-
Notifications
You must be signed in to change notification settings - Fork 0
/
aggregate_prs_statistics_cv_ls.py
40 lines (29 loc) · 2.02 KB
/
aggregate_prs_statistics_cv_ls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import argparse
from aggregate_prs_statistics_cv_generic import aggregate_statistics_cv
if __name__=="__main__":
method="ls"
discoveries=["GC_sysp_sakaue_2021"] # ["D_bca_michailidou_2017_bcac_onco_aj", "UKB_bc_eur_bcac_onco_aj", "bcac_onco_eur_bcac_onco_aj", "bcac_onco_eur-minus-outliers_bcac_onco_aj", "bcac_onco_eur-1pcs_bcac_onco_aj", "bcac_onco_eur-2pcs_bcac_onco_aj", "bcac_onco_eur-3pcs_bcac_onco_aj", "bcac_onco_eur-4pcs_bcac_onco_aj", "bcac_onco_eur-5pcs_bcac_onco_aj", "bcac_onco_eur-6pcs_bcac_onco_aj", "bcac_onco_eur-3pcs2_bcac_onco_aj" , "bcac_onco_eur-5pcs_ukbb_eur"]
targets=["ukbb_afr"]
imps=["original"] # , "imputeX_new"]
hyperparameters=[f'{a}-{b}' for a in [0.2,0.5,0.9,1] for b in range(1,21)]
parser = argparse.ArgumentParser(description='args')
parser.add_argument('-d', '--discoveries', dest='discoveries', help="", default=",".join(discoveries))
parser.add_argument('-t', '--targets', dest='targets', help="", default=",".join(targets))
parser.add_argument('-i', '--imps', dest='imps', help="", default=",".join(imps))
parser.add_argument('-hp', '--hyperparameters', dest='hyperparameters', help="", default=",".join(hyperparameters))
parser.add_argument('-c', '--cv_folds', dest='cv_folds', help="", default="5")
parser.add_argument('-r', '--rep', dest='rep', help="", default="105_1")
parser.add_argument('-s', '--suffix', dest='suffix', help="", default="gc_eas")
args = parser.parse_args()
discoveries=args.discoveries.split(',')
targets=args.targets.split(',')
imps=args.imps.split(',')
hyperparameters=args.hyperparameters.split(',')
cv_folds=int(args.cv_folds)
rep=args.rep
suffix=args.suffix
# aggregate_statistics_cv(discoveries, targets, imps, method, hyperparameters, cv_folds, 6, f'{suffix}_{rep}')
for method in ["pt3"]: # , "pt3"]:
for cur_rep in range(1,6):
rep=f"105_{cur_rep}"
aggregate_statistics_cv(discoveries, targets, imps, method, hyperparameters, cv_folds, rep, f'{suffix}_{rep}')