-
Notifications
You must be signed in to change notification settings - Fork 6
/
train_naive.py
309 lines (271 loc) · 12.6 KB
/
train_naive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# -*- coding: utf-8 -*-
# author: Xue Qianming
import os
import time
import tensorflow as tf
import numpy as np
from colored import fg, stylize
from utils import run_set, load_data, get_step_cnt, get_variable_in_checkpoint_file, get_variables_to_restore, get_train_op
# def logger
def log(s):
print(s)
# _ _
# _ __ __ _ _ __ __ _ _ __ ___ __ _| |_ ___ _ __ ___ _ __ __ _ _ __| |_
# | '_ \ / _` | '__/ _` | '_ ` _ \ / _` | __/ _ \ '__/ __| | '_ \ / _` | '__| __|
# | |_) | (_| | | | (_| | | | | | | (_| | || __/ | \__ \ | |_) | (_| | | | |_
# | .__/ \__,_|_| \__,_|_| |_| |_|\__,_|\__\___|_| |___/ | .__/ \__,_|_| \__|
# |_| |_|
# fixed hyperparams (they doesn't worth tuning)
DROP_RATE = 0.
SPLIT_BY_PERIOD = True
TASK_CNT = 2
# hyperparams controlled by tensorflow
params = {
'debug_params': [('debug', False, 'Whether to debug or not'),
('check', False, 'Whether to make a checkpoint')],
'data_params': [('cls_cnt', 5, "Numbers of class"),
('dataset', 'yelp13', "The dataset"),
('unlabeled_dataset', 'imdb', "The unlabeled dataset")],
'model_chooing': [('model', 'dhuapa', 'Model to train')],
'model_hyperparam':
[("emb_dim", 200, "size of embedding"), ("hidden_size", 100,
"hidden_size"),
('max_doc_len', 40, 'length of a document'),
('max_sen_len', 50, 'length of a sentence'),
('temperature', 1., 'the temperature of soft labels'),
("lr", .001, "Learning rate"), ("l2_rate", 0.,
"rate of l2 regularization"),
("embedding_lr", 1e-5, "embedding learning rate"),
("emb_threshold", 1., "embedding learning rate"),
("align_rate", 1., "the rate of mutual aligning loss"),
("lambda1", 1., "proportion of the total loss"),
("lambda2", .0, "proportion of the loss of user block"),
("lambda3", .0, "proportion of the loss of product block"),
("adv_rate", 0.1, "rate of adversarial loss")],
'training_params': [("batch_size", 100, "Batch Size"),
("epoch_cnt", 20, "Number of training epochs"),
("checkpoint", '', "checkpoint to restore params"),
("training_method", 'adam',
'Method chose to tune the weights')],
'misc_params':
[("allow_soft_placement", True, "Allow device soft device placement"),
("log_device_placement", False, "Log placement of ops on devices")]
}
for param_collection in list(params.values()):
for param_name, default, description in param_collection:
param_type = type(default)
if param_type is int:
tf.flags.DEFINE_integer(param_name, default, description)
elif param_type is float:
tf.flags.DEFINE_float(param_name, default, description)
elif param_type is str:
tf.flags.DEFINE_string(param_name, default, description)
elif param_type is bool:
tf.flags.DEFINE_boolean(param_name, default, description)
flags = tf.flags.FLAGS
# force to parse flags
_ = flags.batch_size
# print params
log("\nParameters:")
for attr, value in sorted(flags.__flags.items()):
log(("{}={}".format(attr.upper(), value.value)))
log("")
# _ _ _ _
# __| | __ _| |_ __ _ ___ ___| |_ _ __ __ _ _ __| |_
# / _` |/ _` | __/ _` / __|/ _ \ __| | '_ \ / _` | '__| __|
# | (_| | (_| | || (_| \__ \ __/ |_ | |_) | (_| | | | |_
# \__,_|\__,_|\__\__,_|___/\___|\__| | .__/ \__,_|_| \__|
# |_|
def temp_load_data(dataset, task_label):
embedding, trainset, devset, testset, trainlen, devlen, testlen, stats = load_data(
dataset,
DROP_RATE,
flags.emb_dim,
1,
flags.max_doc_len,
flags.max_sen_len,
repeat=False,
split_by_period=True)
def transform(x):
x['task_label'] = tf.zeros_like(x['usr']) + task_label
if dataset == 'imdb':
x['rating'] //= 2
return x
trainset = trainset.map(transform)
devset = devset.map(transform)
testset = testset.map(transform)
return embedding, trainset, devset, testset, trainlen, devlen, testlen, stats
embedding, trainset, devset, testset, trainlen, devlen, testlen, stats = \
temp_load_data(flags.dataset, 0)
unlabeled_embedding, unlabeled_trainset, unlabeled_devset, unlabeled_testset, unlabeled_trainlen, unlabeled_devlen, unlabeled_testlen, unlabeled_stats = \
temp_load_data(flags.unlabeled_dataset, 1)
devset = devset.batch(flags.batch_size)
testset = testset.batch(flags.batch_size)
unlabeled_devset = unlabeled_devset.batch(flags.batch_size)
unlabeled_testset = unlabeled_testset.batch(flags.batch_size)
# trainset = trainset.concatenate(unlabeled_trainset).batch(flags.batch_size).shuffle(30000)
trainset = trainset.batch(flags.batch_size)
# create data iterators
data_iter = tf.data.Iterator.from_structure(
trainset.output_types, output_shapes=trainset.output_shapes)
traininit = data_iter.make_initializer(trainset)
devinit = data_iter.make_initializer(devset)
testinit = data_iter.make_initializer(testset)
unlabeled_devinit = data_iter.make_initializer(unlabeled_devset)
unlabeled_testinit = data_iter.make_initializer(unlabeled_testset)
# ___ ___ ___ ___(_) ___ _ __
# / __|/ _ \/ __/ __| |/ _ \| '_ \
# \__ \ __/\__ \__ \ | (_) | | | |
# |___/\___||___/___/_|\___/|_| |_|
# create the session
session_config = tf.ConfigProto(
allow_soft_placement=flags.allow_soft_placement,
log_device_placement=flags.log_device_placement)
session_config.gpu_options.allow_growth = True
sess = tf.Session(config=session_config)
# _ _ _
# _ __ ___ ___ __| | ___| | _ __ __ _ _ __| |_
# | '_ ` _ \ / _ \ / _` |/ _ \ | | '_ \ / _` | '__| __|
# | | | | | | (_) | (_| | __/ | | |_) | (_| | | | |_
# |_| |_| |_|\___/ \__,_|\___|_| | .__/ \__,_|_| \__|
# |_|
# build the model
model_params = flags.__dict__['__wrapped'].__dict__['__flags']
model_params = {i: model_params[i].value for i in model_params}
model_params['embedding'] = embedding
model_params['task_cnt'] = TASK_CNT
model_params.update(stats)
from naive import NAIVE as model
model = model(model_params)
os.system("figlet -w 50 -f slant naive")
# build the model graph
metrics = model.build(data_iter)
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
if flags.training_method == 'sgd':
optimizer = tf.train.GradientDescentOptimizer(flags.lr)
elif flags.training_method == 'adam':
optimizer = tf.train.AdamOptimizer(flags.lr)
elif flags.training_method == 'adadelta':
optimizer = tf.train.AdadeltaOptimizer(flags.lr, epsilon=1e-6)
train_op_without_wrd_emb = get_train_op(optimizer, model.loss, model.wrd_emb,
global_step, .0)
train_op_with_wrd_emb = get_train_op(optimizer, model.loss, model.wrd_emb,
global_step, flags.embedding_lr)
# _ _ _
# _ __ ___ ___ __| | ___| | _ __ ___ ___ ___ _ __ __| | ___ _ __
# | '_ ` _ \ / _ \ / _` |/ _ \ | | '__/ _ \/ __/ _ \| '__/ _` |/ _ \ '__|
# | | | | | | (_) | (_| | __/ | | | | __/ (_| (_) | | | (_| | __/ |
# |_| |_| |_|\___/ \__,_|\___|_| |_| \___|\___\___/|_| \__,_|\___|_|
# merge tensorboard summary
summary = None
if flags.debug:
summary = tf.summary.merge_all()
train_writer = tf.summary.FileWriter('summary/train', sess.graph)
# dev_writer = tf.summary.FileWriter('summary/dev', sess.graph)
# test_writer = tf.summary.FileWriter('summary/test', sess.graph)
if flags.check:
saver = tf.train.Saver(tf.global_variables(), max_to_keep=1000)
# _ _ _ _ _ _ _ _
# (_)_ __ (_) |_(_) __ _| (_)______ _| |_(_) ___ _ __
# | | '_ \| | __| |/ _` | | |_ / _` | __| |/ _ \| '_ \
# | | | | | | |_| | (_| | | |/ / (_| | |_| | (_) | | | |
# |_|_| |_|_|\__|_|\__,_|_|_/___\__,_|\__|_|\___/|_| |_|
if flags.checkpoint == '':
sess.run(tf.global_variables_initializer())
else:
# restore the params
checkpoint_path = os.path.join(
'ckpts', flags.model,
flags.checkpoint) if '/' not in flags.checkpoint else os.path.join(
'ckpts', flags.checkpoint)
global_variables = tf.global_variables()
var_keep_dic = get_variable_in_checkpoint_file(checkpoint_path)
variable_to_restore = get_variables_to_restore(global_variables,
var_keep_dic)
saver = tf.train.Saver(variable_to_restore)
saver.restore(sess, 'ckpts/' + flags.checkpoint)
# initialize other params
uninitialized_vars = sess.run(tf.report_uninitialized_variables())
uninitialized_vars = [s.decode() + ':0' for s in uninitialized_vars]
uninitialized_vars = [
var for var in tf.global_variables() if var.name in uninitialized_vars
]
init_uninitialized_op = tf.initialize_variables(uninitialized_vars)
sess.run(init_uninitialized_op)
# _
# _ __ _ _ _ __ _ __ (_)_ __ __ _
# | '__| | | | '_ \| '_ \| | '_ \ / _` |
# | | | |_| | | | | | | | | | | | (_| |
# |_| \__,_|_| |_|_| |_|_|_| |_|\__, |
# |___/
train_op = train_op_without_wrd_emb
for epoch in range(flags.epoch_cnt):
sess.run(traininit)
# train on trainset
# trainlen = flags.batch_size * flags.evaluate_every
# when debugging, summary info is needed for tensorboard
# cur_trainlen = trainlen if model.best_test_acc < 0.530 \
# else flags.evaluate_every * flags.batch_size
best_test_acc = model.best_test_acc[0] if isinstance(model.best_test_acc, list) \
else model.best_test_acc
if train_op is not train_op_with_wrd_emb and best_test_acc > flags.emb_threshold:
print('Word embedding is going to be trained')
train_op = train_op_with_wrd_emb
if summary is not None:
train_metrics, step, train_summary, _ = run_set(
sess, get_step_cnt(trainlen, flags.batch_size), metrics,
[(global_step, 'ALL'), (summary, 'ALL'), (train_op, 'NONE')], global_step)
else:
train_metrics, step, _ = run_set(
sess, get_step_cnt(trainlen, flags.batch_size), metrics,
[(global_step, 'ALL'), (train_op, 'NONE')], global_step)
# train_metrics, step, _ = \
# run_set(sess, trainlen, metrics, (global_step, train_op, ))
def print_info(cur_info, set_type, color):
cur_info = cur_info.split('\n')
for i, cinfo in enumerate(cur_info):
if i == 0:
cinfo = set_type + cinfo + ':'
else:
cinfo = ' ' * (len(set_type) + 1) + cinfo
log((stylize(cinfo, fg(color))))
info = model.output_metrics(train_metrics, trainlen)
print_info(info, 'Train', 'yellow')
if summary is not None:
for i, s in zip(step, train_summary):
train_writer.add_summary(s, i)
train_writer.flush()
def test(metrics, init_op, set_len, set_name, color):
sess.run(init_op)
cur_metrics, = run_set(sess, get_step_cnt(
set_len, flags.batch_size), metrics, global_step=global_step)
info = model.output_metrics(cur_metrics, set_len)
print_info(info, set_name, color)
return cur_metrics
dev_metrics = test(metrics, devinit, devlen, 'Dev', 'green')
# test_metrics = test(metrics, testinit, testlen, 'Test', 'red')
# unlabeled_dev_metrics = test(metrics, unlabeled_devinit,
# unlabeled_devlen, 'UDev', 'green')
unlabeled_test_metrics = test(metrics, unlabeled_testinit,
unlabeled_testlen, 'UTest', 'red')
info = model.record_metrics(dev_metrics, unlabeled_test_metrics, devlen, unlabeled_testlen)
info = 'Epoch %d finished, ' % epoch + info
log((stylize(info, fg('white'))))
if not 'NEW' in info:
break
if 'NEW' in info:
sess.run(unlabeled_testinit)
feature, label = run_set(sess, get_step_cnt(unlabeled_testlen, flags.batch_size),
[(model.feature, 'ALL'), (model.input_y, 'ALL')], global_step=global_step)[0]
feature = np.concatenate(feature, axis=0)
label = np.concatenate(label, axis=0)
# write a checkpoint
if flags.check and 'NEW' in info:
try:
os.mkdir('ckpts/' + flags.model)
except:
pass
save_path = saver.save(
sess, 'ckpts/' + flags.model + '/', global_step=step[-1])
print(('Checkpoint saved to ' + save_path))