diff --git a/SlicerExtension/LiveUltrasoundAi/TorchSequenceSegmentation/Resources/UI/TorchSequenceSegmentation.ui b/SlicerExtension/LiveUltrasoundAi/TorchSequenceSegmentation/Resources/UI/TorchSequenceSegmentation.ui index 6065c0f..45a4230 100644 --- a/SlicerExtension/LiveUltrasoundAi/TorchSequenceSegmentation/Resources/UI/TorchSequenceSegmentation.ui +++ b/SlicerExtension/LiveUltrasoundAi/TorchSequenceSegmentation/Resources/UI/TorchSequenceSegmentation.ui @@ -7,7 +7,7 @@ 0 0 395 - 720 + 775 @@ -511,14 +511,14 @@ - + Model input size: - + Size of the input image of the loaded model. Assumes a square image. Only modify if shape metadata is not included in the TorchScript model. @@ -528,14 +528,14 @@ - + Output transform: - + true @@ -562,14 +562,14 @@ - + Scan conversion config: - + @@ -618,6 +618,20 @@ + + + + Normalize input to [0,1]: + + + + + + + + + + diff --git a/SlicerExtension/LiveUltrasoundAi/TorchSequenceSegmentation/TorchSequenceSegmentation.py b/SlicerExtension/LiveUltrasoundAi/TorchSequenceSegmentation/TorchSequenceSegmentation.py index 2d9a617..dcc71ea 100644 --- a/SlicerExtension/LiveUltrasoundAi/TorchSequenceSegmentation/TorchSequenceSegmentation.py +++ b/SlicerExtension/LiveUltrasoundAi/TorchSequenceSegmentation/TorchSequenceSegmentation.py @@ -224,6 +224,10 @@ def setup(self): self.ui.modelInputSizeSpinbox.connect("valueChanged(int)", self.updateParameterNodeFromGUI) self.ui.applyLogCheckBox.connect("toggled(bool)", self.updateParameterNodeFromGUI) + lastNormalizeSetting = slicer.util.settingsValue(self.logic.LAST_NORMALIZE_SETTING, False, converter=slicer.util.toBool) + self.ui.normalizeCheckBox.checked = lastNormalizeSetting + self.ui.normalizeCheckBox.connect("toggled(bool)", self.updateSettingsFromGUI) + # File paths # Set last model folder in UI lastModelFolder = slicer.util.settingsValue(self.logic.LAST_MODEL_FOLDER_SETTING, "") @@ -507,6 +511,11 @@ def updateSettingsFromGUI(self, caller=None, event=None): outputFolder = self.ui.outputDirectoryButton.directory if outputFolder != slicer.util.settingsValue(self.logic.LAST_OUTPUT_FOLDER_SETTING, ""): settings.setValue(self.logic.LAST_OUTPUT_FOLDER_SETTING, outputFolder) + + # Update normalize setting + normalizeInput = self.ui.normalizeCheckBox.checked + if normalizeInput != slicer.util.settingsValue(self.logic.LAST_NORMALIZE_SETTING, "", converter=slicer.util.toBool): + settings.setValue(self.logic.LAST_NORMALIZE_SETTING, normalizeInput) def onClearScanConversion(self): self.ui.scanConversionPathLineEdit.currentPath = "" @@ -730,6 +739,7 @@ class TorchSequenceSegmentationLogic(ScriptedLoadableModuleLogic): https://github.com/Slicer/Slicer/blob/main/Base/Python/slicer/ScriptedLoadableModule.py """ + LAST_NORMALIZE_SETTING = "TorchSequenceSegmentation/NormalizeInput" LAST_MODEL_FOLDER_SETTING = "TorchSequenceSegmentation/LastModelFolder" LAST_SCAN_CONVERSION_PATH_SETTING = "TorchSequenceSegmentation/LastScanConversionPath" LAST_OUTPUT_FOLDER_SETTING = "TorchSequenceSegmentation/LastOutputFolder" @@ -937,8 +947,12 @@ def getPrediction(self, image): inputArray = np.flip(inputArray, axis=0) # Normalize input if needed - if inputArray.max() > 1.0: - inputArray = inputArray.astype(float) / inputArray.max() + normalizeInput = slicer.util.settingsValue(self.LAST_NORMALIZE_SETTING, False, converter=slicer.util.toBool) + if normalizeInput: + if inputArray.max() <= 1.0: + logging.info("Input image is already between 0 and 1, skipping normalization.") + else: + inputArray = inputArray.astype(float) / inputArray.max() # Convert to tensor and add batch dimension inputTensor = torch.from_numpy(inputArray).unsqueeze(0).unsqueeze(0).float().to(DEVICE)