-
Notifications
You must be signed in to change notification settings - Fork 2
/
predict_with_pretrained_model_BindingDB.py
75 lines (65 loc) · 3.22 KB
/
predict_with_pretrained_model_BindingDB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# predict_with_pretrained_model_BindingDB.py
#
# This file is for a quick check of the reported results in the paper.
# It contains replication results only for BindingDB.
#
# Author: Shugang Zhang
# Created: Wednesday, Aug 4th, 2021
# Last update: Thursday, Aug 5th, 2021
from models.sag_global_pooling import SAGNet_GLOBAL
from models.sag_hierarchical_pooling import SAGNet_HIER
from sklearn.metrics import roc_auc_score, precision_recall_curve, auc, precision_score, recall_score
from utils import *
def predicting(model, device, loader):
model.eval()
total_pred_values = torch.Tensor()
total_pred_labels = torch.Tensor()
total_true_labels = torch.Tensor()
print('Make prediction for {} samples...'.format(len(loader.dataset)))
with torch.no_grad():
for data in loader:
data = data.to(device)
output = model(data)
# print("output.shape = ", output.shape)
predicted_values = torch.sigmoid(output) # continuous
predicted_labels = torch.round(predicted_values) # binary
total_pred_values = torch.cat((total_pred_values, predicted_values.cpu()), 0) # continuous
total_pred_labels = torch.cat((total_pred_labels, predicted_labels.cpu()), 0) # binary
total_true_labels = torch.cat((total_true_labels, data.y.view(-1, 1).cpu()), 0)
# return (G, P_value, P_label)
return total_true_labels.numpy().flatten(), total_pred_values.numpy().flatten(), total_pred_labels.numpy().flatten()
datasets = ['BindingDB']
modelings = [SAGNet_HIER, SAGNet_GLOBAL]
cuda_name = "cuda:0"
print('cuda_name:', cuda_name)
TEST_BATCH_SIZE = 512
result = []
for dataset in datasets:
processed_data_file_test = 'data/processed/' + dataset + '_test.pt'
if (not os.path.isfile(processed_data_file_test)):
print('please run create_data.py to prepare data in pytorch format!')
else:
test_data = TestbedDataset(root='data', dataset=dataset+'_test')
test_loader = DataLoader(test_data, batch_size=TEST_BATCH_SIZE, shuffle=False)
for modeling in modelings:
model_st = modeling.__name__
print('\npredicting for ', dataset, ' using ', model_st)
# training the model
device = torch.device(cuda_name if torch.cuda.is_available() else "cpu")
model = modeling().to(device)
model_file_name = 'pretrained/model_' + model_st + '_' + dataset + '.model'
if os.path.isfile(model_file_name):
model.load_state_dict(torch.load(model_file_name), strict=False)
G, P_value, P_label = predicting(model, device, test_loader)
tpr, fpr, _ = precision_recall_curve(G, P_value)
ret = [roc_auc_score(G, P_value), auc(fpr, tpr), precision_score(G, P_label), recall_score(G, P_label)]
ret = [dataset, model_st] + [round(e, 3) for e in ret]
result += [ret]
print('dataset, model, auc, prc, precision, recall')
print(ret)
else:
print('model is not available!')
with open('result.csv', 'w') as f:
f.write('dataset,model,auc,prc,precision,recall\n')
for ret in result:
f.write(','.join(map(str, ret)) + '\n')