forked from jacobgil/pytorch-grad-cam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
swinT_example.py
124 lines (98 loc) · 3.75 KB
/
swinT_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import argparse
import cv2
import numpy as np
import torch
import timm
from pytorch_grad_cam import GradCAM, \
ScoreCAM, \
GradCAMPlusPlus, \
AblationCAM, \
XGradCAM, \
EigenCAM, \
EigenGradCAM, \
LayerCAM, \
FullGrad
from pytorch_grad_cam.utils.image import show_cam_on_image, \
preprocess_image
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--use-cuda', action='store_true', default=False,
help='Use NVIDIA GPU acceleration')
parser.add_argument(
'--image-path',
type=str,
default='./examples/both.png',
help='Input image path')
parser.add_argument('--aug_smooth', action='store_true',
help='Apply test time augmentation to smooth the CAM')
parser.add_argument(
'--eigen_smooth',
action='store_true',
help='Reduce noise by taking the first principle componenet'
'of cam_weights*activations')
parser.add_argument(
'--method',
type=str,
default='scorecam',
help='Can be gradcam/gradcam++/scorecam/xgradcam/ablationcam')
args = parser.parse_args()
args.use_cuda = args.use_cuda and torch.cuda.is_available()
if args.use_cuda:
print('Using GPU for acceleration')
else:
print('Using CPU for computation')
return args
def reshape_transform(tensor, height=7, width=7):
result = tensor.reshape(tensor.size(0),
height, width, tensor.size(2))
# Bring the channels to the first dimension,
# like in CNNs.
result = result.transpose(2, 3).transpose(1, 2)
return result
if __name__ == '__main__':
""" python swinT_example.py -image-path <path_to_image>
Example usage of using cam-methods on a SwinTransformers network.
"""
args = get_args()
methods = \
{"gradcam": GradCAM,
"scorecam": ScoreCAM,
"gradcam++": GradCAMPlusPlus,
"ablationcam": AblationCAM,
"xgradcam": XGradCAM,
"eigencam": EigenCAM,
"eigengradcam": EigenGradCAM,
"layercam": LayerCAM,
"fullgrad": FullGrad}
if args.method not in list(methods.keys()):
raise Exception(f"method should be one of {list(methods.keys())}")
model = timm.create_model('swin_base_patch4_window7_224', pretrained=True)
model.eval()
if args.use_cuda:
model = model.cuda()
target_layer = model.layers[-1].blocks[-1].norm2
if args.method not in methods:
raise Exception(f"Method {args.method} not implemented")
cam = methods[args.method](model=model,
target_layer=target_layer,
use_cuda=args.use_cuda,
reshape_transform=reshape_transform)
rgb_img = cv2.imread(args.image_path, 1)[:, :, ::-1]
rgb_img = cv2.resize(rgb_img, (224, 224))
rgb_img = np.float32(rgb_img) / 255
input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
# If None, returns the map for the highest scoring category.
# Otherwise, targets the requested category.
target_category = None
# AblationCAM and ScoreCAM have batched implementations.
# You can override the internal batch size for faster computation.
cam.batch_size = 32
grayscale_cam = cam(input_tensor=input_tensor,
target_category=target_category,
eigen_smooth=args.eigen_smooth,
aug_smooth=args.aug_smooth)
# Here grayscale_cam has only one image in the batch
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img, grayscale_cam)
cv2.imwrite(f'{args.method}_cam.jpg', cam_image)