-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_bootpig.py
585 lines (524 loc) · 22.8 KB
/
train_bootpig.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
from omegaconf import OmegaConf
import copy
import hydra
import logging
import math
import os
import shutil
from accelerate import DistributedDataParallelKwargs
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from transformers import CLIPTextModel
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler
from diffusers.models.attention import BasicTransformerBlock
from diffusers.optimization import get_scheduler
from data import GenDataset
import json
from model import BootPIGUNet
from model.utils import torch_dfs, AttnProcessor2_0_withScaling
logger = get_logger(__name__)
def save_pipeline(base_unet, ref_unet, args, accelerator, weight_dtype, save_path):
ref_unet = accelerator.unwrap_model(ref_unet)
base_unet = accelerator.unwrap_model(base_unet)
ref_unet.save_pretrained(os.path.join(save_path, "ref_unet"))
base_unet.save_pretrained(os.path.join(save_path, "base_unet"))
def collate_fn(examples):
pixel_values = torch.stack([example["instance_images"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
conditioning_pixel_values = [
torch.cat(example["reference_images"]) for example in examples
]
conditioning_pixel_values = torch.stack(conditioning_pixel_values)
conditioning_pixel_values = conditioning_pixel_values.to(
memory_format=torch.contiguous_format
).float()
input_ids = torch.cat([example["instance_prompt_ids"] for example in examples])
ref_input_ids = torch.cat(
[example["instance_refprompt_ids"] for example in examples]
)
return {
"pixel_values": pixel_values,
"conditioning_pixel_values": conditioning_pixel_values,
"input_ids": input_ids,
"ref_input_ids": ref_input_ids,
}
@hydra.main(version_base=None, config_path="./configs/training/", config_name="bootpig")
def main(origargs):
args = copy.deepcopy(origargs)
accelerator_project_config = ProjectConfiguration(
project_dir=args.logging.output_dir, logging_dir=args.logging.log_dir
)
print("Using find_unused_parameters={}".format(args.data.empty_ref_p > 0))
ddp_kwargs = DistributedDataParallelKwargs(
find_unused_parameters=args.data.empty_ref_p > 0
)
accelerator = Accelerator(
gradient_accumulation_steps=args.optim.gradient_accumulation_steps,
mixed_precision=args.exec.mixed_precision,
log_with="wandb",
project_config=accelerator_project_config,
kwargs_handlers=[ddp_kwargs],
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.exec.seed is not None:
set_seed(args.exec.seed + accelerator.process_index)
# Handle the repository creation
if accelerator.is_main_process:
os.makedirs(args.logging.run_dir, exist_ok=True)
args_dict = OmegaConf.to_container(args, resolve=True)
with open(os.path.join(args.logging.run_dir, "train_args.json"), "w") as f:
json.dump(args_dict, f, indent=4)
# Load the tokenizer
if args.model.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
args.model.tokenizer_name, revision=args.model.revision, use_fast=False
)
elif args.model.pretrained_model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.model.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.model.revision,
use_fast=False,
)
# import correct text encoder class
text_encoder_cls = CLIPTextModel
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(
args.model.pretrained_model_name_or_path, subfolder="scheduler"
)
text_encoder = text_encoder_cls.from_pretrained(
args.model.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.model.revision,
)
vae = AutoencoderKL.from_pretrained(
args.model.pretrained_model_name_or_path,
subfolder="vae",
revision=args.model.revision,
)
base_unet = BootPIGUNet.from_pretrained(
args.model.pretrained_model_name_or_path,
subfolder="unet",
revision=args.model.revision,
bootpig_mode="base",
)
ref_unet = BootPIGUNet.from_pretrained(
args.model.pretrained_model_name_or_path,
subfolder="unet",
revision=args.model.revision,
bootpig_mode="ref",
)
attn_modules = [
module
for module in torch_dfs(base_unet)
if isinstance(module, BasicTransformerBlock)
]
for mi, mod in enumerate(attn_modules):
mod.attn1.set_processor(
AttnProcessor2_0_withScaling(ref_scale=args.exec.train_ref_scale)
)
vae.requires_grad_(False)
base_unet.train()
base_unet.requires_grad_(False)
for n, p in base_unet.named_parameters():
if "attn1" in n:
p.requires_grad_(True)
text_encoder.requires_grad_(False)
ref_unet.train()
low_precision_error_string = (
" Please make sure to always have all model weights in full float32 precision when starting training - even if"
" doing mixed precision training, copy of the weights should still be float32."
)
if accelerator.unwrap_model(ref_unet).dtype != torch.float32:
raise ValueError(
f"ref_unet loaded as datatype {accelerator.unwrap_model(ref_unet).dtype}. {low_precision_error_string}"
)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.exec.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
optimizer_class = torch.optim.AdamW
# Optimizer creation
params_to_optimize = []
params_to_optimize.extend(
[
{
"params": list(ref_unet.parameters()),
"lr": args.optim.ref_unet_learning_rate,
}
]
)
attn_modules = [
module
for module in torch_dfs(base_unet)
if isinstance(module, BasicTransformerBlock)
]
for i, module in enumerate(attn_modules):
if not module.only_cross_attention:
params_to_optimize.append(
{
"params": [p for n, p in module.named_parameters() if "attn1" in n],
"lr": args.optim.base_unet_learning_rate,
}
)
optimizer = optimizer_class(
params_to_optimize,
lr=args.optim.ref_unet_learning_rate,
betas=(args.optim.adam_beta1, args.optim.adam_beta2),
weight_decay=args.optim.adam_weight_decay,
eps=args.optim.adam_epsilon,
)
image_norm_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
print("Loading SD Generated Data...")
train_dataset = GenDataset(
args.data.data_dir,
tokenizer,
image_norm_transform=image_norm_transform,
refimage_norm_transform=image_norm_transform,
resolution=args.data.resolution,
empty_prompt_p=args.data.empty_prompt_p,
jitter_p=args.data.jitter_p,
erase_p=args.data.erase_p,
min_pct_area=args.data.min_pct_area,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.optim.train_batch_size,
shuffle=True,
collate_fn=lambda examples: collate_fn(examples),
num_workers=args.exec.dataloader_num_workers,
drop_last=True,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.optim.gradient_accumulation_steps
)
if args.optim.max_steps is None:
args.optim.max_steps = args.optim.epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
# args.optim.max_steps *= len(train_dataset)
lr_scheduler = get_scheduler(
args.optim.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.optim.lr_warmup_steps
* args.optim.gradient_accumulation_steps,
num_training_steps=args.optim.max_steps
* args.optim.gradient_accumulation_steps,
num_cycles=args.optim.lr_num_cycles,
power=args.optim.lr_power,
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Prepare everything with our `accelerator`.
base_unet = accelerator.prepare(base_unet)
ref_unet = accelerator.prepare(ref_unet)
(
optimizer,
train_dataloader,
lr_scheduler,
) = accelerator.prepare(optimizer, train_dataloader, lr_scheduler)
# Move vae, base_unet and text_encoder to device and cast to weight_dtype
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / args.optim.gradient_accumulation_steps
)
if overrode_max_train_steps:
args.optim.max_steps = args.optim.epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.optim.epochs = math.ceil(args.optim.max_steps / num_update_steps_per_epoch)
if accelerator.is_main_process:
accelerator.init_trackers(
args.logging.wandb_project,
config=OmegaConf.to_container(args, resolve=True),
init_kwargs={
"wandb": {
"name": args.logging.name,
"entity": args.logging.wandb_username,
"dir": args.logging.log_dir,
}
},
)
# Train!
total_batch_size = (
args.optim.train_batch_size
* accelerator.num_processes
* args.optim.gradient_accumulation_steps
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.optim.epochs}")
logger.info(
f" Instantaneous batch size per device = {args.optim.train_batch_size}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(
f" Gradient Accumulation steps = {args.optim.gradient_accumulation_steps}"
)
logger.info(f" Total optimization steps = {args.optim.max_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.exec.resume_from_checkpoint:
if args.exec.resume_from_checkpoint != "latest":
path = os.path.basename(args.exec.resume_from_checkpoint)
else:
# Get the mos recent checkpoint
dirs = os.listdir(args.logging.run_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.exec.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.exec.resume_from_checkpoint = None
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.logging.run_dir, path))
global_step = int(path.split("-")[1])
resume_global_step = global_step * args.optim.gradient_accumulation_steps
first_epoch = global_step // num_update_steps_per_epoch
resume_step = resume_global_step % (
num_update_steps_per_epoch * args.optim.gradient_accumulation_steps
)
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(global_step, args.optim.max_steps),
disable=not accelerator.is_local_main_process,
)
progress_bar.set_description("Steps")
for epoch in range(first_epoch, args.optim.epochs):
for step, batch in enumerate(train_dataloader):
if (
args.exec.resume_from_checkpoint
and epoch == first_epoch
and step < resume_step
):
if step % args.optim.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
with accelerator.accumulate(ref_unet), accelerator.accumulate(base_unet):
latents = vae.encode(
batch["pixel_values"].to(dtype=weight_dtype)
).latent_dist.sample()
latents = latents * vae.config.scaling_factor
noise = torch.randn_like(latents)
bsz = latents.shape[0]
timesteps = torch.randint(
0,
noise_scheduler.config.num_train_timesteps,
(bsz,),
device=latents.device,
)
timesteps = timesteps.long()
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
ref_encoder_hidden_states = text_encoder(batch["ref_input_ids"])[0]
# ref_encoder_hidden_states = encoder_hidden_states
rnd = torch.rand(1).to(device=accelerator.device)
all_rnds = accelerator.gather(rnd).detach()
reffeats = None
ref_pred = None
# Dropout references
if not all_rnds[0] < args.data.empty_ref_p:
condition_image = batch["conditioning_pixel_values"].to(
dtype=weight_dtype
)
condition_latents = vae.encode(condition_image).latent_dist.sample()
condition_latents = condition_latents * vae.config.scaling_factor
condition_noise = torch.randn_like(condition_latents)
noisy_condition_latents = noise_scheduler.add_noise(
condition_latents, condition_noise, timesteps
)
reffeats = []
ref_pred = ref_unet(
noisy_condition_latents,
timesteps,
encoder_hidden_states=ref_encoder_hidden_states,
return_dict=True,
reffeats=reffeats,
)[0]
reffeats = [feat.to(dtype=weight_dtype) for feat in reffeats]
model_pred = base_unet(
noisy_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
reffeats=reffeats,
).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(
f"Unknown prediction type {noise_scheduler.config.prediction_type}"
)
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
# Hacky solution to make sure DDP doesn't throw an error
if ref_pred is not None:
loss += 0 * ref_pred.mean()
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = list(ref_unet.parameters())
attn_modules = [
module
for module in torch_dfs(base_unet)
if isinstance(module, BasicTransformerBlock)
]
for i, module in enumerate(attn_modules):
if not module.only_cross_attention:
params_to_clip.extend(
[
p
for n, p in module.named_parameters()
if "attn1" in n
]
)
accelerator.clip_grad_norm_(
params_to_clip, args.optim.max_grad_norm
)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=args.exec.set_grads_to_none)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if global_step % args.logging.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.logging.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.logging.run_dir)
checkpoints = [
d for d in checkpoints if d.startswith("checkpoint")
]
checkpoints = sorted(
checkpoints, key=lambda x: int(x.split("-")[1])
)
removeable_checkpoints = [
ckpt
for ckpt in checkpoints
if int(ckpt.split("-")[1])
% args.logging.checkpoint_keep_freq
!= 0
]
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if (
len(removeable_checkpoints)
>= args.logging.checkpoints_total_limit
):
num_to_remove = (
len(removeable_checkpoints)
- args.logging.checkpoints_total_limit
+ 1
)
removing_checkpoints = removeable_checkpoints[
0:num_to_remove
]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(
f"removing checkpoints: {', '.join(removing_checkpoints)}"
)
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(
args.logging.run_dir, removing_checkpoint
)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(
args.logging.run_dir, f"checkpoint-{global_step}"
)
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
save_pipeline(
base_unet=base_unet,
ref_unet=ref_unet,
args=args,
accelerator=accelerator,
weight_dtype=weight_dtype,
save_path=os.path.join(
args.logging.run_dir,
f"checkpoint-{global_step}",
),
)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.optim.max_steps:
break
# Create the pipeline using using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
ref_unet = accelerator.unwrap_model(ref_unet)
ref_unet.save_pretrained(
os.path.join(
args.logging.run_dir,
f"checkpoint-{global_step}",
"ref_unet",
)
)
accelerator.unwrap_model(base_unet).save_pretrained(
os.path.join(
args.logging.run_dir,
f"checkpoint-{global_step}",
"base_unet",
)
)
accelerator.end_training()
if __name__ == "__main__":
main()