FastFCN (ArXiv'2019)
@article{wu2019fastfcn,
title={Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation},
author={Wu, Huikai and Zhang, Junge and Huang, Kaiqi and Liang, Kongming and Yu, Yizhou},
journal={arXiv preprint arXiv:1903.11816},
year={2019}
}
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|---|
EncNet | ImageNet-1k-224x224 | R-50-D32 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 78.42% | cfg | model | log |
PSPNet | ImageNet-1k-224x224 | R-50-D32 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 79.36% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | R-50-D32 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 79.96% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757