-
Notifications
You must be signed in to change notification settings - Fork 47
/
vector.go
620 lines (512 loc) · 20 KB
/
vector.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
package resolv
import (
"fmt"
"math"
)
// This is essentially a 2D version of my 3D Vectors used in Tetra3D.
// WorldRight represents a unit vector in the global direction of WorldRight on the right-handed OpenGL / Tetra3D's coordinate system (+X).
var WorldRight = NewVector(1, 0)
// WorldLeft represents a unit vector in the global direction of WorldLeft on the right-handed OpenGL / Tetra3D's coordinate system (-X).
var WorldLeft = WorldRight.Invert()
// WorldUp represents a unit vector in the global direction of WorldUp on the right-handed OpenGL / Tetra3D's coordinate system (+Y).
var WorldUp = NewVector(0, 1)
// WorldDown represents a unit vector in the global direction of WorldDown on the right-handed OpenGL / Tetra3D's coordinate system (+Y).
var WorldDown = WorldUp.Invert()
// Vector represents a 2D Vector, which can be used for usual 2D applications (position, direction, velocity, etc).
// Any Vector functions that modify the calling Vector return copies of the modified Vector, meaning you can do method-chaining easily.
// Vectors seem to be most efficient when copied (so try not to store pointers to them if possible, as dereferencing pointers
// can be more inefficient than directly acting on data, and storing pointers moves variables to heap).
type Vector struct {
X float64 // The X (1st) component of the Vector
Y float64 // The Y (2nd) component of the Vector
}
// NewVector creates a new Vector with the specified x, y, and z components. The W component is generally ignored for most purposes.
func NewVector(x, y float64) Vector {
return Vector{X: x, Y: y}
}
// NewVectorZero creates a new "zero-ed out" Vector, with the values of 0, 0, 0, and 0 (for W).
func NewVectorZero() Vector {
return Vector{}
}
// Modify returns a ModVector object (a pointer to the original vector).
// Using a ModVector allows you to chain functions without having to reassign it to the original Vector object all of the time.
func (vec *Vector) Modify() ModVector {
ip := ModVector{Vector: vec}
return ip
}
// String returns a string representation of the Vector, excluding its W component (which is primarily used for internal purposes).
func (vec Vector) String() string {
return fmt.Sprintf("{%.2f, %.2f}", vec.X, vec.Y)
}
// Add returns a copy of the calling vector, added together with the other Vector provided (ignoring the W component).
func (vec Vector) Add(other Vector) Vector {
vec.X += other.X
vec.Y += other.Y
return vec
}
// AddX returns a copy of the calling vector with an added value to the X axis.
func (vec Vector) AddX(x float64) Vector {
vec.X += x
return vec
}
// AddY returns a copy of the calling vector with an added value to the Y axis.
func (vec Vector) AddY(y float64) Vector {
vec.Y += y
return vec
}
// Sub returns a copy of the calling Vector, with the other Vector subtracted from it (ignoring the W component).
func (vec Vector) Sub(other Vector) Vector {
vec.X -= other.X
vec.Y -= other.Y
return vec
}
// SubX returns a copy of the calling vector with an added value to the X axis.
func (vec Vector) SubX(x float64) Vector {
vec.X -= x
return vec
}
// SubY returns a copy of the calling vector with an added value to the Y axis.
func (vec Vector) SubY(y float64) Vector {
vec.Y -= y
return vec
}
// Expand expands the Vector by the margin specified, in absolute units, if each component is over the minimum argument.
// To illustrate: Given a Vector of {1, 0.1, -0.3}, Vector.Expand(0.5, 0.2) would give you a Vector of {1.5, 0.1, -0.8}.
// This function returns a copy of the Vector with the result.
func (vec Vector) Expand(margin, min float64) Vector {
if vec.X > min || vec.X < -min {
vec.X += math.Copysign(margin, vec.X)
}
if vec.Y > min || vec.Y < -min {
vec.Y += math.Copysign(margin, vec.Y)
}
return vec
}
// Invert returns a copy of the Vector with all components inverted.
func (vec Vector) Invert() Vector {
vec.X = -vec.X
vec.Y = -vec.Y
return vec
}
// Magnitude returns the length of the Vector.
func (vec Vector) Magnitude() float64 {
return math.Sqrt(vec.X*vec.X + vec.Y*vec.Y)
}
// MagnitudeSquared returns the squared length of the Vector; this is faster than Length() as it avoids using math.Sqrt().
func (vec Vector) MagnitudeSquared() float64 {
return vec.X*vec.X + vec.Y*vec.Y
}
// ClampMagnitude clamps the overall magnitude of the Vector to the maximum magnitude specified, returning a copy with the result.
func (vec Vector) ClampMagnitude(maxMag float64) Vector {
if vec.Magnitude() > maxMag {
vec = vec.Unit().Scale(maxMag)
}
return vec
}
// AddMagnitude adds magnitude to the Vector in the direction it's already pointing.
func (vec Vector) AddMagnitude(mag float64) Vector {
return vec.Add(vec.Unit().Scale(mag))
}
// SubMagnitude subtracts the given magnitude from the Vector's existing magnitude.
// If the vector's magnitude is less than the given magnitude to subtract, a zero-length Vector will be returned.
func (vec Vector) SubMagnitude(mag float64) Vector {
if vec.Magnitude() > mag {
return vec.Sub(vec.Unit().Scale(mag))
}
return Vector{0, 0}
}
// Distance returns the distance from the calling Vector to the other Vector provided.
func (vec Vector) Distance(other Vector) float64 {
vec.X -= other.X
vec.Y -= other.Y
return math.Sqrt(vec.X*vec.X + vec.Y*vec.Y)
}
// Distance returns the squared distance from the calling Vector to the other Vector provided. This is faster than Distance(), as it avoids using math.Sqrt().
func (vec Vector) DistanceSquared(other Vector) float64 {
vec.X -= other.X
vec.Y -= other.Y
return vec.X*vec.X + vec.Y*vec.Y
}
// Mult performs Hadamard (component-wise) multiplication on the calling Vector with the other Vector provided, returning a copy with the result (and ignoring the Vector's W component).
func (vec Vector) Mult(other Vector) Vector {
vec.X *= other.X
vec.Y *= other.Y
return vec
}
// Unit returns a copy of the Vector, normalized (set to be of unit length).
// It does not alter the W component of the Vector.
func (vec Vector) Unit() Vector {
l := vec.Magnitude()
if l < 1e-8 || l == 1 {
// If it's 0, then don't modify the vector
return vec
}
vec.X, vec.Y = vec.X/l, vec.Y/l
return vec
}
// SetX sets the X component in the vector to the value provided.
func (vec Vector) SetX(x float64) Vector {
vec.X = x
return vec
}
// SetY sets the Y component in the vector to the value provided.
func (vec Vector) SetY(y float64) Vector {
vec.Y = y
return vec
}
// Set sets the values in the Vector to the x, y, and z values provided.
func (vec Vector) Set(x, y float64) Vector {
vec.X = x
vec.Y = y
return vec
}
// Reflect reflects the vector against the given surface normal.
func (vec Vector) Reflect(normal Vector) Vector {
n := normal.Unit()
return vec.Sub(n.Scale(2 * n.Dot(vec)))
}
// Perp returns the right-handed perpendicular of the vector (i.e. the vector rotated 90 degrees to the right, clockwise).
func (vec Vector) Perp() Vector {
return Vector{-vec.Y, vec.X}
}
// Floats returns a [2]float64 array consisting of the Vector's contents.
func (vec Vector) Floats() [2]float64 {
return [2]float64{vec.X, vec.Y}
}
// Equals returns true if the two Vectors are close enough in all values (excluding W).
func (vec Vector) Equals(other Vector) bool {
eps := 1e-4
if math.Abs(float64(vec.X-other.X)) > eps || math.Abs(float64(vec.Y-other.Y)) > eps {
return false
}
return true
}
// IsZero returns true if the values in the Vector are extremely close to 0 (excluding W).
func (vec Vector) IsZero() bool {
eps := 1e-4
if math.Abs(float64(vec.X)) > eps || math.Abs(float64(vec.Y)) > eps {
return false
}
// if !onlyXYZ && math.Abs(vec.W-other.W) > eps {
// return false
// }
return true
}
// Rotate returns a copy of the Vector, rotated around an axis Vector with the x, y, and z components provided, by the angle
// provided (in radians), counter-clockwise.
// The function is most efficient if passed an orthogonal, normalized axis (i.e. the X, Y, or Z constants).
// Note that this function ignores the W component of both Vectors.
func (vec Vector) Rotate(angle float64) Vector {
x := vec.X
y := vec.Y
vec.X = x*math.Cos(angle) - y*math.Sin(angle)
vec.Y = x*math.Sin(angle) + y*math.Cos(angle)
return vec
}
// Angle returns the signed angle in radians between the calling Vector and the provided other Vector (ignoring the W component).
func (vec Vector) Angle(other Vector) float64 {
// vec = vec.Unit()
// other = other.Unit()
angle := math.Atan2(other.Y, other.X) - math.Atan2(vec.Y, vec.X)
if angle > math.Pi {
angle -= 2 * math.Pi
} else if angle <= -math.Pi {
angle += 2 * math.Pi
}
return angle
}
// AngleRotation returns the angle in radians between this Vector and world right
func (vec Vector) AngleRotation() float64 {
return vec.Angle(WorldRight)
}
// Scale scales a Vector by the given scalar (ignoring the W component), returning a copy with the result.
func (vec Vector) Scale(scalar float64) Vector {
vec.X *= scalar
vec.Y *= scalar
return vec
}
// Divide divides a Vector by the given scalar (ignoring the W component), returning a copy with the result.
func (vec Vector) Divide(scalar float64) Vector {
vec.X /= scalar
vec.Y /= scalar
return vec
}
// Dot returns the dot product of a Vector and another Vector (ignoring the W component).
func (vec Vector) Dot(other Vector) float64 {
return vec.X*other.X + vec.Y*other.Y
}
// Round rounds off the Vector's components to the given space in world unit increments, returning a clone
// (e.g. Vector{0.1, 1.27, 3.33}.Snap(0.25) will return Vector{0, 1.25, 3.25}).
func (vec Vector) Round(snapToUnits float64) Vector {
vec.X = round(vec.X/snapToUnits) * snapToUnits
vec.Y = round(vec.Y/snapToUnits) * snapToUnits
return vec
}
// ClampAngle clamps the Vector such that it doesn't exceed the angle specified (in radians).
// This function returns a normalized (unit) Vector.
func (vec Vector) ClampAngle(baselineVec Vector, maxAngle float64) Vector {
mag := vec.Magnitude()
angle := vec.Angle(baselineVec)
if angle > maxAngle {
vec = baselineVec.Slerp(vec, maxAngle/angle).Unit()
}
return vec.Scale(mag)
}
// Lerp performs a linear interpolation between the starting Vector and the provided
// other Vector, to the given percentage (ranging from 0 to 1).
func (vec Vector) Lerp(other Vector, percentage float64) Vector {
percentage = clamp(percentage, 0, 1)
vec.X = vec.X + ((other.X - vec.X) * percentage)
vec.Y = vec.Y + ((other.Y - vec.Y) * percentage)
return vec
}
// Slerp performs a spherical linear interpolation between the starting Vector and the provided
// ending Vector, to the given percentage (ranging from 0 to 1).
// This should be done with directions, usually, rather than positions.
// This being the case, this normalizes both Vectors.
func (vec Vector) Slerp(targetDirection Vector, percentage float64) Vector {
vec = vec.Unit()
targetDirection = targetDirection.Unit()
// Thank you StackOverflow, once again! : https://stackoverflow.com/questions/67919193/how-does-unity-implements-vector3-slerp-exactly
percentage = clamp(percentage, 0, 1)
dot := vec.Dot(targetDirection)
dot = clamp(dot, -1, 1)
theta := math.Acos(dot) * percentage
relative := targetDirection.Sub(vec.Scale(dot)).Unit()
return (vec.Scale(math.Cos(theta)).Add(relative.Scale(math.Sin(theta)))).Unit()
}
// IsInside returns if the given Vector is inside of the given Shape.
func (vec Vector) IsInside(shape IShape) bool {
switch other := shape.(type) {
case *ConvexPolygon:
// Internally, we test for this by just making a line that extends into infinity and then checking for intersection points.
pointLine := newCollidingLine(vec.X, vec.Y, vec.X+999999999999, vec.Y)
contactCount := 0
for _, line := range other.Lines() {
if _, ok := line.IntersectionPointsLine(pointLine); ok {
contactCount++
}
}
return contactCount%2 == 1
case *Circle:
return vec.DistanceSquared(other.position) <= other.radius*other.radius
}
return false
}
// ModVector represents a reference to a Vector, made to facilitate easy method-chaining and modifications on that Vector (as you
// don't need to re-assign the results of a chain of operations to the original variable to "save" the results).
// Note that a ModVector is not meant to be used to chain methods on a vector to pass directly into a function; you can just
// use the normal vector functions for that purpose. ModVectors are pointers, which are allocated to the heap. This being the case,
// they should be slower relative to normal Vectors, so use them only in non-performance-critical parts of your application.
type ModVector struct {
*Vector
}
// Add adds the other Vector provided to the ModVector.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Add(other Vector) ModVector {
ip.X += other.X
ip.Y += other.Y
return ip
}
// Sub subtracts the other Vector from the calling ModVector.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Sub(other Vector) ModVector {
ip.X -= other.X
ip.Y -= other.Y
return ip
}
// AddX adds a value to the X axis of the given Vector.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) AddX(x float64) ModVector {
ip.X += x
return ip
}
// SetX sets a value to the X axis of the given Vector.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) SetX(x float64) ModVector {
ip.X = x
return ip
}
// SubX subtracts a value from the X axis of the given Vector.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) SubX(x float64) ModVector {
ip.X -= x
return ip
}
// AddY adds a value to the Y axis of the given Vector.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) AddY(y float64) ModVector {
ip.X += y
return ip
}
// SetY sets a value to the Y axis of the given Vector.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) SetY(y float64) ModVector {
ip.X = y
return ip
}
// SubY subtracts a value from the Y axis of the given Vector.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) SubY(y float64) ModVector {
ip.X -= y
return ip
}
func (ip ModVector) SetZero() ModVector {
ip.X = 0
ip.Y = 0
return ip
}
// Scale scales the Vector by the scalar provided.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Scale(scalar float64) ModVector {
ip.X *= scalar
ip.Y *= scalar
return ip
}
// Divide divides a Vector by the given scalar (ignoring the W component).
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Divide(scalar float64) ModVector {
ip.X /= scalar
ip.Y /= scalar
return ip
}
// Expand expands the ModVector by the margin specified, in absolute units, if each component is over the minimum argument.
// To illustrate: Given a ModVector of {1, 0.1, -0.3}, ModVector.Expand(0.5, 0.2) would give you a ModVector of {1.5, 0.1, -0.8}.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Expand(margin, min float64) ModVector {
exp := ip.Vector.Expand(margin, min)
ip.X = exp.X
ip.Y = exp.Y
return ip
}
// Mult performs Hadamard (component-wise) multiplication with the Vector on the other Vector provided.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Mult(other Vector) ModVector {
ip.X *= other.X
ip.Y *= other.Y
return ip
}
// Unit normalizes the ModVector (sets it to be of unit length).
// It does not alter the W component of the Vector.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Unit() ModVector {
l := ip.Magnitude()
if l < 1e-8 || l == 1 {
// If it's 0, then don't modify the vector
return ip
}
ip.X, ip.Y = ip.X/l, ip.Y/l
return ip
}
// Rotate rotates the calling Vector by the angle provided (in radians).
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Rotate(angle float64) ModVector {
rot := (*ip.Vector).Rotate(angle)
ip.X = rot.X
ip.Y = rot.Y
return ip
}
// Invert inverts all components of the calling Vector.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Invert() ModVector {
ip.X = -ip.X
ip.Y = -ip.Y
return ip
}
// Round snaps the Vector's components to the given space in world units, returning a clone (e.g. Vector{0.1, 1.27, 3.33}.Snap(0.25) will return Vector{0, 1.25, 3.25}).
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Round(snapToUnits float64) ModVector {
snapped := (*ip.Vector).Round(snapToUnits)
ip.X = snapped.X
ip.Y = snapped.Y
return ip
}
// ClampMagnitude clamps the overall magnitude of the Vector to the maximum magnitude specified.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) ClampMagnitude(maxMag float64) ModVector {
clamped := (*ip.Vector).ClampMagnitude(maxMag)
ip.X = clamped.X
ip.Y = clamped.Y
return ip
}
// SubMagnitude subtacts the given magnitude from the Vector's. If the vector's magnitude is less than the given magnitude to subtract,
// a zero-length Vector will be returned.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) SubMagnitude(mag float64) ModVector {
if ip.Magnitude() > mag {
ip.Sub(ip.Vector.Unit().Scale(mag))
} else {
ip.X = 0
ip.Y = 0
}
return ip
}
// AddMagnitude adds magnitude to the Vector in the direction it's already pointing.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) AddMagnitude(mag float64) ModVector {
ip.Add(ip.Vector.Unit().Scale(mag))
return ip
}
// Lerp performs a linear interpolation between the starting Vector and the provided
// other Vector, to the given percentage (ranging from 0 to 1).
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Lerp(other Vector, percentage float64) ModVector {
lerped := (*ip.Vector).Lerp(other, percentage)
ip.X = lerped.X
ip.Y = lerped.Y
return ip
}
// Slerp performs a linear interpolation between the starting Vector and the provided
// other Vector, to the given percentage (ranging from 0 to 1).
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Slerp(targetDirection Vector, percentage float64) ModVector {
slerped := (*ip.Vector).Slerp(targetDirection, percentage)
ip.X = slerped.X
ip.Y = slerped.Y
return ip
}
// ClampAngle clamps the Vector such that it doesn't exceed the angle specified (in radians).
// This function returns the calling ModVector for method chaining.
func (ip ModVector) ClampAngle(baselineVector Vector, maxAngle float64) ModVector {
clamped := (*ip.Vector).ClampAngle(baselineVector, maxAngle)
ip.X = clamped.X
ip.Y = clamped.Y
return ip
}
// String converts the ModVector to a string. Because it's a ModVector, it's represented with a *.
func (ip ModVector) String() string {
return fmt.Sprintf("*{%.2f, %.2f}", ip.X, ip.Y)
}
// Clone returns a ModVector of a clone of its backing Vector.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Clone() ModVector {
v := *ip.Vector
return v.Modify()
}
func (ip ModVector) ToVector() Vector {
return *ip.Vector
}
// Reflect reflects the vector against the given surface normal.
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Reflect(normal Vector) ModVector {
reflected := (*ip.Vector).Reflect(normal)
ip.X = reflected.X
ip.Y = reflected.Y
return ip
}
// Perp returns the right-handed perpendicular of the input vector (i.e. the Vector rotated 90 degrees to the right, clockwise).
// This function returns the calling ModVector for method chaining.
func (ip ModVector) Perp() ModVector {
crossed := (*ip.Vector).Perp()
ip.X = crossed.X
ip.Y = crossed.Y
return ip
}
// Distance returns the distance from the calling ModVector to the other Vector provided.
func (ip ModVector) Distance(other Vector) float64 {
return ip.Vector.Distance(other)
}
// DistanceSquared returns the distance from the calling ModVector to the other Vector provided.
func (ip ModVector) DistanceSquared(other Vector) float64 {
return ip.Vector.DistanceSquared(other)
}