-
Notifications
You must be signed in to change notification settings - Fork 2
/
generate_batch.py
100 lines (82 loc) · 3.25 KB
/
generate_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import os
import torch
import numpy as np
import random
import librosa
import scipy.io as scio
from scipy import signal
import audio
def crop_pad_audio(wav, audio_length):
if len(wav) > audio_length:
wav = wav[:audio_length]
elif len(wav) < audio_length:
wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0)
return wav
def parse_audio_length(audio_length, sr, fps):
bit_per_frames = sr / fps
num_frames = int(audio_length / bit_per_frames)
audio_length = int(num_frames * bit_per_frames)
return audio_length, num_frames
def generate_blink_seq(num_frames):
ratio = np.zeros((num_frames,1))
frame_id = 0
while frame_id in range(num_frames):
#start = random.choice(range(60,70))
start = 80
if frame_id+start+9<=num_frames - 1:
ratio[frame_id+start:frame_id+start+9, 0] = [0.5,0.6,0.7,0.9,1, 0.9, 0.7,0.6,0.5]
frame_id = frame_id+start+9
else:
break
return ratio
def generate_blink_seq_randomly(num_frames):
ratio = np.zeros((num_frames,1))
if num_frames<=20:
return ratio
frame_id = 0
while frame_id in range(num_frames):
#start = random.choice(range(60,70))
start = random.choice(range(min(10,num_frames), min(int(num_frames/2), 70)))
if frame_id+start+5<=num_frames - 1:
ratio[frame_id+start:frame_id+start+5, 0] = [0.5, 0.9, 1.0, 0.9, 0.5]
frame_id = frame_id+start+5
else:
break
return ratio
def get_data(first_coeff_path, audio_path, device):
syncnet_mel_step_size = 16
syncnet_T = 5
MAX_FRAME = 32
fps = 25
pic_name = os.path.splitext(os.path.split(first_coeff_path)[-1])[0]
audio_name = os.path.splitext(os.path.split(audio_path)[-1])[0]
source_semantics_path = first_coeff_path
source_semantics_dict = scio.loadmat(source_semantics_path)
ref_coeff = source_semantics_dict['coeff_3dmm'][:1,:70] #1 70
wav = audio.load_wav(audio_path, 16000)
wav_length, num_frames = parse_audio_length(len(wav), 16000, 25)
wav = crop_pad_audio(wav, wav_length)
orig_mel = audio.melspectrogram(wav).T
spec = orig_mel.copy() # nframes 80
indiv_mels = []
for i in range(num_frames):
start_frame_num = i-2
start_idx = int(80. * (start_frame_num / float(fps)))
end_idx = start_idx + syncnet_mel_step_size
seq = list(range(start_idx, end_idx))
seq = [ min(max(item, 0), orig_mel.shape[0]-1) for item in seq ]
m = spec[seq, :]
indiv_mels.append(m.T)
indiv_mels = np.asarray(indiv_mels) # T 80 16
ratio = generate_blink_seq_randomly(num_frames) # T
indiv_mels = torch.FloatTensor(indiv_mels).unsqueeze(1).unsqueeze(0) # bs T 1 80 16
ratio = torch.FloatTensor(ratio).unsqueeze(0) # bs T
ref_coeff = torch.FloatTensor(ref_coeff).unsqueeze(0) # bs 1 70
indiv_mels = indiv_mels.to(device)
ratio = ratio.to(device)
ref_coeff = ref_coeff.to(device)
return {'indiv_mels': indiv_mels,
'ref': ref_coeff,
'num_frames': num_frames,
'ratio_gt': ratio,
'audio_name': audio_name, 'pic_name': pic_name}