diff --git a/HISTORY.md b/HISTORY.md index 403fea38..1d2b0f7d 100644 --- a/HISTORY.md +++ b/HISTORY.md @@ -2,6 +2,38 @@ ## JumpProcesses unreleased (master branch) +## 9.12 + + - Added a default aggregator selection algorithm based on the number of passed + in jumps. i.e. the following now auto-selects an aggregator (`Direct` in this + case): + + ```julia + using JumpProcesses + rate(u, p, t) = u[1] + affect(integrator) = (integrator.u[1] -= 1; nothing) + crj = ConstantRateJump(rate, affect) + dprob = DiscreteProblem([10], (0.0, 10.0)) + jprob = JumpProblem(dprob, crj) + sol = solve(jprob, SSAStepper()) + ``` + + - For `JumpProblem`s over `DiscreteProblem`s that only have `MassActionJump`s, + `ConstantRateJump`s, and bounded `VariableRateJump`s, one no longer needs to + specify `SSAStepper()` when calling `solve`, i.e. the following now works for + the previous example and is equivalent to manually passing `SSAStepper()`: + + ```julia + sol = solve(jprob) + ``` + - Plotting a solution generated with `save_positions = (false, false)` now uses + piecewise linear plots between any saved time points specified via `saveat` + instead (previously the plots appeared piecewise constant even though each + jump was not being shown). Note that solution objects still use piecewise + constant interpolation, see [the + docs](https://docs.sciml.ai/JumpProcesses/stable/tutorials/discrete_stochastic_example/#save_positions_docs) + for details. + ## 9.7 - `Coevolve` was updated to support use with coupled ODEs/SDEs. See the updated diff --git a/README.md b/README.md index 084b5f68..1e129301 100644 --- a/README.md +++ b/README.md @@ -79,10 +79,10 @@ using JumpProcesses, Plots # here we order S = 1, I = 2, and R = 3 # substrate stoichiometry: substoich = [[1 => 1, 2 => 1], # 1*S + 1*I - [2 => 1]] # 1*I + [2 => 1]] # 1*I # net change by each jump type netstoich = [[1 => -1, 2 => 1], # S -> S-1, I -> I+1 - [2 => -1, 3 => 1]] # I -> I-1, R -> R+1 + [2 => -1, 3 => 1]] # I -> I-1, R -> R+1 # rate constants for each jump p = (0.1 / 1000, 0.01) @@ -96,10 +96,10 @@ tspan = (0.0, 250.0) dprob = DiscreteProblem(u₀, tspan, p) # use the Direct method to simulate -jprob = JumpProblem(dprob, Direct(), maj) +jprob = JumpProblem(dprob, maj) # solve as a pure jump process, i.e. using SSAStepper -sol = solve(jprob, SSAStepper()) +sol = solve(jprob) plot(sol) ``` @@ -122,8 +122,8 @@ function affect2!(integrator) integrator.u[3] += 1 # R -> R + 1 end jump2 = ConstantRateJump(rate2, affect2!) -jprob = JumpProblem(dprob, Direct(), jump, jump2) -sol = solve(jprob, SSAStepper()) +jprob = JumpProblem(dprob, jump, jump2) +sol = solve(jprob) ``` ### Jump-ODE Example diff --git a/src/SSA_stepper.jl b/src/SSA_stepper.jl index a9fb7b76..b7554a8e 100644 --- a/src/SSA_stepper.jl +++ b/src/SSA_stepper.jl @@ -107,9 +107,7 @@ function DiffEqBase.u_modified!(integrator::SSAIntegrator, bool::Bool) integrator.u_modified = bool end -function DiffEqBase.__solve(jump_prob::JumpProblem, - alg::SSAStepper; - kwargs...) +function DiffEqBase.__solve(jump_prob::JumpProblem, alg::SSAStepper; kwargs...) integrator = init(jump_prob, alg; kwargs...) solve!(integrator) integrator.sol diff --git a/src/aggregators/aggregators.jl b/src/aggregators/aggregators.jl index ce460737..be167cb6 100644 --- a/src/aggregators/aggregators.jl +++ b/src/aggregators/aggregators.jl @@ -188,6 +188,40 @@ needs_vartojumps_map(aggregator::RSSACR) = true supports_variablerates(aggregator::AbstractAggregatorAlgorithm) = false supports_variablerates(aggregator::Coevolve) = true +# true if aggregator supports hops, e.g. diffusion is_spatial(aggregator::AbstractAggregatorAlgorithm) = false is_spatial(aggregator::NSM) = true is_spatial(aggregator::DirectCRDirect) = true + +# return the fastest aggregator out of the available ones +function select_aggregator(jumps::JumpSet; vartojumps_map = nothing, + jumptovars_map = nothing, dep_graph = nothing, spatial_system = nothing, + hopping_constants = nothing) + + # detect if a spatial SSA should be used + !isnothing(spatial_system) && !isnothing(hopping_constants) && return DirectCRDirect + + # if variable rate jumps are present, return one of the two SSAs that support them + if num_vrjs(jumps) > 0 + (num_bndvrjs(jumps) > 0) && return Coevolve + return Direct + end + + # if the number of jumps is small, return the Direct + num_jumps(jumps) < 20 && return Direct + + # if there are only massaction jumps, we can build the species-jumps dependency graphs + can_build_dgs = num_crjs(jumps) == 0 && num_vrjs(jumps) == 0 + have_species_to_jumps_dgs = !isnothing(vartojumps_map) && !isnothing(jumptovars_map) + + # if we have the species-jumps dgs or can build them, use a Rejection-based methods + if can_build_dgs || have_species_to_jumps_dgs + (num_jumps(jumps) < 100) && return RSSA + return RSSACR + elseif !isnothing(dep_graph) # if only have a normal dg + (num_jumps(jumps) < 200) && return SortingDirect + return DirectCR + else + return Direct + end +end diff --git a/src/jumps.jl b/src/jumps.jl index e09236ff..f3b22f10 100644 --- a/src/jumps.jl +++ b/src/jumps.jl @@ -383,7 +383,7 @@ end using_params(maj::MassActionJump{T, S, U, Nothing}) where {T, S, U} = false using_params(maj::MassActionJump) = true using_params(maj::Nothing) = false -@inline get_num_majumps(maj::MassActionJump) = length(maj.scaled_rates) +@inline get_num_majumps(maj::MassActionJump) = length(maj.net_stoch) @inline get_num_majumps(maj::Nothing) = 0 struct MassActionJumpParamMapper{U} diff --git a/src/problem.jl b/src/problem.jl index 0176422c..6af1f1e3 100644 --- a/src/problem.jl +++ b/src/problem.jl @@ -176,8 +176,17 @@ function JumpProblem(prob, aggregator::AbstractAggregatorAlgorithm, jumps::Abstr kwargs...) JumpProblem(prob, aggregator, JumpSet(jumps...); kwargs...) end -function JumpProblem(prob, jumps::JumpSet; kwargs...) - JumpProblem(prob, NullAggregator(), jumps; kwargs...) +function JumpProblem(prob, jumps::JumpSet; vartojumps_map = nothing, + jumptovars_map = nothing, dep_graph = nothing, + spatial_system = nothing, hopping_constants = nothing, kwargs...) + ps = (; vartojumps_map, jumptovars_map, dep_graph, spatial_system, hopping_constants) + aggtype = select_aggregator(jumps; ps...) + return JumpProblem(prob, aggtype(), jumps; ps..., kwargs...) +end + +# this makes it easier to test the aggregator selection +function JumpProblem(prob, aggregator::NullAggregator, jumps::JumpSet; kwargs...) + JumpProblem(prob, jumps; kwargs...) end make_kwarg(; kwargs...) = kwargs diff --git a/src/solve.jl b/src/solve.jl index 32908152..bc9ed6c8 100644 --- a/src/solve.jl +++ b/src/solve.jl @@ -7,6 +7,17 @@ function DiffEqBase.__solve(jump_prob::DiffEqBase.AbstractJumpProblem{P}, integrator.sol end +# if passed a JumpProblem over a DiscreteProblem, and no aggregator is selected use +# SSAStepper +function DiffEqBase.__solve(jump_prob::DiffEqBase.AbstractJumpProblem{P}; + kwargs...) where {P <: DiscreteProblem} + DiffEqBase.__solve(jump_prob, SSAStepper(); kwargs...) +end + +function DiffEqBase.__solve(jump_prob::DiffEqBase.AbstractJumpProblem; kwargs...) + error("Auto-solver selection is currently only implemented for JumpProblems defined over DiscreteProblems. Please explicitly specify a solver algorithm in calling solve.") +end + function DiffEqBase.__init(_jump_prob::DiffEqBase.AbstractJumpProblem{P}, alg::DiffEqBase.DEAlgorithm, timeseries = [], ts = [], ks = [], recompile::Type{Val{recompile_flag}} = Val{true}; diff --git a/test/bimolerx_test.jl b/test/bimolerx_test.jl index 330b6946..befeefab 100644 --- a/test/bimolerx_test.jl +++ b/test/bimolerx_test.jl @@ -14,7 +14,7 @@ dotestmean = true doprintmeans = false # SSAs to test -SSAalgs = JumpProcesses.JUMP_AGGREGATORS +SSAalgs = (JumpProcesses.JUMP_AGGREGATORS..., JumpProcesses.NullAggregator()) Nsims = 32000 tf = 0.01 @@ -55,10 +55,10 @@ jump_to_dep_specs = [[1, 2], [1, 2], [1, 2, 3], [1, 2, 3], [1, 3]] majumps = MassActionJump(rates, reactstoch, netstoch) # average number of proteins in a simulation -function runSSAs(jump_prob) +function runSSAs(jump_prob; use_stepper = true) Psamp = zeros(Int, Nsims) for i in 1:Nsims - sol = solve(jump_prob, SSAStepper()) + sol = use_stepper ? solve(jump_prob, SSAStepper()) : solve(jump_prob) Psamp[i] = sol[1, end] end mean(Psamp) @@ -81,37 +81,23 @@ end # test the means if dotestmean - means = zeros(Float64, length(SSAalgs)) for (i, alg) in enumerate(SSAalgs) local jump_prob = JumpProblem(prob, alg, majumps, save_positions = (false, false), vartojumps_map = spec_to_dep_jumps, jumptovars_map = jump_to_dep_specs, rng = rng) - means[i] = runSSAs(jump_prob) - relerr = abs(means[i] - expected_avg) / expected_avg - if doprintmeans - println("Mean from method: ", typeof(alg), " is = ", means[i], ", rel err = ", - relerr) - end - - # if dobenchmark - # @btime (runSSAs($jump_prob);) - # end - - @test abs(means[i] - expected_avg) < reltol * expected_avg + means = runSSAs(jump_prob) + relerr = abs(means - expected_avg) / expected_avg + doprintmeans && println("Mean from method: ", typeof(alg), " is = ", means, + ", rel err = ", relerr) + @test abs(means - expected_avg) < reltol * expected_avg + + # test not specifying SSAStepper + means = runSSAs(jump_prob; use_stepper = false) + relerr = abs(means - expected_avg) / expected_avg + @test abs(means - expected_avg) < reltol * expected_avg end end -# benchmark performance -# if dobenchmark -# # exact methods -# for alg in SSAalgs -# println("Solving with method: ", typeof(alg), ", using SSAStepper") -# jump_prob = JumpProblem(prob, alg, majumps, vartojumps_map=spec_to_dep_jumps, jumptovars_map=jump_to_dep_specs, rng=rng) -# @btime solve($jump_prob, SSAStepper()) -# end -# println() -# end - # add a test for passing MassActionJumps individually (tests combining) if dotestmean majump_vec = Vector{MassActionJump{Float64, Vector{Pair{Int, Int}}}}() diff --git a/test/degenerate_rx_cases.jl b/test/degenerate_rx_cases.jl index a965ae98..de6938c0 100644 --- a/test/degenerate_rx_cases.jl +++ b/test/degenerate_rx_cases.jl @@ -12,8 +12,7 @@ doprint = false #using Plots; plotlyjs() doplot = false -methods = (RDirect(), RSSACR(), Direct(), DirectFW(), FRM(), FRMFW(), SortingDirect(), - NRM(), RSSA(), DirectCR(), Coevolve()) +methods = (JumpProcesses.JUMP_AGGREGATORS..., JumpProcesses.NullAggregator()) # one reaction case, mass action jump, vector of data rate = [2.0] diff --git a/test/extinction_test.jl b/test/extinction_test.jl index 41e03498..da6f7583 100644 --- a/test/extinction_test.jl +++ b/test/extinction_test.jl @@ -17,7 +17,7 @@ dg = [[1]] majump = MassActionJump(rates, reactstoch, netstoch) u0 = [100000] dprob = DiscreteProblem(u0, (0.0, 1e5), rates) -algs = JumpProcesses.JUMP_AGGREGATORS +algs = (JumpProcesses.JUMP_AGGREGATORS..., JumpProcesses.NullAggregator()) for n in 1:Nsims for ssa in algs diff --git a/test/geneexpr_test.jl b/test/geneexpr_test.jl index a39e373b..97d97c22 100644 --- a/test/geneexpr_test.jl +++ b/test/geneexpr_test.jl @@ -12,8 +12,7 @@ dotestmean = true doprintmeans = false # SSAs to test -SSAalgs = (RDirect(), RSSACR(), Direct(), DirectFW(), FRM(), FRMFW(), SortingDirect(), - NRM(), RSSA(), DirectCR(), Coevolve()) +SSAalgs = (JumpProcesses.JUMP_AGGREGATORS..., JumpProcesses.NullAggregator()) # numerical parameters Nsims = 8000 @@ -23,10 +22,10 @@ expected_avg = 5.926553750000000e+02 reltol = 0.01 # average number of proteins in a simulation -function runSSAs(jump_prob) +function runSSAs(jump_prob; use_stepper = true) Psamp = zeros(Int, Nsims) for i in 1:Nsims - sol = solve(jump_prob, SSAStepper()) + sol = use_stepper ? solve(jump_prob, SSAStepper()) : solve(jump_prob) Psamp[i] = sol[3, end] end mean(Psamp) @@ -86,33 +85,28 @@ end # test the means if dotestmean - means = zeros(Float64, length(SSAalgs)) for (i, alg) in enumerate(SSAalgs) local jump_prob = JumpProblem(prob, alg, majumps, save_positions = (false, false), vartojumps_map = spec_to_dep_jumps, jumptovars_map = jump_to_dep_specs, rng = rng) - means[i] = runSSAs(jump_prob) - relerr = abs(means[i] - expected_avg) / expected_avg - if doprintmeans - println("Mean from method: ", typeof(alg), " is = ", means[i], ", rel err = ", - relerr) - end + means = runSSAs(jump_prob) + relerr = abs(means - expected_avg) / expected_avg + doprintmeans && println("Mean from method: ", typeof(alg), " is = ", means, + ", rel err = ", relerr) + @test abs(means - expected_avg) < reltol * expected_avg - # if dobenchmark - # @btime (runSSAs($jump_prob);) - # end - - @test abs(means[i] - expected_avg) < reltol * expected_avg + means = runSSAs(jump_prob; use_stepper = false) + relerr = abs(means - expected_avg) / expected_avg + @test abs(means - expected_avg) < reltol * expected_avg end end -# benchmark performance -# if dobenchmark -# # exact methods -# for alg in SSAalgs -# println("Solving with method: ", typeof(alg), ", using SSAStepper") -# jump_prob = JumpProblem(prob, alg, majumps, vartojumps_map=spec_to_dep_jumps, jumptovars_map=jump_to_dep_specs, rng=rng) -# @btime solve($jump_prob, SSAStepper()) -# end -# println() -# end +# no-aggregator tests +jump_prob = JumpProblem(prob, majumps; save_positions = (false, false), + vartojumps_map = spec_to_dep_jumps, jumptovars_map = jump_to_dep_specs, rng) +@test abs(runSSAs(jump_prob) - expected_avg) < reltol * expected_avg +@test abs(runSSAs(jump_prob; use_stepper = false) - expected_avg) < reltol * expected_avg + +jump_prob = JumpProblem(prob, majumps, save_positions = (false, false), rng = rng) +@test abs(runSSAs(jump_prob) - expected_avg) < reltol * expected_avg +@test abs(runSSAs(jump_prob; use_stepper = false) - expected_avg) < reltol * expected_avg diff --git a/test/linearreaction_test.jl b/test/linearreaction_test.jl index 4a91ddea..657982a6 100644 --- a/test/linearreaction_test.jl +++ b/test/linearreaction_test.jl @@ -16,11 +16,12 @@ tf = 0.1 baserate = 0.1 A0 = 100 exactmean = (t, ratevec) -> A0 * exp(-sum(ratevec) * t) -SSAalgs = [RSSACR(), Direct(), RSSA()] +SSAalgs = (JumpProcesses.JUMP_AGGREGATORS..., JumpProcesses.NullAggregator()) +SSAs_to_exclude = (DirectFW(), FRM(), FRMFW()) -spec_to_dep_jumps = [collect(1:Nrxs), []] -jump_to_dep_specs = [[1, 2] for i in 1:Nrxs] -namedpars = (vartojumps_map = spec_to_dep_jumps, jumptovars_map = jump_to_dep_specs) +vartojumps_map = [collect(1:Nrxs), []] +jumptovars_map = [[1, 2] for i in 1:Nrxs] +namedpars = (; vartojumps_map, jumptovars_map) rates = ones(Float64, Nrxs) * baserate; cumsum!(rates, rates) exactmeanval = exactmean(tf, rates) @@ -51,7 +52,7 @@ function A_to_B_tuple(N, method) jumps = ((jump for jump in jumpvec)...,) jset = JumpSet((), jumps, nothing, nothing) prob = DiscreteProblem([A0, 0], (0.0, tf)) - jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng = rng, + jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng, namedpars...) jump_prob @@ -73,7 +74,7 @@ function A_to_B_vec(N, method) # convert jumpvec to tuple to send to JumpProblem... jset = JumpSet((), jumps, nothing, nothing) prob = DiscreteProblem([A0, 0], (0.0, tf)) - jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng = rng, + jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng, namedpars...) jump_prob @@ -91,7 +92,7 @@ function A_to_B_ma(N, method) majumps = MassActionJump(rates, reactstoch, netstoch) jset = JumpSet((), (), nothing, majumps) prob = DiscreteProblem([A0, 0], (0.0, tf)) - jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng = rng, + jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng, namedpars...) jump_prob @@ -125,7 +126,7 @@ function A_to_B_hybrid(N, method) majumps = MassActionJump(rates[1:switchidx], reactstoch, netstoch) jset = JumpSet((), jumps, nothing, majumps) prob = DiscreteProblem([A0, 0], (0.0, tf)) - jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng = rng, + jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng, namedpars...) jump_prob @@ -160,7 +161,7 @@ function A_to_B_hybrid_nojset(N, method) jumps = (constjumps..., majumps) prob = DiscreteProblem([A0, 0], (0.0, tf)) jump_prob = JumpProblem(prob, method, jumps...; save_positions = (false, false), - rng = rng, namedpars...) + rng, namedpars...) jump_prob end @@ -189,7 +190,7 @@ function A_to_B_hybrid_vecs(N, method) end jset = JumpSet((), jumpvec, nothing, majumps) prob = DiscreteProblem([A0, 0], (0.0, tf)) - jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng = rng, + jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng, namedpars...) jump_prob @@ -219,7 +220,7 @@ function A_to_B_hybrid_vecs_scalars(N, method) end jset = JumpSet((), jumpvec, nothing, majumps) prob = DiscreteProblem([A0, 0], (0.0, tf)) - jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng = rng, + jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng, namedpars...) jump_prob @@ -251,7 +252,7 @@ function A_to_B_hybrid_tups_scalars(N, method) jumps = ((maj for maj in majumpsv)..., (jump for jump in jumpvec)...) prob = DiscreteProblem([A0, 0], (0.0, tf)) jump_prob = JumpProblem(prob, method, jumps...; save_positions = (false, false), - rng = rng, namedpars...) + rng, namedpars...) jump_prob end @@ -281,7 +282,7 @@ function A_to_B_hybrid_tups(N, method) jumps = ((jump for jump in jumpvec)...,) jset = JumpSet((), jumps, nothing, majumps) prob = DiscreteProblem([A0, 0], (0.0, tf)) - jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng = rng, + jump_prob = JumpProblem(prob, method, jset; save_positions = (false, false), rng, namedpars...) jump_prob @@ -293,6 +294,10 @@ jump_prob_gens = [A_to_B_tuple, A_to_B_vec, A_to_B_ma, A_to_B_hybrid, A_to_B_hyb #jump_prob_gens = [A_to_B_tuple, A_to_B_ma, A_to_B_hybrid, A_to_B_hybrid_vecs, A_to_B_hybrid_vecs_scalars,A_to_B_hybrid_tups_scalars] for method in SSAalgs + + # skip methods that use regular dep graphs + (needs_depgraph(method) || (method in SSAs_to_exclude)) && continue + for jump_prob_gen in jump_prob_gens local jump_prob = jump_prob_gen(Nrxs, method) meanval = runSSAs(jump_prob) @@ -301,17 +306,15 @@ for method in SSAalgs ", sample mean = ", meanval, ", actual mean = ", exactmeanval) end @test abs(meanval - exactmeanval) < 1.0 - - # if dobenchmark - # @btime (runSSAs($jump_prob);) - # end end end # for dependency graph methods just test with mass action jumps -SSAalgs = [RDirect(), NRM(), SortingDirect(), DirectCR(), Coevolve()] jump_prob_gens = [A_to_B_ma] for method in SSAalgs + # skip methods that don't use a normal dep graph + (!needs_depgraph(method) || method in SSAs_to_exclude) && continue + for jump_prob_gen in jump_prob_gens local jump_prob = jump_prob_gen(Nrxs, method) meanval = runSSAs(jump_prob) @@ -320,9 +323,5 @@ for method in SSAalgs ", sample mean = ", meanval, ", actual mean = ", exactmeanval) end @test abs(meanval - exactmeanval) < 1.0 - - # if dobenchmark - # @btime (runSSAs($jump_prob);) - # end end end diff --git a/test/reversible_binding.jl b/test/reversible_binding.jl index 82e7a3dc..f872d92a 100644 --- a/test/reversible_binding.jl +++ b/test/reversible_binding.jl @@ -45,7 +45,7 @@ function mastereqmean(u, rates) end mastereq_mean = mastereqmean(u0, rates) -algs = JumpProcesses.JUMP_AGGREGATORS +algs = (JumpProcesses.JUMP_AGGREGATORS..., JumpProcesses.NullAggregator()) relative_tolerance = 0.01 for alg in algs local jprob = JumpProblem(prob, alg, majumps, save_positions = (false, false), diff --git a/test/runtests.jl b/test/runtests.jl index 3e4fa79a..01e06ecb 100644 --- a/test/runtests.jl +++ b/test/runtests.jl @@ -16,9 +16,7 @@ using JumpProcesses, DiffEqBase, SafeTestsets @time @safetestset "Mass Action Jump Tests; Gene Expr Model" begin include("geneexpr_test.jl") end @time @safetestset "Mass Action Jump Tests; Nonlinear Rx Model" begin include("bimolerx_test.jl") end @time @safetestset "Mass Action Jump Tests; Special Cases" begin include("degenerate_rx_cases.jl") end - @static if VERSION >= v"1.9.0" - @time @safetestset "Direct allocations test" begin include("allocations.jl") end - end + @time @safetestset "Direct allocations test" begin include("allocations.jl") end @time @safetestset "Bracketing Tests" begin include("bracketing.jl") end @time @safetestset "Composition-Rejection Table Tests" begin include("table_test.jl") end @time @safetestset "Extinction test" begin include("extinction_test.jl") end diff --git a/test/sir_model.jl b/test/sir_model.jl index a64ce2ad..e8cea455 100644 --- a/test/sir_model.jl +++ b/test/sir_model.jl @@ -29,3 +29,31 @@ end cb = DiscreteCallback(condition, purge_affect!, save_positions = (false, false)) sol = solve(jump_prob, FunctionMap(), callback = cb, tstops = [100]) sol = solve(jump_prob, SSAStepper(), callback = cb, tstops = [100]) + +# test README example using the auto-solver selection runs +let + # here we order S = 1, I = 2, and R = 3 + # substrate stoichiometry: + substoich = [[1 => 1, 2 => 1], # 1*S + 1*I + [2 => 1]] # 1*I + # net change by each jump type + netstoich = [[1 => -1, 2 => 1], # S -> S-1, I -> I+1 + [2 => -1, 3 => 1]] # I -> I-1, R -> R+1 + # rate constants for each jump + p = (0.1 / 1000, 0.01) + + # p[1] is rate for S+I --> 2I, p[2] for I --> R + pidxs = [1, 2] + + maj = MassActionJump(substoich, netstoich; param_idxs = pidxs) + + u₀ = [999, 1, 0] #[S(0),I(0),R(0)] + tspan = (0.0, 250.0) + dprob = DiscreteProblem(u₀, tspan, p) + + # use the Direct method to simulate + jprob = JumpProblem(dprob, maj) + + # solve as a pure jump process, i.e. using SSAStepper + sol = solve(jprob) +end