This repository has been archived by the owner on Jun 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
excel_fast_load.py
242 lines (203 loc) · 7.63 KB
/
excel_fast_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# -*- coding: utf-8 -*-
"""
Created on Fri Jan 3 16:42:08 2020
@author: FelixKling
NOTE: This code is provided as is, with no license, as it was shared by its author:
https://stackoverflow.com/a/62277641
"""
import re
import zipfile
import pandas as pd
import datetime as dt
import numpy as np
import html
def is_number(s):
try:
float(s)
return True
except ValueError:
return False
def excel_fast_load(path, sheet_name=None, header=True, index_col=False, skiprows=[], skipcolumns=[]):
"""
Reads an .xlsx or .xlsm file and returns a Pandas DataFrame. Is much faster than pandas.read_excel().
Parameters
----------
path : str
The path to the .xlsx or .xlsm file.
sheet_name : str, optional
Name of the sheet to read. If none, the first (not the active!) sheet is read. The default is None.
header : bool, optional
Whether to use the first line as column headers. The default is True.
index_col : bool, optional
Whether to use the first column as index. The default is False.
skiprows : list of int, optional.
The row numbers to skip ([0, 1] skips the first two rows). The default is [].
skipcolumns : list of int, optional.
The column numbers to skip ([0, 1] skips the first two columns). The default is [].
Raises
------
TypeError
If the file is no .xlsx or .xlsm file.
FileNotFoundError
If the sheet name is not found.
Returns
-------
Pandas DataFrame
The input file as DataFrame.
"""
# check extension
if "." not in path:
raise TypeError("This is no .xlsx or .xlsm file!")
if path.rsplit(".", 1)[1] not in ["xlsx", "xlsm"]:
raise TypeError("This is no .xlsx or .xlsm file!")
path = path.replace("\\", "/")
tempfiles = dict()
with zipfile.ZipFile(path, 'r') as zipObj:
for name in zipObj.namelist():
if name.startswith("xl/worksheets/") or name in [
"xl/_rels/workbook.xml.rels",
"xl/styles.xml",
"xl/workbook.xml",
"xl/sharedStrings.xml",
]:
try:
tempfiles[name] = zipObj.read(name).decode("utf-8")
except UnicodeDecodeError:
tempfiles[name] = zipObj.read(name).decode("utf-16")
# read rels (paths to sheets)
text = tempfiles["xl/_rels/workbook.xml.rels"]
rels = {}
relids = re.findall(r'<Relationship Id="([^"]+)"', text)
relpaths = re.findall(r'<Relationship .*?Target="([^"]+)"', text)
rels = dict(zip(relids, relpaths))
# read sheet names and relation ids
if sheet_name:
text = tempfiles["xl/workbook.xml"]
workbooks = {}
workbookids = re.findall(r'<sheet.*? r:id="([^"]+)"', text)
workbooknames = re.findall(r'<sheet.*? name="([^"]+)"', text)
workbooks = dict(zip(workbooknames, workbookids))
if sheet_name in workbooks:
sheet = rels[workbooks[sheet_name]].rsplit("/", 1)[1]
else:
raise FileNotFoundError(
"Sheet " + str(sheet_name) + " not found in Excel file! Available sheets: " + "; ".join(
workbooks.keys()))
else:
sheet = "sheet1.xml"
# read strings, they are numbered
string_items = []
if "xl/sharedStrings.xml" in tempfiles:
text = tempfiles["xl/sharedStrings.xml"]
string_items = re.split(r"<si.*?><t.*?>",
text.replace("<t/>", "<t></t>").replace("</t></si>", "").replace("</sst>", ""))[1:]
string_items = [html.unescape(str(i).split("</t>")[0]) if i != "" else np.nan for i in string_items]
# read styles, they are numbered
text = tempfiles["xl/styles.xml"]
styles = re.split(r"<[/]?cellXfs.*?>", text)[1]
styles = styles.split('numFmtId="')[1:]
styles = [int(s.split('"', 1)[0]) for s in styles]
numfmts = text.split("<numFmt ")[1:]
numfmts = [n.split("/>", 1)[0] for n in numfmts]
for i, n in enumerate(numfmts):
n = re.sub(r"\[[^\]]*\]", "", n)
n = re.sub(r'"[^"]*"', "", n)
if any([x in n for x in ["y", "d", "w", "q"]]):
numfmts[i] = "date"
elif any([x in n for x in ["h", "s", "A", "P"]]):
numfmts[i] = "time"
else:
numfmts[i] = "number"
def style_type(x):
if 14 <= x <= 22:
return "date"
if 45 <= x <= 47:
return "time"
if x >= 165:
return numfmts[x - 165]
else:
return "number"
styles = list(map(style_type, styles))
text = tempfiles["xl/worksheets/" + sheet]
def code2nr(x):
nr = 0
d = 1
for c in x[::-1]:
nr += (ord(c) - 64) * d
d *= 26
return nr - 1
table = []
max_row_len = 0
rows = [r.replace("</row>", "") for r in re.split(r"<row .*?>", text)[1:]]
for r in rows:
# c><c r="AT2" s="1" t="n"><v></v></c><c r="AU2" s="115" t="inlineStr"><is><t>bla (Namenskürzel)</t></is></c>
r = re.sub(r"</?r.*?>", "", r)
r = re.sub(r"<(is|si).*?><t.*?>", "<v>", r)
r = re.sub(r"</t></(is|si)>", "</v>", r)
r = re.sub(r"</t><t.*?>", "", r)
values = r.split("</v>")[:-1]
add = []
colnr = 0
for v in values:
value = re.split("<v.*?>", v)[1]
v = v.rsplit("<c", 1)[1]
# get column number of the field
nr = v.split(' r="')[1].split('"')[0]
nr = code2nr("".join([n for n in nr if n.isalpha()]))
if nr > colnr:
for i in range(nr - colnr):
add.append(np.nan)
colnr = nr + 1
sty = "number"
if ' s="' in v:
sty = int(v.split(' s="', 1)[1].split('"', 1)[0])
sty = styles[sty]
# inline strings
if 't="inlineStr"' in v:
add.append(html.unescape(value) if value != "" else np.nan)
# string from list
elif 't="s"' in v:
add.append(string_items[int(value)])
# boolean
elif 't="b"' in v:
add.append(bool(int(value)))
# date
elif sty == "date":
if len(value) == 0:
add.append(pd.NaT)
# Texts like errors
elif not is_number(value):
add.append(html.unescape(value))
else:
add.append(dt.datetime(1900, 1, 1) + dt.timedelta(days=float(value) - 2))
# time
elif sty == "time":
if len(value) == 0:
add.append(pd.NaT)
# Texts like errors
elif not is_number(value):
add.append(html.unescape(value))
else:
add.append((dt.datetime(1900, 1, 1) + dt.timedelta(days=float(value) - 2)).time())
# Null
elif len(value) == 0:
add.append(np.nan)
# Texts like errors
elif not is_number(value):
add.append(html.unescape(value))
# numbers
else:
add.append(round(float(value), 16))
table.append(add)
if len(add) > max_row_len:
max_row_len = len(add)
df = pd.DataFrame(table)
# skip rows or columns
df = df.iloc[
[i for i in range(len(df)) if i not in skiprows], [i for i in range(len(df.columns)) if i not in skipcolumns]]
if index_col:
df = df.set_index(df.columns[0])
if header:
df.columns = df.iloc[0].values
df = df.iloc[1:]
return df