JavaGuide :「Java学习+面试指南」一份涵盖大部分 Java 程序员所需要掌握的核心知识。准备 Java 面试,首选 JavaGuide!
这部分内容摘自 JavaGuide 下面几篇文章:
进程是程序的一次执行过程,是系统运行程序的基本单位,因此进程是动态的。系统运行一个程序即是一个进程从创建,运行到消亡的过程。
在 Java 中,当我们启动 main 函数时其实就是启动了一个 JVM 的进程,而 main 函数所在的线程就是这个进程中的一个线程,也称主线程。
如下图所示,在 Windows 中通过查看任务管理器的方式,我们就可以清楚看到 Windows 当前运行的进程(.exe
文件的运行)。
线程与进程相似,但线程是一个比进程更小的执行单位。一个进程在其执行的过程中可以产生多个线程。与进程不同的是同类的多个线程共享进程的堆和方法区资源,但每个线程有自己的程序计数器、虚拟机栈和本地方法栈,所以系统在产生一个线程,或是在各个线程之间作切换工作时,负担要比进程小得多,也正因为如此,线程也被称为轻量级进程。
Java 程序天生就是多线程程序,我们可以通过 JMX 来看看一个普通的 Java 程序有哪些线程,代码如下。
public class MultiThread {
public static void main(String[] args) {
// 获取 Java 线程管理 MXBean
ThreadMXBean threadMXBean = ManagementFactory.getThreadMXBean();
// 不需要获取同步的 monitor 和 synchronizer 信息,仅获取线程和线程堆栈信息
ThreadInfo[] threadInfos = threadMXBean.dumpAllThreads(false, false);
// 遍历线程信息,仅打印线程 ID 和线程名称信息
for (ThreadInfo threadInfo : threadInfos) {
System.out.println("[" + threadInfo.getThreadId() + "] " + threadInfo.getThreadName());
}
}
}
上述程序输出如下(输出内容可能不同,不用太纠结下面每个线程的作用,只用知道 main 线程执行 main 方法即可):
[5] Attach Listener //添加事件
[4] Signal Dispatcher // 分发处理给 JVM 信号的线程
[3] Finalizer //调用对象 finalize 方法的线程
[2] Reference Handler //清除 reference 线程
[1] main //main 线程,程序入口
从上面的输出内容可以看出:一个 Java 程序的运行是 main 线程和多个其他线程同时运行。
从 JVM 角度说进程和线程之间的关系。
下图是 Java 内存区域,通过下图我们从 JVM 的角度来说一下线程和进程之间的关系。
从上图可以看出:一个进程中可以有多个线程,多个线程共享进程的堆和方法区 (JDK1.8 之后的元空间)资源,但是每个线程有自己的程序计数器、虚拟机栈 和 本地方法栈。
总结: 线程是进程划分成的更小的运行单位。线程和进程最大的不同在于基本上各进程是独立的,而各线程则不一定,因为同一进程中的线程极有可能会相互影响。线程执行开销小,但不利于资源的管理和保护;而进程正相反。
下面是该知识点的扩展内容!
下面来思考这样一个问题:为什么程序计数器、虚拟机栈和本地方法栈是线程私有的呢?为什么堆和方法区是线程共享的呢?
程序计数器主要有下面两个作用:
- 字节码解释器通过改变程序计数器来依次读取指令,从而实现代码的流程控制,如:顺序执行、选择、循环、异常处理。
- 在多线程的情况下,程序计数器用于记录当前线程执行的位置,从而当线程被切换回来的时候能够知道该线程上次运行到哪儿了。
需要注意的是,如果执行的是 native 方法,那么程序计数器记录的是 undefined 地址,只有执行的是 Java 代码时程序计数器记录的才是下一条指令的地址。
所以,程序计数器私有主要是为了线程切换后能恢复到正确的执行位置。
- 虚拟机栈: 每个 Java 方法在执行的同时会创建一个栈帧用于存储局部变量表、操作数栈、常量池引用等信息。从方法调用直至执行完成的过程,就对应着一个栈帧在 Java 虚拟机栈中入栈和出栈的过程。
- 本地方法栈: 和虚拟机栈所发挥的作用非常相似,区别是: 虚拟机栈为虚拟机执行 Java 方法 (也就是字节码)服务,而本地方法栈则为虚拟机使用到的 Native 方法服务。 在 HotSpot 虚拟机中和 Java 虚拟机栈合二为一。
所以,为了保证线程中的局部变量不被别的线程访问到,虚拟机栈和本地方法栈是线程私有的。
堆和方法区是所有线程共享的资源,其中堆是进程中最大的一块内存,主要用于存放新创建的对象 (几乎所有对象都在这里分配内存),方法区主要用于存放已被加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。
- 并发:两个及两个以上的作业在同一 时间段 内执行。
- 并行:两个及两个以上的作业在同一 时刻 执行。
最关键的点是:是否是 同时 执行。
- 同步 : 发出一个调用之后,在没有得到结果之前, 该调用就不可以返回,一直等待。
- 异步 :调用在发出之后,不用等待返回结果,该调用直接返回。
先从总体上来说:
- 从计算机底层来说: 线程可以比作是轻量级的进程,是程序执行的最小单位,线程间的切换和调度的成本远远小于进程。另外,多核 CPU 时代意味着多个线程可以同时运行,这减少了线程上下文切换的开销。
- 从当代互联网发展趋势来说: 现在的系统动不动就要求百万级甚至千万级的并发量,而多线程并发编程正是开发高并发系统的基础,利用好多线程机制可以大大提高系统整体的并发能力以及性能。
再深入到计算机底层来探讨:
- 单核时代: 在单核时代多线程主要是为了提高单进程利用 CPU 和 IO 系统的效率。 假设只运行了一个 Java 进程的情况,当我们请求 IO 的时候,如果 Java 进程中只有一个线程,此线程被 IO 阻塞则整个进程被阻塞。CPU 和 IO 设备只有一个在运行,那么可以简单地说系统整体效率只有 50%。当使用多线程的时候,一个线程被 IO 阻塞,其他线程还可以继续使用 CPU。从而提高了 Java 进程利用系统资源的整体效率。
- 多核时代: 多核时代多线程主要是为了提高进程利用多核 CPU 的能力。举个例子:假如我们要计算一个复杂的任务,我们只用一个线程的话,不论系统有几个 CPU 核心,都只会有一个 CPU 核心被利用到。而创建多个线程,这些线程可以被映射到底层多个 CPU 上执行,在任务中的多个线程没有资源竞争的情况下,任务执行的效率会有显著性的提高,约等于(单核时执行时间/CPU 核心数)。
并发编程的目的就是为了能提高程序的执行效率提高程序运行速度,但是并发编程并不总是能提高程序运行速度的,而且并发编程可能会遇到很多问题,比如:内存泄漏、死锁、线程不安全等等。
Java 线程在运行的生命周期中的指定时刻只可能处于下面 6 种不同状态的其中一个状态:
- NEW: 初始状态,线程被创建出来但没有被调用
start()
。 - RUNNABLE: 运行状态,线程被调用了
start()
等待运行的状态。 - BLOCKED :阻塞状态,需要等待锁释放。
- WAITING:等待状态,表示该线程需要等待其他线程做出一些特定动作(通知或中断)。
- TIME_WAITING:超时等待状态,可以在指定的时间后自行返回而不是像 WAITING 那样一直等待。
- TERMINATED:终止状态,表示该线程已经运行完毕。
线程在生命周期中并不是固定处于某一个状态而是随着代码的执行在不同状态之间切换。
Java 线程状态变迁图(图源:挑错 |《Java 并发编程的艺术》中关于线程状态的三处错误):
由上图可以看出:线程创建之后它将处于 NEW(新建) 状态,调用 start()
方法后开始运行,线程这时候处于 READY(可运行) 状态。可运行状态的线程获得了 CPU 时间片(timeslice)后就处于 RUNNING(运行) 状态。
在操作系统层面,线程有 READY 和 RUNNING 状态;而在 JVM 层面,只能看到 RUNNABLE 状态(图源:HowToDoInJava:Java Thread Life Cycle and Thread States),所以 Java 系统一般将这两个状态统称为 RUNNABLE(运行中) 状态 。
为什么 JVM 没有区分这两种状态呢? (摘自:Java 线程运行怎么有第六种状态? - Dawell 的回答 ) 现在的时分(time-sharing)多任务(multi-task)操作系统架构通常都是用所谓的“时间分片(time quantum or time slice)”方式进行抢占式(preemptive)轮转调度(round-robin 式)。这个时间分片通常是很小的,一个线程一次最多只能在 CPU 上运行比如 10-20ms 的时间(此时处于 running 状态),也即大概只有 0.01 秒这一量级,时间片用后就要被切换下来放入调度队列的末尾等待再次调度。(也即回到 ready 状态)。线程切换的如此之快,区分这两种状态就没什么意义了。
- 当线程执行
wait()
方法之后,线程进入 WAITING(等待) 状态。进入等待状态的线程需要依靠其他线程的通知才能够返回到运行状态。 - TIMED_WAITING(超时等待) 状态相当于在等待状态的基础上增加了超时限制,比如通过
sleep(long millis)
方法或wait(long millis)
方法可以将线程置于 TIMED_WAITING 状态。当超时时间结束后,线程将会返回到 RUNNABLE 状态。 - 当线程进入
synchronized
方法/块或者调用wait
后(被notify
)重新进入synchronized
方法/块,但是锁被其它线程占有,这个时候线程就会进入 BLOCKED(阻塞) 状态。 - 线程在执行完了
run()
方法之后将会进入到 TERMINATED(终止) 状态。
相关阅读:线程的几种状态你真的了解么? 。
线程在执行过程中会有自己的运行条件和状态(也称上下文),比如上文所说到过的程序计数器,栈信息等。当出现如下情况的时候,线程会从占用 CPU 状态中退出。
- 主动让出 CPU,比如调用了
sleep()
,wait()
等。 - 时间片用完,因为操作系统要防止一个线程或者进程长时间占用 CPU 导致其他线程或者进程饿死。
- 调用了阻塞类型的系统中断,比如请求 IO,线程被阻塞。
- 被终止或结束运行
这其中前三种都会发生线程切换,线程切换意味着需要保存当前线程的上下文,留待线程下次占用 CPU 的时候恢复现场。并加载下一个将要占用 CPU 的线程上下文。这就是所谓的 上下文切换。
上下文切换是现代操作系统的基本功能,因其每次需要保存信息恢复信息,这将会占用 CPU,内存等系统资源进行处理,也就意味着效率会有一定损耗,如果频繁切换就会造成整体效率低下。
线程死锁描述的是这样一种情况:多个线程同时被阻塞,它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞,因此程序不可能正常终止。
如下图所示,线程 A 持有资源 2,线程 B 持有资源 1,他们同时都想申请对方的资源,所以这两个线程就会互相等待而进入死锁状态。
下面通过一个例子来说明线程死锁,代码模拟了上图的死锁的情况 (代码来源于《并发编程之美》):
public class DeadLockDemo {
private static Object resource1 = new Object();//资源 1
private static Object resource2 = new Object();//资源 2
public static void main(String[] args) {
new Thread(() -> {
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource2");
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
}
}
}, "线程 1").start();
new Thread(() -> {
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource1");
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
}
}
}, "线程 2").start();
}
}
Output
Thread[线程 1,5,main]get resource1
Thread[线程 2,5,main]get resource2
Thread[线程 1,5,main]waiting get resource2
Thread[线程 2,5,main]waiting get resource1
线程 A 通过 synchronized (resource1)
获得 resource1
的监视器锁,然后通过Thread.sleep(1000);
让线程 A 休眠 1s 为的是让线程 B 得到执行然后获取到 resource2 的监视器锁。线程 A 和线程 B 休眠结束了都开始企图请求获取对方的资源,然后这两个线程就会陷入互相等待的状态,这也就产生了死锁。
上面的例子符合产生死锁的四个必要条件:
- 互斥条件:该资源任意一个时刻只由一个线程占用。
- 请求与保持条件:一个线程因请求资源而阻塞时,对已获得的资源保持不放。
- 不剥夺条件:线程已获得的资源在未使用完之前不能被其他线程强行剥夺,只有自己使用完毕后才释放资源。
- 循环等待条件:若干线程之间形成一种头尾相接的循环等待资源关系。
如何预防死锁? 破坏死锁的产生的必要条件即可:
- 破坏请求与保持条件 :一次性申请所有的资源。
- 破坏不剥夺条件 :占用部分资源的线程进一步申请其他资源时,如果申请不到,可以主动释放它占有的资源。
- 破坏循环等待条件 :靠按序申请资源来预防。按某一顺序申请资源,释放资源则反序释放。破坏循环等待条件。
如何避免死锁?
避免死锁就是在资源分配时,借助于算法(比如银行家算法)对资源分配进行计算评估,使其进入安全状态。
安全状态 指的是系统能够按照某种线程推进顺序(P1、P2、P3.....Pn)来为每个线程分配所需资源,直到满足每个线程对资源的最大需求,使每个线程都可顺利完成。称
<P1、P2、P3.....Pn>
序列为安全序列。
我们对线程 2 的代码修改成下面这样就不会产生死锁了。
new Thread(() -> {
synchronized (resource1) {
System.out.println(Thread.currentThread() + "get resource1");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread() + "waiting get resource2");
synchronized (resource2) {
System.out.println(Thread.currentThread() + "get resource2");
}
}
}, "线程 2").start();
输出:
Thread[线程 1,5,main]get resource1
Thread[线程 1,5,main]waiting get resource2
Thread[线程 1,5,main]get resource2
Thread[线程 2,5,main]get resource1
Thread[线程 2,5,main]waiting get resource2
Thread[线程 2,5,main]get resource2
Process finished with exit code 0
我们分析一下上面的代码为什么避免了死锁的发生?
线程 1 首先获得到 resource1 的监视器锁,这时候线程 2 就获取不到了。然后线程 1 再去获取 resource2 的监视器锁,可以获取到。然后线程 1 释放了对 resource1、resource2 的监视器锁的占用,线程 2 获取到就可以执行了。这样就破坏了破坏循环等待条件,因此避免了死锁。
共同点 :两者都可以暂停线程的执行。
区别 :
sleep()
方法没有释放锁,而wait()
方法释放了锁 。wait()
通常被用于线程间交互/通信,sleep()
通常被用于暂停执行。wait()
方法被调用后,线程不会自动苏醒,需要别的线程调用同一个对象上的notify()
或者notifyAll()
方法。sleep()
方法执行完成后,线程会自动苏醒,或者也可以使用wait(long timeout)
超时后线程会自动苏醒。sleep()
是Thread
类的静态本地方法,wait()
则是Object
类的本地方法。为什么这样设计呢?
wait()
是让获得对象锁的线程实现等待,会自动释放当前线程占有的对象锁。每个对象(Object
)都拥有对象锁,既然要释放当前线程占有的对象锁并让其进入 WAITING 状态,自然是要操作对应的对象(Object
)而非当前的线程(Thread
)。
类似的问题:为什么 sleep()
方法定义在 Thread
中?
因为 sleep()
是让当前线程暂停执行,不涉及到对象类,也不需要获得对象锁。
这是另一个非常经典的 Java 多线程面试问题,而且在面试中会经常被问到。很简单,但是很多人都会答不上来!
new 一个 Thread
,线程进入了新建状态。调用 start()
方法,会启动一个线程并使线程进入了就绪状态,当分配到时间片后就可以开始运行了。 start()
会执行线程的相应准备工作,然后自动执行 run()
方法的内容,这是真正的多线程工作。 但是,直接执行 run()
方法,会把 run()
方法当成一个 main 线程下的普通方法去执行,并不会在某个线程中执行它,所以这并不是多线程工作。
总结: 调用 start()
方法方可启动线程并使线程进入就绪状态,直接执行 run()
方法的话不会以多线程的方式执行。
JMM(Java 内存模型)相关的问题比较多,也比较重要,于是我单独抽了一篇文章来总结 JMM 相关的知识点和问题: JMM(Java 内存模型)详解 。
在 Java 中,volatile
关键字可以保证变量的可见性,如果我们将变量声明为 volatile
,这就指示 JVM,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。
volatile
关键字其实并非是 Java 语言特有的,在 C 语言里也有,它最原始的意义就是禁用 CPU 缓存。如果我们将一个变量使用 volatile
修饰,这就指示 编译器,这个变量是共享且不稳定的,每次使用它都到主存中进行读取。
volatile
关键字能保证数据的可见性,但不能保证数据的原子性。synchronized
关键字两者都能保证。
在 Java 中,volatile
关键字除了可以保证变量的可见性,还有一个重要的作用就是防止 JVM 的指令重排序。 如果我们将变量声明为 volatile
,在对这个变量进行读写操作的时候,会通过插入特定的 内存屏障 的方式来禁止指令重排序。
在 Java 中,Unsafe
类提供了三个开箱即用的内存屏障相关的方法,屏蔽了操作系统底层的差异:
public native void loadFence();
public native void storeFence();
public native void fullFence();
理论上来说,你通过这个三个方法也可以实现和volatile
禁止重排序一样的效果,只是会麻烦一些。
下面我以一个常见的面试题为例讲解一下 volatile
关键字禁止指令重排序的效果。
面试中面试官经常会说:“单例模式了解吗?来给我手写一下!给我解释一下双重检验锁方式实现单例模式的原理呗!”
双重校验锁实现对象单例(线程安全) :
public class Singleton {
private volatile static Singleton uniqueInstance;
private Singleton() {
}
public static Singleton getUniqueInstance() {
//先判断对象是否已经实例过,没有实例化过才进入加锁代码
if (uniqueInstance == null) {
//类对象加锁
synchronized (Singleton.class) {
if (uniqueInstance == null) {
uniqueInstance = new Singleton();
}
}
}
return uniqueInstance;
}
}
uniqueInstance
采用 volatile
关键字修饰也是很有必要的, uniqueInstance = new Singleton();
这段代码其实是分为三步执行:
- 为
uniqueInstance
分配内存空间 - 初始化
uniqueInstance
- 将
uniqueInstance
指向分配的内存地址
但是由于 JVM 具有指令重排的特性,执行顺序有可能变成 1->3->2。指令重排在单线程环境下不会出现问题,但是在多线程环境下会导致一个线程获得还没有初始化的实例。例如,线程 T1 执行了 1 和 3,此时 T2 调用 getUniqueInstance
() 后发现 uniqueInstance
不为空,因此返回 uniqueInstance
,但此时 uniqueInstance
还未被初始化。
volatile
关键字能保证变量的可见性,但不能保证对变量的操作是原子性的。
我们通过下面的代码即可证明:
/**
* 微信搜 JavaGuide 回复"面试突击"即可免费领取个人原创的 Java 面试手册
*
* @author Guide哥
* @date 2022/08/03 13:40
**/
public class VolatoleAtomicityDemo {
public volatile static int inc = 0;
public void increase() {
inc++;
}
public static void main(String[] args) throws InterruptedException {
ExecutorService threadPool = Executors.newFixedThreadPool(5);
VolatoleAtomicityDemo volatoleAtomicityDemo = new VolatoleAtomicityDemo();
for (int i = 0; i < 5; i++) {
threadPool.execute(() -> {
for (int j = 0; j < 500; j++) {
volatoleAtomicityDemo.increase();
}
});
}
// 等待1.5秒,保证上面程序执行完成
Thread.sleep(1500);
System.out.println(inc);
threadPool.shutdown();
}
}
正常情况下,运行上面的代码理应输出 2500
。但你真正运行了上面的代码之后,你会发现每次输出结果都小于 2500
。
为什么会出现这种情况呢?不是说好了,volatile
可以保证变量的可见性嘛!
也就是说,如果 volatile
能保证 inc++
操作的原子性的话。每个线程中对 inc
变量自增完之后,其他线程可以立即看到修改后的值。5 个线程分别进行了 500 次操作,那么最终 inc 的值应该是 5*500=2500。
很多人会误认为自增操作 inc++
是原子性的,实际上,inc++
其实是一个复合操作,包括三步:
- 读取 inc 的值。
- 对 inc 加 1。
- 将 inc 的值写回内存。
volatile
是无法保证这三个操作是具有原子性的,有可能导致下面这种情况出现:
- 线程 1 对
inc
进行读取操作之后,还未对其进行修改。线程 2 又读取了inc
的值并对其进行修改(+1),再将inc
的值写回内存。 - 线程 2 操作完毕后,线程 1 对
inc
的值进行修改(+1),再将inc
的值写回内存。
这也就导致两个线程分别对 inc
进行了一次自增操作后,inc
实际上只增加了 1。
其实,如果想要保证上面的代码运行正确也非常简单,利用 synchronized
、Lock
或者AtomicInteger
都可以。
使用 synchronized
改进:
public synchronized void increase() {
inc++;
}
使用 AtomicInteger
改进:
public AtomicInteger inc = new AtomicInteger();
public void increase() {
inc.getAndIncrement();
}
使用 ReentrantLock
改进:
Lock lock = new ReentrantLock();
public void increase() {
lock.lock();
try {
inc++;
} finally {
lock.unlock();
}
}
synchronized
翻译成中文是同步的的意思,主要解决的是多个线程之间访问资源的同步性,可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。
在 Java 早期版本中,synchronized
属于 重量级锁,效率低下。 因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock
来实现的,Java 的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高。
不过,在 Java 6 之后,Java 官方对从 JVM 层面对 synchronized
较大优化,所以现在的 synchronized
锁效率也优化得很不错了。JDK1.6 对锁的实现引入了大量的优化,如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销。所以,你会发现目前的话,不论是各种开源框架还是 JDK 源码都大量使用了 synchronized
关键字。
synchronized 关键字最主要的三种使用方式:
- 修饰实例方法
- 修饰静态方法
- 修饰代码块
1、修饰实例方法 (锁当前对象实例)
给当前对象实例加锁,进入同步代码前要获得 当前对象实例的锁 。
synchronized void method() {
//业务代码
}
2、修饰静态方法 (锁当前类)
给当前类加锁,会作用于类的所有对象实例 ,进入同步代码前要获得 当前 class 的锁。
这是因为静态成员不属于任何一个实例对象,归整个类所有,不依赖于类的特定实例,被类的所有实例共享。
synchronized static void method() {
//业务代码
}
静态 synchronized
方法和非静态 synchronized
方法之间的调用互斥么?不互斥!如果一个线程 A 调用一个实例对象的非静态 synchronized
方法,而线程 B 需要调用这个实例对象所属类的静态 synchronized
方法,是允许的,不会发生互斥现象,因为访问静态 synchronized
方法占用的锁是当前类的锁,而访问非静态 synchronized
方法占用的锁是当前实例对象锁。
3、修饰代码块 (锁指定对象/类)
对括号里指定的对象/类加锁:
synchronized(object)
表示进入同步代码库前要获得 给定对象的锁。synchronized(类.class)
表示进入同步代码前要获得 给定 Class 的锁
synchronized(this) {
//业务代码
}
总结:
synchronized
关键字加到static
静态方法和synchronized(class)
代码块上都是是给 Class 类上锁;synchronized
关键字加到实例方法上是给对象实例上锁;- 尽量不要使用
synchronized(String a)
因为 JVM 中,字符串常量池具有缓存功能。
先说结论:构造方法不能使用 synchronized 关键字修饰。
构造方法本身就属于线程安全的,不存在同步的构造方法一说。
synchronized 关键字底层原理属于 JVM 层面。
public class SynchronizedDemo {
public void method() {
synchronized (this) {
System.out.println("synchronized 代码块");
}
}
}
通过 JDK 自带的 javap
命令查看 SynchronizedDemo
类的相关字节码信息:首先切换到类的对应目录执行 javac SynchronizedDemo.java
命令生成编译后的 .class 文件,然后执行javap -c -s -v -l SynchronizedDemo.class
。
从上面我们可以看出:synchronized
同步语句块的实现使用的是 monitorenter
和 monitorexit
指令,其中 monitorenter
指令指向同步代码块的开始位置,monitorexit
指令则指明同步代码块的结束位置。
当执行 monitorenter
指令时,线程试图获取锁也就是获取 对象监视器 monitor
的持有权。
在 Java 虚拟机(HotSpot)中,Monitor 是基于 C++实现的,由ObjectMonitor实现的。每个对象中都内置了一个
ObjectMonitor
对象。另外,
wait/notify
等方法也依赖于monitor
对象,这就是为什么只有在同步的块或者方法中才能调用wait/notify
等方法,否则会抛出java.lang.IllegalMonitorStateException
的异常的原因。
在执行monitorenter
时,会尝试获取对象的锁,如果锁的计数器为 0 则表示锁可以被获取,获取后将锁计数器设为 1 也就是加 1。
对象锁的的拥有者线程才可以执行 monitorexit
指令来释放锁。在执行 monitorexit
指令后,将锁计数器设为 0,表明锁被释放,其他线程可以尝试获取锁。
如果获取对象锁失败,那当前线程就要阻塞等待,直到锁被另外一个线程释放为止。
public class SynchronizedDemo2 {
public synchronized void method() {
System.out.println("synchronized 方法");
}
}
synchronized
修饰的方法并没有 monitorenter
指令和 monitorexit
指令,取得代之的确实是 ACC_SYNCHRONIZED
标识,该标识指明了该方法是一个同步方法。JVM 通过该 ACC_SYNCHRONIZED
访问标志来辨别一个方法是否声明为同步方法,从而执行相应的同步调用。
如果是实例方法,JVM 会尝试获取实例对象的锁。如果是静态方法,JVM 会尝试获取当前 class 的锁。
synchronized
同步语句块的实现使用的是 monitorenter
和 monitorexit
指令,其中 monitorenter
指令指向同步代码块的开始位置,monitorexit
指令则指明同步代码块的结束位置。
synchronized
修饰的方法并没有 monitorenter
指令和 monitorexit
指令,取得代之的确实是 ACC_SYNCHRONIZED
标识,该标识指明了该方法是一个同步方法。
不过两者的本质都是对对象监视器 monitor 的获取。
相关推荐:Java 锁与线程的那些事 - 有赞技术团队 。
🧗🏻 进阶一下:学有余力的小伙伴可以抽时间详细研究一下对象监视器 monitor
。
JDK1.6 对锁的实现引入了大量的优化,如偏向锁、轻量级锁、自旋锁、适应性自旋锁、锁消除、锁粗化等技术来减少锁操作的开销。
锁主要存在四种状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,他们会随着竞争的激烈而逐渐升级。注意锁可以升级不可降级,这种策略是为了提高获得锁和释放锁的效率。
关于这几种优化的详细信息可以查看下面这篇文章:Java6 及以上版本对 synchronized 的优化
synchronized
关键字和 volatile
关键字是两个互补的存在,而不是对立的存在!
volatile
关键字是线程同步的轻量级实现,所以volatile
性能肯定比synchronized
关键字要好 。但是volatile
关键字只能用于变量而synchronized
关键字可以修饰方法以及代码块 。volatile
关键字能保证数据的可见性,但不能保证数据的原子性。synchronized
关键字两者都能保证。volatile
关键字主要用于解决变量在多个线程之间的可见性,而synchronized
关键字解决的是多个线程之间访问资源的同步性。
“可重入锁” 指的是自己可以再次获取自己的内部锁。比如一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果是不可重入锁的话,就会造成死锁。同一个线程每次获取锁,锁的计数器都自增 1,所以要等到锁的计数器下降为 0 时才能释放锁。
synchronized
是依赖于 JVM 实现的,前面我们也讲到了 虚拟机团队在 JDK1.6 为 synchronized
关键字进行了很多优化,但是这些优化都是在虚拟机层面实现的,并没有直接暴露给我们。ReentrantLock
是 JDK 层面实现的(也就是 API 层面,需要 lock() 和 unlock() 方法配合 try/finally 语句块来完成),所以我们可以通过查看它的源代码,来看它是如何实现的。
相比synchronized
,ReentrantLock
增加了一些高级功能。主要来说主要有三点:
- 等待可中断 :
ReentrantLock
提供了一种能够中断等待锁的线程的机制,通过lock.lockInterruptibly()
来实现这个机制。也就是说正在等待的线程可以选择放弃等待,改为处理其他事情。 - 可实现公平锁 :
ReentrantLock
可以指定是公平锁还是非公平锁。而synchronized
只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。ReentrantLock
默认情况是非公平的,可以通过ReentrantLock
类的ReentrantLock(boolean fair)
构造方法来制定是否是公平的。 - 可实现选择性通知(锁可以绑定多个条件):
synchronized
关键字与wait()
和notify()
/notifyAll()
方法相结合可以实现等待/通知机制。ReentrantLock
类当然也可以实现,但是需要借助于Condition
接口与newCondition()
方法。
Condition
是 JDK1.5 之后才有的,它具有很好的灵活性,比如可以实现多路通知功能也就是在一个Lock
对象中可以创建多个Condition
实例(即对象监视器),线程对象可以注册在指定的Condition
中,从而可以有选择性的进行线程通知,在调度线程上更加灵活。 在使用notify()/notifyAll()
方法进行通知时,被通知的线程是由 JVM 选择的,用ReentrantLock
类结合Condition
实例可以实现“选择性通知” ,这个功能非常重要,而且是 Condition 接口默认提供的。而synchronized
关键字就相当于整个 Lock 对象中只有一个Condition
实例,所有的线程都注册在它一个身上。如果执行notifyAll()
方法的话就会通知所有处于等待状态的线程这样会造成很大的效率问题,而Condition
实例的signalAll()
方法 只会唤醒注册在该Condition
实例中的所有等待线程。
如果你想使用上述功能,那么选择 ReentrantLock 是一个不错的选择。性能已不是选择标准
通常情况下,我们创建的变量是可以被任何一个线程访问并修改的。如果想实现每一个线程都有自己的专属本地变量该如何解决呢?
JDK 中自带的ThreadLocal
类正是为了解决这样的问题。 ThreadLocal
类主要解决的就是让每个线程绑定自己的值,可以将ThreadLocal
类形象的比喻成存放数据的盒子,盒子中可以存储每个线程的私有数据。
如果你创建了一个ThreadLocal
变量,那么访问这个变量的每个线程都会有这个变量的本地副本,这也是ThreadLocal
变量名的由来。他们可以使用 get()
和 set()
方法来获取默认值或将其值更改为当前线程所存的副本的值,从而避免了线程安全问题。
再举个简单的例子:两个人去宝屋收集宝物,这两个共用一个袋子的话肯定会产生争执,但是给他们两个人每个人分配一个袋子的话就不会出现这样的问题。如果把这两个人比作线程的话,那么 ThreadLocal 就是用来避免这两个线程竞争的。
相信看了上面的解释,大家已经搞懂 ThreadLocal
类是个什么东西了。下面简单演示一下如何在项目中实际使用 ThreadLocal
。
import java.text.SimpleDateFormat;
import java.util.Random;
public class ThreadLocalExample implements Runnable{
// SimpleDateFormat 不是线程安全的,所以每个线程都要有自己独立的副本
private static final ThreadLocal<SimpleDateFormat> formatter = ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyyMMdd HHmm"));
public static void main(String[] args) throws InterruptedException {
ThreadLocalExample obj = new ThreadLocalExample();
for(int i=0 ; i<10; i++){
Thread t = new Thread(obj, ""+i);
Thread.sleep(new Random().nextInt(1000));
t.start();
}
}
@Override
public void run() {
System.out.println("Thread Name= "+Thread.currentThread().getName()+" default Formatter = "+formatter.get().toPattern());
try {
Thread.sleep(new Random().nextInt(1000));
} catch (InterruptedException e) {
e.printStackTrace();
}
//formatter pattern is changed here by thread, but it won't reflect to other threads
formatter.set(new SimpleDateFormat());
System.out.println("Thread Name= "+Thread.currentThread().getName()+" formatter = "+formatter.get().toPattern());
}
}
输出结果 :
Thread Name= 0 default Formatter = yyyyMMdd HHmm
Thread Name= 0 formatter = yy-M-d ah:mm
Thread Name= 1 default Formatter = yyyyMMdd HHmm
Thread Name= 2 default Formatter = yyyyMMdd HHmm
Thread Name= 1 formatter = yy-M-d ah:mm
Thread Name= 3 default Formatter = yyyyMMdd HHmm
Thread Name= 2 formatter = yy-M-d ah:mm
Thread Name= 4 default Formatter = yyyyMMdd HHmm
Thread Name= 3 formatter = yy-M-d ah:mm
Thread Name= 4 formatter = yy-M-d ah:mm
Thread Name= 5 default Formatter = yyyyMMdd HHmm
Thread Name= 5 formatter = yy-M-d ah:mm
Thread Name= 6 default Formatter = yyyyMMdd HHmm
Thread Name= 6 formatter = yy-M-d ah:mm
Thread Name= 7 default Formatter = yyyyMMdd HHmm
Thread Name= 7 formatter = yy-M-d ah:mm
Thread Name= 8 default Formatter = yyyyMMdd HHmm
Thread Name= 9 default Formatter = yyyyMMdd HHmm
Thread Name= 8 formatter = yy-M-d ah:mm
Thread Name= 9 formatter = yy-M-d ah:mm
从输出中可以看出,虽然 Thread-0
已经改变了 formatter
的值,但 Thread-1
默认格式化值与初始化值相同,其他线程也一样。
上面有一段代码用到了创建 ThreadLocal
变量的那段代码用到了 Java8 的知识,它等于下面这段代码,如果你写了下面这段代码的话,IDEA 会提示你转换为 Java8 的格式(IDEA 真的不错!)。因为 ThreadLocal 类在 Java 8 中扩展,使用一个新的方法withInitial()
,将 Supplier 功能接口作为参数。
private static final ThreadLocal<SimpleDateFormat> formatter = new ThreadLocal<SimpleDateFormat>(){
@Override
protected SimpleDateFormat initialValue(){
return new SimpleDateFormat("yyyyMMdd HHmm");
}
};
从 Thread
类源代码入手。
public class Thread implements Runnable {
//......
//与此线程有关的ThreadLocal值。由ThreadLocal类维护
ThreadLocal.ThreadLocalMap threadLocals = null;
//与此线程有关的InheritableThreadLocal值。由InheritableThreadLocal类维护
ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;
//......
}
从上面Thread
类 源代码可以看出Thread
类中有一个 threadLocals
和 一个 inheritableThreadLocals
变量,它们都是 ThreadLocalMap
类型的变量,我们可以把 ThreadLocalMap
理解为ThreadLocal
类实现的定制化的 HashMap
。默认情况下这两个变量都是 null,只有当前线程调用 ThreadLocal
类的 set
或get
方法时才创建它们,实际上调用这两个方法的时候,我们调用的是ThreadLocalMap
类对应的 get()
、set()
方法。
ThreadLocal
类的set()
方法
public void set(T value) {
Thread t = Thread.currentThread();
ThreadLocalMap map = getMap(t);
if (map != null)
map.set(this, value);
else
createMap(t, value);
}
ThreadLocalMap getMap(Thread t) {
return t.threadLocals;
}
通过上面这些内容,我们足以通过猜测得出结论:最终的变量是放在了当前线程的 ThreadLocalMap
中,并不是存在 ThreadLocal
上,ThreadLocal
可以理解为只是ThreadLocalMap
的封装,传递了变量值。 ThrealLocal
类中可以通过Thread.currentThread()
获取到当前线程对象后,直接通过getMap(Thread t)
可以访问到该线程的ThreadLocalMap
对象。
每个Thread
中都具备一个ThreadLocalMap
,而ThreadLocalMap
可以存储以ThreadLocal
为 key ,Object 对象为 value 的键值对。
ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
//......
}
比如我们在同一个线程中声明了两个 ThreadLocal
对象的话, Thread
内部都是使用仅有的那个ThreadLocalMap
存放数据的,ThreadLocalMap
的 key 就是 ThreadLocal
对象,value 就是 ThreadLocal
对象调用set
方法设置的值。
ThreadLocal
数据结构如下图所示:
ThreadLocalMap
是ThreadLocal
的静态内部类。
ThreadLocalMap
中使用的 key 为 ThreadLocal
的弱引用,而 value 是强引用。所以,如果 ThreadLocal
没有被外部强引用的情况下,在垃圾回收的时候,key 会被清理掉,而 value 不会被清理掉。
这样一来,ThreadLocalMap
中就会出现 key 为 null 的 Entry。假如我们不做任何措施的话,value 永远无法被 GC 回收,这个时候就可能会产生内存泄露。ThreadLocalMap
实现中已经考虑了这种情况,在调用 set()
、get()
、remove()
方法的时候,会清理掉 key 为 null 的记录。使用完 ThreadLocal
方法后 最好手动调用remove()
方法
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
弱引用介绍:
如果一个对象只具有弱引用,那就类似于可有可无的生活用品。弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描它 所管辖的内存区域的过程中,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程, 因此不一定会很快发现那些只具有弱引用的对象。
弱引用可以和一个引用队列(ReferenceQueue)联合使用,如果弱引用所引用的对象被垃圾回收,Java 虚拟机就会把这个弱引用加入到与之关联的引用队列中。
线程池相关的知识点和面试题总结请看这篇文章:Java 线程池详解 (由于内容比较多就不放在 PDF 里面了)。
AQS 相关的知识点和面试题总结请看这篇文章:AQS 详解 (由于内容比较多就不放在 PDF 里面了)。