-
Notifications
You must be signed in to change notification settings - Fork 0
/
logger.py
153 lines (139 loc) · 7.77 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import logger_metric
import logger
import tensorboardX
import loss
import matplotlib.pyplot as plt
from logger_metric import get_errors, print_stats
import numpy as np
import torch
import os
import io
from PIL import Image
import pickle
import json
class Logger():
def __init__(self, logger_path, class_enum, config=None, load=False, train_setting=None):
self.logger_path = logger_path
if not load and os.path.exists(logger_path):
if os.path.basename(logger_path).startswith('tmp'):
overwrite = 'y'
else:
overwrite = input('rerunning old training. Overwrite? ')
if overwrite.lower() == 'y':
os.system(f'rm -r {logger_path}')
else:
raise Exception("rerunning old training")
if not os.path.exists(logger_path):
os.makedirs(logger_path)
os.makedirs(os.path.join(logger_path, 'saved_weights'))
if config is not None:
with open(os.path.join(logger_path, 'config.json'), 'w') as f:
json.dump(config.json_serialize(), f)
if train_setting is not None:
with open(os.path.join(logger_path, 'train_setting.json'), 'w') as f:
json.dump(train_setting.json_serialize(), f)
self.class_enum = class_enum
self.tb_summary_writer = tensorboardX.SummaryWriter(os.path.join(self.logger_path, 'logging'))
def get_train_logger(self, epoch, verbose=False):
return SubsetLogger(self, 'train', epoch, verbose)
def get_validation_logger(self, epoch, verbose=False):
return SubsetLogger(self, 'validation', epoch, verbose)
def save_network(self, epoch, model):
path = os.path.join(self.logger_path, 'saved_weights', 'state_dict_{}.pkl'.format(epoch))
# if isinstance(model, torch.nn.DataParallel):
# state_dict = model.module.cpu().state_dict()
# else:
# state_dict = model.cpu().state_dict()
# torch.save(state_dict, path)
torch.save(model.state_dict(), path)
def load_network_weights(self, epoch, model, device):
path = os.path.join(self.logger_path, 'saved_weights', 'state_dict_{}.pkl'.format(epoch))
with open(path, 'rb') as f:
state_dict = torch.load(f, map_location=device)
if isinstance(model, torch.nn.DataParallel):
model.module.load_state_dict(state_dict)
else:
model.load_state_dict(state_dict)
class SubsetLogger():
def __init__(self, logger, subset_name, epoch, verbose):
self.logger = logger
self.subset_name = subset_name
self.epoch = epoch
self.verbose = verbose
self.angular_errors = []
self.class_indices = []
self.hard = []
self.sum_loss = 0.0
self.num_samples_loss = 0
def add_samples(self, images, losses, prob_params, R_gt, R_est, class_idx, hard):
# all inputs are tensors on training device
current_idx = len(self.angular_errors)
ang_err = loss.angle_error(R_est, R_gt).cpu().detach().numpy()
self.angular_errors += list(ang_err)
self.class_indices += list(class_idx.detach().cpu().numpy())
self.hard += list(hard.cpu().numpy())
self.sum_loss += torch.sum(losses).detach().cpu().numpy()
self.num_samples_loss += losses.shape[0]
def finish(self):
tb_writer = self.logger.tb_summary_writer
print('epoch {}: loss {}'.format(self.epoch, float(self.sum_loss/self.num_samples_loss)))
tb_writer.add_scalar('{}/loss'.format(self.subset_name), float(self.sum_loss/self.num_samples_loss), self.epoch) # loss scalar
easy_stats, hard_stats, all_stats = get_errors(self.angular_errors, self.class_indices, self.hard, self.logger.class_enum)
x = [(all_stats, 'all')]
if np.any(self.hard):
x.append([easy_stats, 'easy'])
x.append([hard_stats, 'hard'])
for y in x:
stats = y[0]
stat_name = y[1]
stats_global = stats[0]
stats_per_class = stats[1]
tb_writer.add_scalar('{}/Median_{}'.format(self.subset_name, stat_name), stats_global[0], self.epoch) # subset_name:['train','val'], stat_name:['all', 'easy',]
tb_writer.add_scalar('{}/Mean_{}'.format(self.subset_name, stat_name), stats_global[1], self.epoch)
tb_writer.add_scalar('{}/Acc_at_30_{}'.format(self.subset_name, stat_name), stats_global[2], self.epoch)
tb_writer.add_scalar('{}/Acc_at_20_{}'.format(self.subset_name, stat_name), stats_global[3], self.epoch)
tb_writer.add_scalar('{}/Acc_at_15_{}'.format(self.subset_name, stat_name), stats_global[4], self.epoch)
tb_writer.add_scalar('{}/Acc_at_10_{}'.format(self.subset_name, stat_name), stats_global[5], self.epoch)
tb_writer.add_scalar('{}/Acc_at_7_5_{}'.format(self.subset_name, stat_name), stats_global[6], self.epoch)
tb_writer.add_scalar('{}/Acc_at_5_{}'.format(self.subset_name, stat_name), stats_global[7], self.epoch)
tb_writer.add_scalar('{}/Acc_at_3_{}'.format(self.subset_name, stat_name), stats_global[8], self.epoch)
tb_writer.add_histogram('{}/angle_errors_{}'.format(self.subset_name, stat_name), np.array(stats_global[9]), self.epoch)
for class_name, class_stats in stats_per_class.items():
tb_writer.add_scalar('per_class_{}/{}_Median_{}'.format(self.subset_name, class_name, stat_name), class_stats[0], self.epoch)
tb_writer.add_scalar('per_class_{}/{}_Mean_{}'.format(self.subset_name, class_name, stat_name), class_stats[1], self.epoch)
tb_writer.add_scalar('per_class_{}/{}_Acc_at_30_{}'.format(self.subset_name, class_name, stat_name), class_stats[2], self.epoch)
tb_writer.add_scalar('per_class_{}/{}_Acc_at_20_{}'.format(self.subset_name, class_name, stat_name), class_stats[3], self.epoch)
tb_writer.add_scalar('per_class_{}/{}_Acc_at_15_{}'.format(self.subset_name, class_name, stat_name), class_stats[4], self.epoch)
tb_writer.add_scalar('per_class_{}/{}_Acc_at_10_{}'.format(self.subset_name, class_name, stat_name), class_stats[5], self.epoch)
tb_writer.add_scalar('per_class_{}/{}_Acc_at_7_5_{}'.format(self.subset_name, class_name, stat_name), class_stats[6], self.epoch)
tb_writer.add_scalar('per_class_{}/{}_Acc_at_5_{}'.format(self.subset_name, class_name, stat_name), class_stats[7], self.epoch)
tb_writer.add_scalar('per_class_{}/{}_Acc_at_3_{}'.format(self.subset_name, class_name, stat_name), class_stats[8], self.epoch)
tb_writer.add_histogram('per_class_{}/{}_angle_errors_{}'.format(self.subset_name, class_name, stat_name), np.array(class_stats[-1]), self.epoch)
def generate_axis_plot(image, R, title='', confidence=None):
fig = plt.figure()
if title != '':
plt.title(title)
plt.imshow(image)
extrinsic = np.eye(4)
extrinsic[:3,:3] = R
extrinsic[:3, 3] = np.array([0,0,10])
extrinsic[3, 3] = 1
im_sz = image.shape[0]
intrinsic = np.array([[im_sz/2, 0, im_sz/2],
[0, im_sz/2, im_sz/2],
[0, 0, 1]])
if confidence is None:
confidence = np.ones((3))
nodes = np.array([[0.0,0,0,1],
[confidence[0],0,0,1],
[0,confidence[1],0,1],
[0,0,confidence[2],1]]).transpose()
nodes = np.matmul(extrinsic, nodes)
nodes = nodes[:3, :]
nodes /= nodes[2].reshape(1, -1)
nodes = np.matmul(intrinsic, nodes)
for i,c in enumerate(['r','g','b']):
x = [nodes[0,0], nodes[0, i+1]]
y = [nodes[1,0], nodes[1, i+1]]
plt.plot(x, y, c)
return fig