-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
47 lines (41 loc) · 1.59 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from cnnClassifier import logger
from cnnClassifier.pipeline.stage_01_data_ingestion import DataIngestionTrainingPipeline
from cnnClassifier.pipeline.stage_02_prepare_base_model import PrepareBaseModelTrainingPipeline
from cnnClassifier.pipeline.stage_03_model_trainer import ModelTrainingPipeline
from cnnClassifier.pipeline.stage_04_model_evaluation import ModelEvaluationPipeline
STAGE_NAME = "Data Ingestion Stage"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
obj = DataIngestionTrainingPipeline()
obj.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Prepare Base Model"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
prepare_base_model = PrepareBaseModelTrainingPipeline()
prepare_base_model.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Model Training"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
model_trainer = ModelTrainingPipeline()
model_trainer.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e
STAGE_NAME = "Model Evaluation"
try:
logger.info(f">>>>>> stage {STAGE_NAME} started <<<<<<")
model_evaluator = ModelEvaluationPipeline()
model_evaluator.main()
logger.info(f">>>>>> stage {STAGE_NAME} completed <<<<<<\n\nx==========x")
except Exception as e:
logger.exception(e)
raise e