-
Notifications
You must be signed in to change notification settings - Fork 13
/
index.Rmd
71 lines (46 loc) · 2.16 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
title : Food Preferences in People (FPiP)
subtitle : Project of Developing Data Products
author : Sana Rasheed
job : Analyst
framework : io2012 # {io2012, html5slides, shower, dzslides, ...}
highlighter : highlight.js # {highlight.js, prettify, highlight}
hitheme : tomorrow #
widgets : [] # {mathjax, quiz, bootstrap}
mode : selfcontained # {standalone, draft}
knit : slidify::knit2slides
---
## Introduction
Healther and Hegenic Food is key to a Prosper Society.
Food Preferences in People (FPiP) is a basic application to calculate the estimation of Food people Prefered and/or Liked to take in their different ages.
There are 3 inputs that are required for estimation. On the provided data, FPiP will estimate the result. These inputs are:
Gender, Age, and Food Type
FPiP application is consist of 4 parts.
1. Estimation - Computes the Estimate on the provided data.
2. Data Summary - Data representation
3. Food Preferences in Males Plot - Food Comparison Chart
4. Food Preferences in Females Plot - Food Comparison Chart
--- .class #id
## Shiny App: Food Preferences in People (FPiP)
<div style='text-align: center;'>
<img src='assets/img/Snap3.jpg' />
</div>
[Food Preferences in People App Hosted by shinyapps.io](http://sanarasheed.shinyapps.io/DDP_Food_Pref/)
---
## Food Preferences in Males Plot
```{r, echo=FALSE, results='asis', message=FALSE}
require(rCharts)
data <- read.csv('assets/food.csv')
h1 <- hPlot(Estimate~Food_Type, data = subset(data, Gender=="Males"), type = c("line", "bubble"), group = "Age", size="Estimate")
h1$save('assets/img/m1.html',cdn=TRUE)
cat('<iframe src="assets/img/m1.html", width=100%, height=600></iframe>')
```
---
## Food Preferences in Females Plot
```{r, echo=FALSE, results='asis', message=FALSE}
require(rCharts)
data <- read.csv('assets/food.csv')
h1 <- hPlot(Estimate~Food_Type, data = subset(data, Gender=="Females"), type = c("line", "bubble"), group = "Age", size="Estimate")
h1$save('assets/img/f1.html',cdn=TRUE)
cat('<iframe src="assets/img/f1.html", width=100%, height=600></iframe>')
```