf\" or \"png\". Using \"pdf\"...");
$outfmt = 'pdf';
}
if ($useSAM) {
if (!defined $tarfiles_str && !defined $allzip) {
msg ("ERROR: No phyloFlash tar.gz archives were supplied even though --use_SAM option was supplied");
pod2usage(-verbose=>0);
exit;
}
}
## Read in data ################################################################
welcome();
msg ("Current working folder $cwd");
msg ("Script was called with following command: $progcmd");
parse_task_options($task_opt,\%task_hash);
if ($keeptmp) {
$tempdir = tempdir (TEMPLATE=>"phyloFlash_compare_XXXXXX", DIR => ".");
} else {
# Delete temp folders
$tempdir = tempdir (TEMPLATE=>"phyloFlash_compare_XXXXXX", CLEANUP=>1);
}
if (defined $useSAM) {
$tempdir_recalc = "$tempdir/recalc";
mkdir($tempdir_recalc);
}
if (defined $allzip) {
# Find all phyloFlash.tar.gz archives in the current folder
# for lazy users...
my @ziplist = glob "*.phyloFlash.tar.gz";
$tarfiles_str = join ",", @ziplist;
}
if (defined $csvfiles_str) {
# Read from CSV files
if (defined $tarfiles_str) {
msg ("CSV files specified, ignoring tar.gz archives");
}
$csvfiles_aref = filestr2arr ($csvfiles_str);
my $num_csv = scalar @$csvfiles_aref;
if ($num_csv < 2) {
msg ("ERROR: Cannot perform a comparison with fewer than two input samples. Exiting...");
exit;
}
msg ("Reading taxonomy from $num_csv NTU abundance tables in CSV format");
foreach my $csv (@$csvfiles_aref) {
if ($csv =~ m/^(.+)\.phyloFlash.NTU.*\.csv/) {
my $samplename = $1;
ntu_csv_file_to_hash($csv, $samplename, $taxlevel, \%ntuhash);
} else {
msg ("Filename of $csv does not match standard name of a phyloFlash NTU abundance file");
}
}
} elsif (defined $tarfiles_str) {
# Read from Tar archives
$tarfiles_aref = filestr2arr($tarfiles_str);
my $num_tar = scalar @$tarfiles_aref;
if ($num_tar < 2) {
msg ("ERROR: Cannot perform a comparison with fewer than two input samples. Exiting...");
exit;
}
msg ("Reading phyloFlash results from $num_tar archive files in tar.gz format");
foreach my $tar (@$tarfiles_aref) {
if ($tar =~ m/^(.+)\.phyloFlash\.tar\.gz/) {
my $samplename = $1;
# Create Archive::Tar object
my $tarhandle = Archive::Tar->new;
$tarhandle -> read($tar);
my $ntufilename = "$samplename.phyloFlash.NTUabundance.csv";
my $pFreportcsvname = "$samplename.phyloFlash.report.csv";
my $ntufull_filename = "$samplename.phyloFlash.NTUfull_abundance.csv";
if (defined $useSAM) {
my $sam_aref = get_phyloFlash_sam_from_archive($tarhandle);
msg ("Found SAM file in archive $tar; recalculating NTU abundances");
# Parse taxonomy from SAM file hits
my %taxa_ambig_byread_hash;
my $taxa_full_href;
my $readcounter;
foreach my $samline (@$sam_aref) { # Code adapted from readsam function in phyloFlash.pl
next if $samline =~ m/^@/; # Skip SAM header lines
my ($read, $bitflag, $ref, @discard) = split /\t/, $samline;
if ($bitflag & 0x40) {
$readcounter ++ unless $bitflag & 0x100;
}
if ($ref =~ m/\w+\.\d+\.\d+\s(.+)/) {
my $taxonlongstring = $1;
my @taxonlongarr = split /;/, $taxonlongstring;
taxstring2hash(\%{$taxa_ambig_byread_hash{$readcounter}}, \@taxonlongarr);
}
}
# Summarize the NTU counts to full taxonomy level 7
my @allreadcounters = (keys %taxa_ambig_byread_hash);
$taxa_full_href= consensus_taxon_counter(\%taxa_ambig_byread_hash, \@allreadcounters, 7);
# Write to temporary file in case keeptmp option is used
msg ("Writing recalculated NTU abundance for $samplename to $tempdir_recalc/$ntufull_filename");
open(my $fh, ">", "$tempdir_recalc/$ntufull_filename") or die ("$!");
foreach my $taxon (keys %$taxa_full_href) {
print $fh join ",", ($taxon, $taxa_full_href->{$taxon});
print $fh "\n";
}
close($fh);
# Read into ntuhash
ntu_csv_file_to_hash("$tempdir_recalc/$ntufull_filename", $samplename, $taxlevel, \%ntuhash);
} else {
# Check that NTU abundance table is in archive
if ($tarhandle->contains_file($ntufull_filename)) {
# Extract NTU full abundance table to a temporary file, if available
$tarhandle->extract_file($ntufull_filename, "$tempdir/$ntufull_filename");
ntu_csv_file_to_hash("$tempdir/$ntufull_filename", $samplename, $taxlevel, \%ntuhash);
msg ("Extracting NTU abundance table $ntufull_filename to temporary folder $tempdir");
} elsif ($tarhandle->contains_file($ntufilename)) {
# Extract NTU abundance table to a temporary file if full abundance table not available
$tarhandle->extract_file($ntufilename, "$tempdir/$ntufilename");
ntu_csv_file_to_hash("$tempdir/$ntufilename", $samplename, $taxlevel, \%ntuhash);
msg ("Extracting NTU abundance table $ntufilename to temporary folder $tempdir");
} else {
msg ("Expected NTU abundance file $ntufilename not found in tar archive $tar");
}
if ($tarhandle->contains_file($pFreportcsvname)) {
# Extract pF CSV report file required by heatmap tool
$tarhandle->extract_file($pFreportcsvname, "$tempdir/$pFreportcsvname") if (defined $task_hash{'heatmap'});
} else {
msg ("Expected phyloFlash report CSV file $pFreportcsvname not found in tar archive $tar");
}
}
} else {
msg ("Filename of archive $tar does not match standard name of a phyloFlash output archive");
}
}
}
#print Dumper \%ntuhash;
## Re-hash NTU hash by sample rather than taxon first
foreach my $taxon (keys %ntuhash) {
foreach my $sample (keys %{$ntuhash{$taxon}}) {
$ntubysamplehash{$sample}{$taxon} = $ntuhash{$taxon}{$sample};
$totalreads_per_sample{$sample} += $ntuhash{$taxon}{$sample}; # Add to running total per sample
}
}
#print Dumper \%ntubysamplehash;
#print Dumper \%totalreads_per_sample;
## Perform plotting ############################################################
if (defined $task_hash{'ntu_table'}) {
## NTU table ###############################################################
msg ("Summarizing NTUs per sample at taxonomic level $taxlevel");
my $out_aref = abundance_hash_to_array(\%ntuhash, "\t");
my $outfile_name = "$out_prefix.ntu_table.tsv";
my $ntu_table_fh;
open ($ntu_table_fh, ">", $outfile_name) or die ("Cannot open file $outfile_name for writing");
foreach my $line (@$out_aref) {
print $ntu_table_fh $line."\n";
}
close ($ntu_table_fh);
msg ("NTU abundance table written to file: $outfile_name");
}
if (defined $task_hash{'barplot'} ) {
## Barplot #################################################################
msg ("Plotting barplot using script: $barplot_script");
my $out_aref = abundance_hash_to_array(\%ntuhash);
my ($ntuall_fh, $ntuall_filename) = tempfile(DIR=>$tempdir);
open ($ntuall_fh, ">", $ntuall_filename) or die ("Cannot open file $ntuall_filename for writing");
foreach my $line (@$out_aref) {
print $ntuall_fh $line."\n";
}
msg ("NTU abundance by sample table written to temporary file: $ntuall_filename");
close ($ntuall_fh);
my $outfile_name = "$out_prefix.barplot.$outfmt";
my @barplot_args = ("-f $ntuall_filename",
"-t $barplot_display",
"-o $outfile_name",
"-p $barplot_palette",
);
if (defined $barplot_subset) { # Subset taxa
push @barplot_args, "--subset=\"$barplot_subset\"";
}
if (defined $barplot_rawval) {
push @barplot_args, "--rawval";
}
if (defined $barplot_scaleplotwidth) {
push @barplot_args, "--scaleplotwidth=$barplot_scaleplotwidth";
}
my $barplot_cmd = join " ", ('Rscript', $barplot_script, @barplot_args);
msg ("Plotting barplot: $barplot_cmd");
system ($barplot_cmd);
msg ("Barplot written to file: $outfile_name");
}
if (defined $task_hash{'matrix'} || $heatmap_clustersamples eq 'custom') {
## Matrix of taxonomic weighted Unifrac-like distances #####################
# This distance matrix is also produced if used by heatmap option 'custom'
# For each sample, re-parse the taxon strings and counts and put them in a
# tree structure with counts per sample stored on each taxon node
my %taxon_tree_with_counts;
my @outarr;
foreach my $sample (keys %ntubysamplehash) {
my $countername = "_COUNT_$sample";
encode_persample_counts_on_tree(\%taxon_tree_with_counts,
\%{$ntubysamplehash{$sample}},
$countername);
}
#print Dumper \%taxon_tree_with_counts;
#print Dumper \%totalreads_per_sample;
# For each pair of samples, output weighted taxonomic unifrac distance by
# walking through taxonomic tree and comparing the counts for that given pair
foreach my $sample1 (keys %totalreads_per_sample) {
foreach my $sample2 (keys %totalreads_per_sample) {
my $dist = calc_weight_tax_unifrac_pair (\%taxon_tree_with_counts,
"_COUNT_$sample1",
"_COUNT_$sample2",
$totalreads_per_sample{$sample1},
$totalreads_per_sample{$sample2},
);
push @outarr, join "\t", ($sample1, $sample2, $dist);
}
}
# Write matrix file
open (my $fhmatrix, ">", "$out_prefix.matrix.tsv") or die ("Cannot open file $out_prefix.matrix.tsv for writing");
print $fhmatrix join "\n", @outarr;
close ($fhmatrix);
msg ("Matrix of Unifrac-like abundance-weighted taxonomic distances written to file $out_prefix.matrix.tsv");
}
if (defined $task_hash{'heatmap'}) {
## Heatmap of samples vs. taxa #############################################
msg ("Plotting heatmap using script: $heatmap_script");
# Write CSV files containing refactored taxonomy and abundances
my $tempdir_refactor = "$tempdir/refactor";
mkdir ($tempdir_refactor);
msg ("Writing tables for refactored taxonomic abundances to folder $tempdir_refactor");
csv_from_refactored_NTU_hash(\%ntubysamplehash,$tempdir_refactor);
metadata_from_refactored_NTU_hash(\%ntubysamplehash,$tempdir_refactor);
# Define input CSV files for heatmap R script
my $heatmap_csv_input = "$tempdir_refactor/*.csv";
# Define name of output plot file
my $outfile_name = "$out_prefix.heatmap.$outfmt";
my @heatmap_args = ("-o $outfile_name",
#"--library-name-from-file",
"--cluster-samples=$heatmap_clustersamples",
"--cluster-taxa=$heatmap_clustertaxa",
"--min-ntu-count=$heatmap_minntucount");
# If using custom distance matrix...
if ($heatmap_clustersamples eq 'custom') {
push @heatmap_args, "--custom-distance-matrix-sample=$out_prefix.matrix.tsv";
}
# Push input file names/path last
push @heatmap_args, $heatmap_csv_input;
my $heatmap_cmd = join " ", ($heatmap_script, @heatmap_args);
msg ("Plotting heatmap: $heatmap_cmd");
my $heatmap_return = system ($heatmap_cmd);
msg ("Heatmap written to file: $outfile_name") if $heatmap_return;
}
# Thank and finish
msg ("Thank you for using phyloFlash_compare.pl");
msg ("Temporary files retained in folder $tempdir") if $keeptmp;
if (defined $keeplog) {
my $logfile = "$out_prefix.log";
msg ("Writing log file to $logfile");
open(my $fh, ">", $logfile) or die ("$!");
print $fh join "\n", @msg_log;
close($fh);
}
## SUBS ########################################################################
sub get_phyloFlash_sam_from_archive {
# Get filename of phyloFlash SAM file from archive
my ($archive_handle) = @_;
my (@list) = $archive_handle->list_files();
my $content;
foreach my $file (@list) {
if ($file =~ m/SSU.sam$/) {
$content = $archive_handle->get_content($file);
}
}
my @array = split /\n/, $content;
return \@array;
}
sub csv_from_refactored_NTU_hash {
# Generate new phyloFlash NTU abundance CSV files when taxon abundances have
# been refactored to a higher taxonomic level
my ($href, # Ref to hash of abundances keyed by sample (primary key) and taxon (secondary key)
$output_folder, # Folder to write output CSV files
) = @_;
foreach my $sample (keys %$href) {
my $out_filename ="$sample.phyloFlash.NTUabundance.csv";
open(my $fh , ">", "$output_folder/$out_filename") or die ("$!");
foreach my $taxon (keys %{$href->{$sample}}) {
print $fh join ",", ($taxon, $href->{$sample}{$taxon});
print $fh "\n";
}
close ($fh);
}
}
sub metadata_from_refactored_NTU_hash {
my ($href, # Ref to hash of abundances keyed by sample (primary key) and taxon (secondary key)
$output_folder, # Folder to write output CSV files
) = @_;
foreach my $sample (keys %$href) {
my $out_filename ="$sample.phyloFlash.report.csv";
my $chao1 = chao1_from_hash(\%{$href->{$sample}});
open(my $fh , ">", "$output_folder/$out_filename") or die ("$!");
print $fh "version,phyloFlash v$VERSION\n";
print $fh "library name,$sample\n";
print $fh "NTU Chao1 richness estimate,$chao1\n";
close ($fh);
}
}
sub chao1_from_hash {
# Calculate chao1 diversity values from hash of abundances (val) by taxa (key)
my ($href) = @_;
my @xtons = (0,0,0);
my $chao1;
# Enumerate 1-tons, 2-tons, and 3+
foreach my $key (keys %$href) {
if ($href->{$key} == 1) {
$xtons[0] ++;
} elsif ( $href->{$key} == 2) {
$xtons[1] ++;
} elsif ($href->{$key} >= 3) {
$xtons[2] ++;
}
}
# Formula copied from phyloFlash.pl - may need to be revised
if ($xtons[1] > 0) {
$chao1 =
$xtons[2] + # Is there an error here? Should be sum of all spp. observed
($xtons[0] * $xtons[0]) / 2 / $xtons[1];
} else {
$chao1 = 'n.d.';
}
return $chao1;
}
sub parse_task_options {
# Parse comma-separated string of task names (or substrings thereof) and
# hash to options hash
my ($task_string,
$href) = @_;
my @task_arr = split /,/, $task_string;
foreach my $task (@task_arr) {
if (index ('heatmap',$task) != -1) {
$href->{'heatmap'} ++;
} elsif (index ('barplot',$task) != -1) {
$href->{'barplot'} ++;
} elsif (index ('matrix',$task) != -1) {
$href->{'matrix'} ++;
} elsif (index ('ntu_table', $task) != -1) {
$href->{'ntu_table'} ++ ;
} elsif (index ('test', $task) != -1) {
$href->{'test'} ++;
} else {
msg ("ERROR: Unrecognized argument $task passed to option --task ; Valid arguments are: heatmap, barplot, matrix, ntu_table");
}
}
}
sub ntu_csv_file_to_hash {
# Wrapper to directly read CSV file into hash of abundances vs taxon * samples
my ($file,
$samplename,
$taxlevel,
$href) = @_;
my $counts_aref = ntu_csv_file_to_arr($file);
my $counts_refactor_aref;
if (defined $taxlevel) {
# Refactor taxonstring to lower taxonomic level if requested
$counts_refactor_aref = refactor_ntu_abundance_to_taxlevel($counts_aref,$taxlevel);
} else {
$counts_refactor_aref = $counts_aref;
}
ntu_csv_arr_to_hash($counts_refactor_aref,
$samplename,
$href);
}
sub filestr2arr {
# Convert comma-separated string of filenames to array
my ($str) = @_;
my @arr = split /,/, $str;
return \@arr;
}
sub refactor_ntu_abundance_to_taxlevel {
# Refactor NTU abundance table to higher taxonomic level, given an NTU
# abundance array, return array of refactored CSV
my ($aref, # Ref to array of NTU taxon strings (semicolon-separated) and respective abundances (comma-separated)
$level # Taxonomic level to summarize, should be higher than what is in array
) = @_;
my %hash;
my @arr;
foreach my $entry (@$aref) {
my ($taxstr, $count) = split /,/, $entry;
my @taxarr = split /;/, $taxstr;
if ($level > scalar @taxarr) {
msg ("Specified taxonomic level for summary is higher than available in taxstring $taxstr; padding to lowest level...");
my $diff = $level - scalar @taxarr;
push @taxarr, ("($taxarr[$#taxarr])") x $diff;
}
my $shortstr = join ";", @taxarr[0..$level-1]; # -1 to convert from 1-based to 0-based numbering
$hash{$shortstr} += $count;
}
foreach my $key (keys %hash) {
push @arr, join ",", ($key, $hash{$key});
}
return \@arr;
}
sub ntu_csv_file_to_arr {
# Read NTU abundance CSV file and convert to an array
# Return ref to that array
my ($csvfile) = @_;
my @arr;
open (my $fh, "<", $csvfile) or die ("Cannot open CSV file $csvfile");
while (my $line = <$fh>) {
chomp $line;
push @arr, $line;
}
close ($fh);
return \@arr;
}
sub ntu_csv_arr_to_hash {
# Convert CSV array of NTU abundances to hash of abundances keyed by
# taxon (primary key) and sample ID (secondary key)
my ($csv_aref, # CSV file converted to array, ref thereto
$name, # Sample name
$href, # Ref to hash containing counts for all taxa and samples
) = @_;
foreach my $rec (@$csv_aref) {
my ($taxon, $count) = split /,/, $rec;
$href->{$taxon}{$name} = $count;
}
}
sub abundance_hash_to_array {
my ($href, $delim) = @_;
if (!defined $delim) {
$delim = ",";
}
my @arr;
foreach my $taxon (sort keys %$href) {
foreach my $sample (sort keys %{$href->{$taxon}}) {
my $count = $href->{$taxon}{$sample};
push @arr, join $delim, ($taxon, $sample, $count);
}
}
return \@arr;
}
sub encode_persample_counts_on_tree {
my ($href, # Output hash tree
$href_in, # Input hash for a given sample
$countername, # Name for the counter ref for this sample
) = @_;
foreach my $taxstring (keys %$href_in) {
my $display_taxstring = $taxstring;
$display_taxstring =~ s/^;ROOT;//;
my $count = $href_in->{$taxstring};
my @taxarr = split /;/, $display_taxstring;
taxstring2hash_count($href,\@taxarr,$count,$countername);
}
}
sub calc_weight_tax_unifrac_pair_raw {
# Calculate taxonomic weighted raw Unifrac for a given pair of counts on
# the tree
my ($href, # Ref to hash containing the tree
$counts1, # Name of the key storing counts of sample 1
$counts2, # Name of the key storing counts of sample 2
$total1, # Total count for sample 1
$total2, # Total count for sample 2
$raw_unifrac_sref,
) = @_;
# Calculate the contribution to the raw unifrac value for this branch
my ($node1count, $node2count);
# Account for missing taxa in one sample (assign count = 0)
if (defined $href->{$counts1}) { $node1count = $href->{$counts1}; } else { $node1count = 0; }
if (defined $href->{$counts2}) { $node2count = $href->{$counts2}; } else { $node2count = 0; }
$$raw_unifrac_sref += abs($node1count/$total1 - $node2count/$total2);
# Recursion
foreach my $key (keys %$href) {
if (ref ($href->{$key}) eq 'HASH') {
calc_weight_tax_unifrac_pair_raw(\%{$href->{$key}},$counts1,$counts2,$total1,$total2,$raw_unifrac_sref);
}
}
}
sub calc_weight_tax_unifrac_pair {
my ($href,
$countname1,
$countname2,
$in1_total,
$in2_total,
) = @_;
my $raw_unifrac;
calc_weight_tax_unifrac_pair_raw($href,
$countname1,
$countname2,
$in1_total,
$in2_total,
\$raw_unifrac,
);
# The equivalent of the scaling factor D would be the total taxonomic rank depth
# of the tax tree, e.g. 7 for species, 4 for order. The branch length between
# each rank is implicitly = 1 in the calc_weight_tax_unifrac_pair() procedure
# The number D in Lozupone et al. 2007 reduces to 2d because d_j is the same
# for all j in a taxonomic tree, and sum_j^n (A_j/A_T) is unity.
return $raw_unifrac / (2 * $taxlevel);
}
sub taxstring2hash_count {
# Convert taxonomy string to a nested hash structure recursively
my ($href, # Reference to hash
$aref, # Reference to taxonomy string as array
$count, # Taxon abundance
$countername, # Name for the taxon total count key
) = @_;
my $taxon = shift @$aref;
if (@$aref) { # Recursion
taxstring2hash_count (\%{$href->{$taxon}}, $aref, $count,$countername);
$href->{$taxon}{$countername} += $count;
} else { # End condition - count number of occurrences of this taxon
$href->{$taxon}{$countername} += $count;
}
}
sub welcome {
my $message = "This is phyloFlash_compare.pl from phyloFlash v$VERSION";
print STDERR $message;
print STDERR "\n";
}
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2018- by Brandon Seah <[email protected]>
Harald Gruber-Vodicka <[email protected]>
Elmar A. Pruesse <[email protected]>
LICENCE
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
=cut