-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
vit.py
227 lines (220 loc) · 11 KB
/
vit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
'''
Function:
Implementation of ViT
Author:
Zhenchao Jin
'''
import os
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
import torch.utils.checkpoint as checkpoint
from .bricks import BuildNormalization, MultiheadAttention, PatchEmbed, FFN
'''DEFAULT_MODEL_URLS'''
DEFAULT_MODEL_URLS = {
'jx_vit_large_p16_384': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth',
}
'''AUTO_ASSERT_STRUCTURE_TYPES'''
AUTO_ASSERT_STRUCTURE_TYPES = {
'jx_vit_large_p16_384': {
'patch_size': 16, 'embed_dims': 1024, 'num_layers': 24, 'num_heads': 16, 'mlp_ratio': 4,
'qkv_bias': True, 'drop_rate': 0.1, 'attn_drop_rate': 0., 'drop_path_rate': 0., 'with_cls_token': True,
'output_cls_token': False, 'patch_norm': False, 'final_norm': False, 'num_fcs': 2,
}
}
'''TransformerEncoderLayer'''
class TransformerEncoderLayer(nn.Module):
def __init__(self, embed_dims, num_heads, feedforward_channels, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., num_fcs=2,
qkv_bias=True, act_cfg=None, norm_cfg=None, batch_first=True, attn_cfg=dict(), ffn_cfg=dict(), use_checkpoint=False):
super(TransformerEncoderLayer, self).__init__()
self.ln1 = BuildNormalization(placeholder=embed_dims, norm_cfg=norm_cfg)
attn_cfg.update(dict(
embed_dims=embed_dims, num_heads=num_heads, attn_drop=attn_drop_rate, proj_drop=drop_rate,
dropout_cfg={'type': 'DropPath', 'drop_prob': drop_path_rate}, batch_first=batch_first, bias=qkv_bias,
))
self.attn = MultiheadAttention(**attn_cfg)
self.ln2 = BuildNormalization(placeholder=embed_dims, norm_cfg=norm_cfg)
ffn_cfg.update(dict(
embed_dims=embed_dims, feedforward_channels=feedforward_channels, num_fcs=num_fcs, ffn_drop=drop_rate,
dropout_cfg={'type': 'DropPath', 'drop_prob': drop_path_rate}, act_cfg=act_cfg,
))
self.ffn = FFN(**ffn_cfg)
self.use_checkpoint = use_checkpoint
'''forward'''
def forward(self, x):
def _forward(x):
x = self.attn(self.ln1(x), identity=x)
x = self.ffn(self.ln2(x), identity=x)
return x
if self.use_checkpoint and x.requires_grad:
x = checkpoint.checkpoint(_forward, x)
else:
x = _forward(x)
return x
'''VisionTransformer'''
class VisionTransformer(nn.Module):
def __init__(self, structure_type, img_size=224, patch_size=16, in_channels=3, embed_dims=768, num_layers=12, num_heads=12, mlp_ratio=4, out_indices=(9, 14, 19, 23), qkv_bias=True,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., with_cls_token=True, output_cls_token=False, norm_cfg={'type': 'LayerNorm', 'eps': 1e-6}, act_cfg={'type': 'GELU'},
patch_norm=False, final_norm=False, interpolate_mode='bilinear', num_fcs=2, use_checkpoint=False, pretrained=True, pretrained_model_path=''):
super(VisionTransformer, self).__init__()
# set attributes
self.structure_type = structure_type
self.img_size = img_size
self.patch_size = patch_size
self.in_channels = in_channels
self.embed_dims = embed_dims
self.num_layers = num_layers
self.num_heads = num_heads
self.mlp_ratio = mlp_ratio
self.out_indices = out_indices
self.qkv_bias = qkv_bias
self.drop_rate = drop_rate
self.attn_drop_rate = attn_drop_rate
self.drop_path_rate = drop_path_rate
self.with_cls_token = with_cls_token
self.output_cls_token = output_cls_token
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.patch_norm = patch_norm
self.num_fcs = num_fcs
self.pretrained = pretrained
self.pretrained_model_path = pretrained_model_path
self.interpolate_mode = interpolate_mode
self.use_checkpoint = use_checkpoint
self.final_norm = final_norm
# assert
if output_cls_token: assert with_cls_token, 'with_cls_token must be True if set output_cls_token to True.'
if structure_type in AUTO_ASSERT_STRUCTURE_TYPES:
for key, value in AUTO_ASSERT_STRUCTURE_TYPES[structure_type].items():
assert hasattr(self, key) and (getattr(self, key) == value)
if isinstance(img_size, int): img_size = (img_size, img_size)
self.img_size = img_size
# Image to Patch Embedding
self.patch_embed = PatchEmbed(
in_channels=in_channels, embed_dims=embed_dims, kernel_size=patch_size, stride=patch_size,
padding='corner', norm_cfg=norm_cfg if patch_norm else None,
)
num_patches = (img_size[0] // patch_size) * (img_size[1] // patch_size)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dims))
self.drop_after_pos = nn.Dropout(p=drop_rate)
if isinstance(out_indices, int):
if out_indices == -1:
out_indices = num_layers - 1
self.out_indices = [out_indices]
elif isinstance(out_indices, list) or isinstance(out_indices, tuple):
self.out_indices = out_indices
else:
raise TypeError('out_indices must be type of int, list or tuple')
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, num_layers)]
self.layers = nn.ModuleList()
for i in range(num_layers):
self.layers.append(TransformerEncoderLayer(
embed_dims=embed_dims, num_heads=num_heads, feedforward_channels=mlp_ratio * embed_dims, attn_drop_rate=attn_drop_rate,
drop_rate=drop_rate, drop_path_rate=dpr[i], num_fcs=num_fcs, qkv_bias=qkv_bias, act_cfg=act_cfg, norm_cfg=norm_cfg,
batch_first=True, use_checkpoint=use_checkpoint,
))
if final_norm:
self.ln1 = BuildNormalization(placeholder=embed_dims, norm_cfg=norm_cfg)
# load pretrained weights
if pretrained:
self.loadpretrainedweights(structure_type, pretrained_model_path)
'''loadpretrainedweights'''
def loadpretrainedweights(self, structure_type='jx_vit_large_p16_384', pretrained_model_path=''):
if pretrained_model_path and os.path.exists(pretrained_model_path):
checkpoint = torch.load(pretrained_model_path, map_location='cpu')
else:
checkpoint = model_zoo.load_url(DEFAULT_MODEL_URLS[structure_type], map_location='cpu')
if 'state_dict' in checkpoint:
state_dict = checkpoint['state_dict']
elif 'model' in checkpoint:
state_dict = checkpoint['model']
else:
state_dict = checkpoint
state_dict = self.vitconvert(state_dict)
if 'pos_embed' in state_dict.keys():
if self.pos_embed.shape != state_dict['pos_embed'].shape:
h, w = self.img_size
pos_size = int(math.sqrt(state_dict['pos_embed'].shape[1] - 1))
state_dict['pos_embed'] = self.resizeposembed(state_dict['pos_embed'], (h // self.patch_size, w // self.patch_size), (pos_size, pos_size), self.interpolate_mode)
self.load_state_dict(state_dict, strict=False)
'''vitconvert'''
@staticmethod
def vitconvert(ckpt):
from collections import OrderedDict
new_ckpt = OrderedDict()
for k, v in ckpt.items():
if k.startswith('head'):
continue
if k.startswith('norm'):
new_k = k.replace('norm.', 'ln1.')
elif k.startswith('patch_embed'):
if 'proj' in k: new_k = k.replace('proj', 'projection')
else: new_k = k
elif k.startswith('blocks'):
if 'norm' in k: new_k = k.replace('norm', 'ln')
elif 'mlp.fc1' in k: new_k = k.replace('mlp.fc1', 'ffn.layers.0.0')
elif 'mlp.fc2' in k: new_k = k.replace('mlp.fc2', 'ffn.layers.1')
elif 'attn.qkv' in k: new_k = k.replace('attn.qkv.', 'attn.attn.in_proj_')
elif 'attn.proj' in k: new_k = k.replace('attn.proj', 'attn.attn.out_proj')
else: new_k = k
new_k = new_k.replace('blocks.', 'layers.')
else:
new_k = k
new_ckpt[new_k] = v
return new_ckpt
'''posembeding'''
def posembeding(self, patched_img, hw_shape, pos_embed):
assert patched_img.ndim == 3 and pos_embed.ndim == 3, 'the shapes of patched_img and pos_embed must be [B, L, C]'
x_len, pos_len = patched_img.shape[1], pos_embed.shape[1]
if x_len != pos_len:
if pos_len == (self.img_size[0] // self.patch_size) * (self.img_size[1] // self.patch_size) + 1:
pos_h = self.img_size[0] // self.patch_size
pos_w = self.img_size[1] // self.patch_size
else:
raise ValueError('Unexpected shape of pos_embed, got {}.'.format(pos_embed.shape))
pos_embed = self.resizeposembed(pos_embed, hw_shape, (pos_h, pos_w), self.interpolate_mode)
return self.drop_after_pos(patched_img + pos_embed)
'''resizeposembed'''
@staticmethod
def resizeposembed(pos_embed, input_shpae, pos_shape, mode):
assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
pos_h, pos_w = pos_shape
cls_token_weight = pos_embed[:, 0:1]
pos_embed_weight = pos_embed[:, (-1 * pos_h * pos_w):]
pos_embed_weight = pos_embed_weight.reshape(1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
pos_embed_weight = F.interpolate(pos_embed_weight, size=input_shpae, align_corners=False, mode=mode)
pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
pos_embed = torch.cat((cls_token_weight, pos_embed_weight), dim=1)
return pos_embed
'''forward'''
def forward(self, inputs):
batch_size = inputs.shape[0]
x, hw_shape = self.patch_embed(inputs)
# stole cls_tokens impl from Phil Wang, thanks
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x = self.posembeding(x, hw_shape, self.pos_embed)
# remove class token for transformer encoder input
if not self.with_cls_token:
x = x[:, 1:]
outs = []
for i, layer in enumerate(self.layers):
x = layer(x)
if i == len(self.layers) - 1:
if self.final_norm:
x = self.ln1(x)
if i in self.out_indices:
# remove class token and reshape token for decoder head
if self.with_cls_token:
out = x[:, 1:]
else:
out = x
B, _, C = out.shape
out = out.reshape(B, hw_shape[0], hw_shape[1], C).permute(0, 3, 1, 2).contiguous()
if self.output_cls_token: out = [out, x[:, 0]]
outs.append(out)
return tuple(outs)