-
Notifications
You must be signed in to change notification settings - Fork 0
/
Matching_script.py
214 lines (162 loc) · 8.17 KB
/
Matching_script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import pandas as pd
import numpy as np
import json
from pandas.io.json import json_normalize
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
import pickle
import re
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.decomposition import PCA
def Match_finder(Mentor_json,Mentees_json,model_file_location):
model=pickle.load(open(model_file_location,'rb'))
def data_preprocessing(data):
data=data.drop(labels=['id','name','rollNo','peerID','post','hosteller'],axis=1)
def cleaning_language_data(values):
v=str(values)
v=v.strip()
s=re.sub(pattern="[^\w\s\,\/\+]",repl="",string=v)
s=s.lower()
res = re.split(', |/', s)
count=0
x=' '.join(res)
x=x.replace('c++','chigh')
x=x.replace('c','clow')
x=x.replace('c#','cmedium')
x=x.replace('clowhigh','chigh')
x=x.replace('clow#','cmedium')
x=x.replace('no preferenclowe','no prefence')
return x
def cleaning_domain_data(values):
v=str(values)
v=v.strip()
s=re.sub(pattern="[^\w\s\,\/\+]",repl="",string=v)
s=s.lower()
res = re.split(', |/', s)
count=0
x=' '.join(res)
return x
for name,values in data.items():
if name=='domains':
if pd.api.types.is_string_dtype(values):
count=0
for i in values:
data.iloc[count,0]=cleaning_domain_data(i)
count+=1
elif name=='languages':
if pd.api.types.is_string_dtype(values):
count=0
for i in values:
data.iloc[count,1]=cleaning_language_data(i)
count+=1
elif name=='branch':
data['branch']=data['branch'].str.lower()
branch_mapping={'cse-1':'cse','cse-2':'cse','it-1':'it','it-2':'it','ece':'ece','mae':'mae','cse':'cse','it':'it','eee':'eee','mechanical':'mechanical','civil':'civil'}
data['branch']=data['branch'].map(branch_mapping)
return data
def perfect_match_process(full_mentor_df,processed_mentor_df,full_mentee_df,processed_mentee_df):
domain_score=5
language_score=1
branch_score=0.5
match_score=[]
mentor_matched_id=[]
mentee_matched_id=[]
fk=processed_mentor_df.copy()
predict_branch_data=processed_mentee_df
for i in range(len(predict_branch_data)):
target_matched_df=fk[fk['target']==predict_branch_data.iloc[i,:]['target']]
# print(fk.shape)
temp_mentee=predict_branch_data.iloc[i,:-1]
temp_mentee_domain=temp_mentee['domains'].lower().split()
temp_mentee_language=temp_mentee['languages'].lower().split()
temp_mentee_branch=temp_mentee['branch'].split()
for j in range(len(target_matched_df)):
each_score=0
temp_df=np.array(target_matched_df.iloc[j,:-2])
st=''
for k in range(len(temp_df)):
st+=' '+temp_df[k]
for l in temp_mentee_domain:
if l in st:
each_score+=domain_score
for m in temp_mentee_language:
if m in st:
each_score+=language_score
for n in temp_mentee_branch:
if n in st:
each_score+=branch_score
match_score.append(each_score)
del st
try:
target_matched_df['match_score']=match_score
best_match=target_matched_df[target_matched_df['match_score']==max(match_score)]
if len(best_match)>1:
th=fk.sort_values('experience_level',ascending=False).loc[best_match.index]
ind=th.index[0]
mentor_matched_id.append(full_mentor_df['id'].loc[ind])
fk=fk.drop(ind,axis=0)
else:
perfect_matched_pair_index=best_match.index[0]
# print(perfect_matched_pair_index)
mentor_matched_id.append(full_mentor_df['id'].loc[perfect_matched_pair_index])
fk=fk.drop(target_matched_df[target_matched_df['match_score']==max(match_score)].index[0],axis=0)
mentee_matched_id.append(full_mentee_df['id'].loc[i])
match_score.clear()
except:
print('Not Found')
final_perfect_matched=pd.DataFrame()
final_perfect_matched['mentor_id']=mentor_matched_id
final_perfect_matched['mentees_id']=mentee_matched_id
return final_perfect_matched
def Mentor_Matching(Mentor_json,Mentees_json,model):
Mentor_df_json=pd.read_json(Mentor_json)
Mentor_df=pd.DataFrame(Mentor_df_json.users.values.tolist())
data_with_branch=Mentor_df.copy()
data=Mentor_df.copy()
# data=data.drop(labels=['id','name','rollNo','peerID','post','hosteller'],axis=1)
df=pd.DataFrame({'domains':['[Web Development, App Development, Machine Learning, IOT, BlockChain, AR/VR, Game Development, Cloud Engineering, Competitive Programming, Cyber Security, Open Source]'],'languages':['[Java, Python, C/C++, No Preference]'],'branch':['cse']})
data=data.append(df,ignore_index=True)
mentor_df_pre=data_preprocessing(data)
# nik=[]
# for i in np.random.randint(1,6,size=(data.shape[0],1)):
# nik.append(i[0])
# mentor_df_pre['experience_level']=nik
np.random.seed(10)
domains_vector=CountVectorizer()
domains_vec_val=domains_vector.fit_transform(mentor_df_pre['domains'])
df_domain_wrds=pd.DataFrame(domains_vec_val.toarray(),columns=domains_vector.get_feature_names())
np.random.seed(11)
languages_vector=CountVectorizer()
languages_vec_val=languages_vector.fit_transform(mentor_df_pre['languages'])
df_lang_wrds=pd.DataFrame(languages_vec_val.toarray(),columns=languages_vector.get_feature_names())
final_df=pd.concat([df_domain_wrds,df_lang_wrds],axis=1)
# final_df=final_df.drop(['domains','languages'],axis=1)
final_df=final_df.drop(index=final_df.shape[0]-1,axis=0)
pca=PCA(n_components=2,random_state=30)
X=pca.fit_transform(final_df)
values=model.predict(X)
Mentor_df_pre=mentor_df_pre.drop(index=mentor_df_pre.shape[0]-1,axis=0)
Mentor_df_pre['target']=values
# For Mentor Matching
Mentees_matching_df_json=pd.read_json(Mentees_json)
predict_df=pd.DataFrame(Mentees_matching_df_json.users.values.tolist())
predict_data=predict_df.copy()
# print(predict_data.shape)
# predict_data_index=predict_data.isna().index
# predict_data=predict_data.drop(predict_data_index,axis=0)
# print(predict_data.shape)
predict_data=data_preprocessing(predict_data)
predict_domains=domains_vector.transform(predict_data['domains'])
predict_domain_wrds=pd.DataFrame(predict_domains.toarray(),columns=domains_vector.get_feature_names())
predict_languages=languages_vector.transform(predict_data['languages'])
predict_lang_wrds=pd.DataFrame(predict_languages.toarray(),columns=languages_vector.get_feature_names())
final_df=pd.concat([predict_domain_wrds,predict_lang_wrds],axis=1)
# final_df=final_df.drop(['domains','languages'],axis=1)
Predicted_X=pca.transform(final_df)
predicted_target=model.predict(Predicted_X)
predict_data['target']=predicted_target
matched_pairs_id=perfect_match_process(Mentor_df,Mentor_df_pre,predict_df,predict_data)
return matched_pairs_id
matching_df=Mentor_Matching(Mentor_json,Mentees_json,model)
return matching_df