Skip to content

Latest commit

 

History

History
124 lines (109 loc) · 4.96 KB

model_zoo_overview_cn.md

File metadata and controls

124 lines (109 loc) · 4.96 KB

简体中文 | English

PaddleSeg模型库总览

模型库

CNN系列

模型\骨干网络 ResNet50 ResNet101 HRNetw18 HRNetw48
ANN
BiSeNetv2 - - - -
DANet
Deeplabv3
Deeplabv3P
Fast-SCNN - - - -
FCN
GCNet
GSCNN
HarDNet - - - -
OCRNet
PSPNet
U-Net - - - -
U2-Net - - - -
Att U-Net - - - -
U-Net++ - - - -
U-Net3+ - - - -
DecoupledSegNet
EMANet - -
ISANet - -
DNLNet - -
SFNet - - -
PP-HumanSeg-Lite - - - -
PortraitNet - - - -
STDC - - - -
GINet - -
PointRend - -
SegNet - - - -
ESPNetV2 - - - -
HRNetW48Contrast - - -
DMNet - - -
ESPNetV1 - - - -
ENCNet - - -
PFPNNet - - -
FastFCN - - -
BiSeNetV1 - - - -

Transformer系列

模型库Benchmark

基于Cityscapes数据集,PaddleSeg支持22+系列分割算法以及对应的30+个图像分割预训练模型,性能评估如下。

测试环境:

  • GPU: Tesla V100 16GB
  • CPU: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
  • CUDA: 10.2
  • cuDNN: 7.6
  • Paddle: 2.1.3
  • PaddleSeg: 2.3

测试方法:

  • 单GPU,Batch size为1,运行耗时为纯模型预测时间,预测图片尺寸为1024x512。
  • 模型导出后使用Paddle Inference的Python API测试。
  • 推理时间是使用CityScapes数据集中的100张图像进行预测取平均值的结果。
  • 部分算法只测试了取得最高分割精度的配置下的模型性能。

精度 vs 速度

精度 vs FLOPs

精度 vs Params

总表

Model Backbone mIoU Flops(G) Params(M) Inference Time(ms) Preprocess Time(ms) Postprocess Time(ms)
BiSeNetv2 - 73.19% 16.14 2.33 16.00 167.45 0.013
Fast-SCNN - 69.31% 2.04 1.44 10.43 161.52 0.012
HarDNet - 79.03% 35.40 4.13 21.19 164.36 0.013
U-Net - 65.00% 253.75 13.41 29.11 137.75 0.012
SegFormer_B0 - 76.73% 13.63 3.72 15.66 152.60 0.017
SegFormer_B1 - 78.35% 26.55 13.68 21.48 152.40 0.017
STDC1-Seg50 STDC1 74.74% 24.83 8.29 9.10 153.01 0.016
STDC2-Seg50 STDC2 77.60% 38.05 12.33 10.88 152.64 0.015
ANN ResNet101 79.50% 564.43 67.70 94.91 143.35 0.013
DANet ResNet50 80.27% 398.48 47.52 95.08 134.78 0.015
Deeplabv3 ResNet101_OS8 80.85% 481.00 58.17 114 141.65 0.014
Deeplabv3P ResNet50_OS8 81.10% 228.44 26.79 69.78 147.24 0.016
FCN HRNet_W48 80.70% 187.50 65.94 45.46 130.58 0.012
GCNet ResNet101_OS8 81.01% 570.74 68.73 90.28 119.38 0.013
OCRNet HRNet_W48 82.15% 324.66 70.47 61.88 138.48 0.014
PSPNet ResNet101_OS8 80.48% 686.89 86.97 115.93 115.94 0.012
DecoupledSegNet ResNet50_OS8 81.26% 395.10 41.71 66.89 136.28 0.013
EMANet ResNet101_OS8 80.00% 512.18 61.45 80.05 140.47 0.013
ISANet ResNet101_OS8 80.10% 474.13 56.81 91.72 129.12 0.012
DNLNet ResNet101_OS8 81.03% 575.04 69.13 97.81 138.95 0.014
SFNet ResNet18_OS8 78.72% 136.80 13.81 69.51 131.67 0.015
SFNet ResNet50_OS8 81.49% 394.37 42.03 121.35 160.45 0.013
PointRend ResNet50_OS8 76.54% 363.17 28.18 70.35 157.24 0.016
SegFormer_B2 - 81.60% 113.71 27.36 47.08 155.45 0.016
SegFormer_B3 - 82.47% 142.97 47.24 62.70 154.68 0.017
SegFormer_B4 - 82.38% 171.05 64.01 73.26 151.11 0.017
SegFormer_B5 - 82.58% 199.68 84.61 84.34 147.92 0.016
SETR-Naive Vision Transformer 77.29% 620.94 303.37 201.26 145.76 0.016
SETR-PUP Vision Transformer 78.08% 727.46 307.24 212.22 147.05 0.016
SETR-MLA Vision Transformer 76.52% 633.88 307.05 204.87 145.87 0.015