forked from MarkMoHR/virtual_sketching
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_rough_photograph.py
342 lines (275 loc) · 15.5 KB
/
train_rough_photograph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import json
import os
import time
import numpy as np
import six
import tensorflow as tf
from PIL import Image
import argparse
import model_common_train as sketch_image_model
from hyper_parameters import FLAGS, get_default_hparams_rough, get_default_hparams_normal
from utils import create_summary, save_model, reset_graph, load_checkpoint
from dataset_utils import load_dataset_training
os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1'
tf.logging.set_verbosity(tf.logging.INFO)
def should_save_log_img(step_):
if step_ % 500 == 0:
return True
else:
return False
def save_log_images(sess, model, data_set, save_root, step_num, curr_photo_prob, interpolate_type, save_num=10):
res_gap = (model.hps.image_size_large - model.hps.image_size_small) // (save_num - 1)
log_img_resolutions = []
for ii in range(save_num - 1):
log_img_resolutions.append(model.hps.image_size_small + ii * res_gap)
log_img_resolutions.append(model.hps.image_size_large)
for res_i in range(len(log_img_resolutions)):
resolution = log_img_resolutions[res_i]
sub_save_root = os.path.join(save_root, 'res_' + str(resolution))
os.makedirs(sub_save_root, exist_ok=True)
input_photos, target_sketches, init_cursors, image_size_rand = \
data_set.get_batch_from_memory(memory_idx=res_i,
fixed_image_size=resolution,
random_cursor=model.hps.random_cursor,
photo_prob=curr_photo_prob,
interpolate_type=interpolate_type)
# input_photos: (N, image_size, image_size, 3), [0-stroke, 1-BG]
# target_sketches: (N, image_size, image_size), [0-stroke, 1-BG]
# init_cursors: (N, 1, 2), in size [0.0, 1.0)
input_photo_val = input_photos
init_cursor_input = [init_cursors for _ in range(model.total_loop)]
init_cursor_input = np.concatenate(init_cursor_input, axis=0)
image_size_input = [image_size_rand for _ in range(model.total_loop)]
image_size_input = np.stack(image_size_input, axis=0)
feed = {
model.init_cursor: init_cursor_input,
model.image_size: image_size_input,
model.init_width: [model.hps.min_width],
}
for loop_i in range(model.total_loop):
feed[model.input_photo_list[loop_i]] = input_photo_val
raster_images_pred, raster_images_pred_rgb = sess.run([model.pred_raster_imgs, model.pred_raster_imgs_rgb],
feed) # (N, image_size, image_size), [0.0-stroke, 1.0-BG]
raster_images_pred = (np.array(raster_images_pred[0]) * 255.0).astype(np.uint8)
input_photo = (np.array(input_photo_val[0, :, :, :]) * 255.0).astype(np.uint8)
target_sketch = (np.array(target_sketches[0]) * 255.0).astype(np.uint8)
raster_images_pred_rgb = (np.array(raster_images_pred_rgb[0]) * 255.0).astype(np.uint8)
pred_save_path = os.path.join(sub_save_root, str(step_num) + '.png')
input_save_path = os.path.join(sub_save_root, 'input.png')
target_save_path = os.path.join(sub_save_root, 'gt.png')
pred_rgb_save_root = os.path.join(sub_save_root, 'rgb')
os.makedirs(pred_rgb_save_root, exist_ok=True)
pred_rgb_save_path = os.path.join(pred_rgb_save_root, str(step_num) + '.png')
raster_images_pred = Image.fromarray(raster_images_pred, 'L')
raster_images_pred.save(pred_save_path, 'PNG')
input_photo = Image.fromarray(input_photo, 'RGB')
input_photo.save(input_save_path, 'PNG')
target_sketch = Image.fromarray(target_sketch, 'L')
target_sketch.save(target_save_path, 'PNG')
raster_images_pred_rgb = Image.fromarray(raster_images_pred_rgb, 'RGB')
raster_images_pred_rgb.save(pred_rgb_save_path, 'PNG')
def train(sess, train_model, eval_sample_model, train_set, valid_set, sub_log_root, sub_snapshot_root, sub_log_img_root):
# Setup summary writer.
summary_writer = tf.summary.FileWriter(sub_log_root)
print('-' * 100)
# Calculate trainable params.
t_vars = tf.trainable_variables()
count_t_vars = 0
for var in t_vars:
num_param = np.prod(var.get_shape().as_list())
count_t_vars += num_param
print('%s | shape: %s | num_param: %i' % (var.name, str(var.get_shape()), num_param))
print('Total trainable variables %i.' % count_t_vars)
print('-' * 100)
# main train loop
hps = train_model.hps
start = time.time()
# create saver
snapshot_save_vars = [var for var in tf.global_variables()
if 'raster_unit' not in var.op.name and 'VGG16' not in var.op.name]
saver = tf.train.Saver(var_list=snapshot_save_vars, max_to_keep=20)
start_step = 1
print('start_step', start_step)
mean_perc_relu_losses = [0.0 for _ in range(len(hps.perc_loss_layers))]
for _ in range(start_step, hps.num_steps + 1):
step = sess.run(train_model.global_step) # start from 0
count_step = min(step, hps.num_steps)
curr_learning_rate = ((hps.learning_rate - hps.min_learning_rate) *
(1 - count_step / hps.num_steps) ** hps.decay_power + hps.min_learning_rate)
if hps.sn_loss_type == 'decreasing':
assert hps.decrease_stop_steps <= hps.num_steps
assert hps.stroke_num_loss_weight_end <= hps.stroke_num_loss_weight
curr_sn_k = (hps.stroke_num_loss_weight - hps.stroke_num_loss_weight_end) / float(hps.decrease_stop_steps)
curr_stroke_num_loss_weight = hps.stroke_num_loss_weight - count_step * curr_sn_k
curr_stroke_num_loss_weight = max(curr_stroke_num_loss_weight, hps.stroke_num_loss_weight_end)
elif hps.sn_loss_type == 'fixed':
curr_stroke_num_loss_weight = hps.stroke_num_loss_weight
elif hps.sn_loss_type == 'increasing':
curr_sn_k = hps.stroke_num_loss_weight / float(hps.num_steps - hps.increase_start_steps)
curr_stroke_num_loss_weight = max(count_step - hps.increase_start_steps, 0) * curr_sn_k
else:
raise Exception('Unknown sn_loss_type', hps.sn_loss_type)
if hps.early_pen_loss_type == 'head':
curr_early_pen_k = (hps.max_seq_len - hps.early_pen_length) / float(hps.num_steps)
curr_early_pen_loss_len = count_step * curr_early_pen_k + hps.early_pen_length
curr_early_pen_loss_start = 1
curr_early_pen_loss_end = curr_early_pen_loss_len
elif hps.early_pen_loss_type == 'tail':
curr_early_pen_k = (hps.max_seq_len // 2 - 1) / float(hps.num_steps)
curr_early_pen_loss_len = count_step * curr_early_pen_k + hps.max_seq_len // 2
curr_early_pen_loss_end = hps.max_seq_len
curr_early_pen_loss_start = curr_early_pen_loss_end - curr_early_pen_loss_len
elif hps.early_pen_loss_type == 'move':
curr_early_pen_k = (hps.max_seq_len // 2 - 1) / float(hps.num_steps)
curr_early_pen_loss_len = count_step * curr_early_pen_k + hps.max_seq_len // 2
curr_early_pen_loss_start = hps.max_seq_len - curr_early_pen_loss_len
curr_early_pen_loss_end = curr_early_pen_loss_start + hps.max_seq_len // 2
else:
raise Exception('Unknown early_pen_loss_type', hps.early_pen_loss_type)
curr_early_pen_loss_start = int(round(curr_early_pen_loss_start))
curr_early_pen_loss_end = int(round(curr_early_pen_loss_end))
if hps.photo_prob_type == 'increasing' or hps.photo_prob_type == 'interpolate':
assert hps.photo_prob_end_step >= hps.photo_prob_start_step
curr_photo_prob_k = 1.0 / float(hps.photo_prob_end_step - hps.photo_prob_start_step)
curr_photo_prob = (count_step - hps.photo_prob_start_step) * curr_photo_prob_k
curr_photo_prob = max(0.0, curr_photo_prob)
curr_photo_prob = min(1.0, curr_photo_prob)
interpolate_type = 'prob' if hps.photo_prob_type == 'increasing' else 'image'
elif hps.photo_prob_type == 'zero':
curr_photo_prob = 0.0
interpolate_type = 'prob'
elif hps.photo_prob_type == 'one':
curr_photo_prob = 1.0
interpolate_type = 'prob'
else:
raise Exception('Unknown photo_prob_type', hps.photo_prob_type)
input_photos, target_sketches, init_cursors, image_sizes = \
train_set.get_batch_multi_res(loop_num=train_model.total_loop,
random_cursor=hps.random_cursor,
photo_prob=curr_photo_prob,
interpolate_type=interpolate_type)
# input_photos: list of (N, image_size, image_size, 3), [0-stroke, 1-BG]
# target_sketches: list of (N, image_size, image_size), [0-stroke, 1-BG]
# init_cursors: list of (N, 1, 2), in size [0.0, 1.0)
init_cursors_input = np.concatenate(init_cursors, axis=0)
image_size_input = np.stack(image_sizes, axis=0)
feed = {
train_model.init_cursor: init_cursors_input,
train_model.image_size: image_size_input,
train_model.init_width: [hps.min_width],
train_model.lr: curr_learning_rate,
train_model.stroke_num_loss_weight: curr_stroke_num_loss_weight,
train_model.early_pen_loss_start_idx: curr_early_pen_loss_start,
train_model.early_pen_loss_end_idx: curr_early_pen_loss_end,
train_model.last_step_num: float(step),
}
for layer_i in range(len(hps.perc_loss_layers)):
feed[train_model.perc_loss_mean_list[layer_i]] = mean_perc_relu_losses[layer_i]
for loop_i in range(train_model.total_loop):
input_photo_val = input_photos[loop_i]
target_sketch_val = target_sketches[loop_i]
feed[train_model.input_photo_list[loop_i]] = input_photo_val
feed[train_model.target_sketch_list[loop_i]] = np.expand_dims(target_sketch_val, axis=-1)
(train_cost, raster_cost, perc_relu_costs_raw, perc_relu_costs_norm,
stroke_num_cost, early_pen_states_cost,
pos_outside_cost, win_size_outside_cost,
train_step) = sess.run([
train_model.cost, train_model.raster_cost,
train_model.perc_relu_losses_raw, train_model.perc_relu_losses_norm,
train_model.stroke_num_cost,
train_model.early_pen_states_cost,
train_model.pos_outside_cost, train_model.win_size_outside_cost,
train_model.global_step
], feed)
## update mean_raster_loss
for layer_i in range(len(hps.perc_loss_layers)):
perc_relu_cost_raw = perc_relu_costs_raw[layer_i]
mean_perc_relu_loss = mean_perc_relu_losses[layer_i]
mean_perc_relu_loss = (mean_perc_relu_loss * step + perc_relu_cost_raw) / float(step + 1)
mean_perc_relu_losses[layer_i] = mean_perc_relu_loss
_ = sess.run(train_model.train_op, feed)
if step % 20 == 0 and step > 0:
end = time.time()
time_taken = end - start
train_summary_map = {
'Train_Cost': train_cost,
'Train_raster_Cost': raster_cost,
'Train_stroke_num_Cost': stroke_num_cost,
'Train_early_pen_states_cost': early_pen_states_cost,
'Train_pos_outside_Cost': pos_outside_cost,
'Train_win_size_outside_Cost': win_size_outside_cost,
'Learning_Rate': curr_learning_rate,
'Time_Taken_Train': time_taken
}
for layer_i in range(len(hps.perc_loss_layers)):
layer_name = hps.perc_loss_layers[layer_i]
train_summary_map['Train_raster_Cost_' + layer_name] = perc_relu_costs_raw[layer_i]
create_summary(summary_writer, train_summary_map, train_step)
output_format = ('step: %d, lr: %.6f, '
'snw: %.3f, '
'cost: %.4f, '
'ras: %.4f, stroke_num: %.4f, early_pen: %.4f, '
'pos_outside: %.4f, win_outside: %.4f, '
'train_time_taken: %.1f')
output_values = (step, curr_learning_rate,
curr_stroke_num_loss_weight,
train_cost,
raster_cost, stroke_num_cost, early_pen_states_cost,
pos_outside_cost, win_size_outside_cost,
time_taken)
output_log = output_format % output_values
# print(output_log)
tf.logging.info(output_log)
start = time.time()
if should_save_log_img(step) and step > 0:
save_log_images(sess, eval_sample_model, valid_set, sub_log_img_root, step, curr_photo_prob, interpolate_type)
if step % hps.save_every == 0 and step > 0:
save_model(sess, saver, sub_snapshot_root, step)
def trainer(model_params):
np.set_printoptions(precision=8, edgeitems=6, linewidth=200, suppress=True)
print('Hyperparams:')
for key, val in six.iteritems(model_params.values()):
print('%s = %s' % (key, str(val)))
print('Loading data files.')
print('-' * 100)
datasets = load_dataset_training(FLAGS.dataset_dir, model_params)
sub_snapshot_root = os.path.join(FLAGS.snapshot_root, model_params.program_name)
sub_log_root = os.path.join(FLAGS.log_root, model_params.program_name)
sub_log_img_root = os.path.join(FLAGS.log_img_root, model_params.program_name)
train_set = datasets[0]
valid_set = datasets[1]
train_model_params = datasets[2]
eval_sample_model_params = datasets[3]
eval_sample_model_params.loop_per_gpu = 1
eval_sample_model_params.batch_size = len(eval_sample_model_params.gpus) * eval_sample_model_params.loop_per_gpu
reset_graph()
train_model = sketch_image_model.VirtualSketchingModel(train_model_params)
eval_sample_model = sketch_image_model.VirtualSketchingModel(eval_sample_model_params, reuse=True)
tfconfig = tf.ConfigProto(allow_soft_placement=True)
tfconfig.gpu_options.allow_growth = True
sess = tf.InteractiveSession(config=tfconfig)
sess.run(tf.global_variables_initializer())
load_checkpoint(sess, FLAGS.neural_renderer_path, ras_only=True)
if train_model_params.raster_loss_base_type == 'perceptual':
load_checkpoint(sess, FLAGS.perceptual_model_root, perceptual_only=True)
# Write config file to json file.
os.makedirs(sub_log_root, exist_ok=True)
os.makedirs(sub_log_img_root, exist_ok=True)
os.makedirs(sub_snapshot_root, exist_ok=True)
with tf.gfile.Open(os.path.join(sub_snapshot_root, 'model_config.json'), 'w') as f:
json.dump(train_model_params.values(), f, indent=True)
train(sess, train_model, eval_sample_model, train_set, valid_set,
sub_log_root, sub_snapshot_root, sub_log_img_root)
def main(dataset_type):
if dataset_type == 'rough':
model_params = get_default_hparams_rough()
elif dataset_type == 'face':
model_params = get_default_hparams_normal()
else:
raise Exception('Unknown dataset_type:', dataset_type)
trainer(model_params)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data', '-d', type=str, default='rough', choices=['rough', 'face'], help="The dataset type.")
args = parser.parse_args()
main(args.data)