An integration test run takes three items of configuration:
targets
: what hosts to run on; this is a dictionary mapping hosts to ssh host keys, like: "[email protected]: ssh-rsa long_hostkey_here"roles
: how to use the hosts; this is a list of lists, where each entry lists all the roles to be run on a single host. For example, a single entry might say[mon.1, osd.1]
.tasks
: how to set up the cluster and what tests to run on it; see below for examples
The format for this configuration is YAML, a structured data format that is still human-readable and editable.
For example, a full config for a test run that sets up a three-machine
cluster, mounts Ceph via ceph-fuse
, and leaves you at an interactive
Python prompt for manual exploration (and enabling you to SSH in to
the nodes & use the live cluster ad hoc), might look like this:
roles: - [mon.0, mds.0, osd.0] - [mon.1, osd.1] - [mon.2, client.0] targets: [email protected]: ssh-rsa host07_ssh_key [email protected]: ssh-rsa host08_ssh_key [email protected]: ssh-rsa host09_ssh_key tasks: - install: - ceph: - ceph-fuse: [client.0] - interactive: repo: git://git.ceph.com/ceph.git
The number of entries under roles
and targets
must match.
Note the colon after every task name in the tasks
section. Also note the
dashes before each task. This is the YAML syntax for an ordered list and
specifies the order in which tasks are executed.
The install
task needs to precede all other tasks.
The listed targets need resolvable hostnames. If you do not have a DNS server
running, you can add entries to /etc/hosts
. You also need to be able to SSH
in to the listed targets without passphrases, and the remote user needs to have
passwordless sudo access. Note that the ssh keys at the end of the
targets
entries are the public ssh keys for the hosts. These are
located in /etc/ssh/ssh_host_rsa_key.pub
If you saved the above file as example.yaml
, you could run
teuthology on it like this:
./virtualenv/bin/teuthology example.yaml
It is possible to configure installation so that specifying targets and host
keys can be omitted. Teuthology is run with the --lock
option which locks
the targets based on roles
in YAML. Teuthology grabs machines from a pool of
available test machines; but since most times machines are busy, you might have
to wait until they are free or else command fails due to lack of available
machines. To avoid this you can specify --block
with --lock
which will
make teuthology retry until it finds and locks required machines.
You could also pass the -v
option for more verbose execution. See
teuthology --help
for more options.
You can pass multiple files as arguments to teuthology. Each one
will be read as a config file, and their contents will be merged. This
allows you to share definitions of what a "simple 3 node cluster"
is. The source tree comes with roles/3-simple.yaml
, so we could
skip the roles
section in the above example.yaml
and then
run:
./virtualenv/bin/teuthology roles/3-simple.yaml example.yaml
Teuthology automatically locks nodes for you if you specify the
--lock
option. Without this option, you must specify machines to
run on in a targets.yaml
file, and lock them using
teuthology-lock.
Note that the default owner of a machine is of the form: USER@HOST where USER is the user who issued the lock command and host is the machine on which the lock command was run.
You can override this with the --owner
option when running
teuthology or teuthology-lock.
With teuthology-lock
you can also add a description, so you can
remember which tests you were running. This can be done when
locking or unlocking machines, or as a separate action with the
--update
option. To lock 3 machines and set a description, run:
./virtualenv/bin/teuthology-lock --lock-many 3 --desc 'test foo'
If machines become unusable for some reason, you can mark them down:
./virtualenv/bin/teuthology-lock --update --status down machine1 machine2
To see the status of all machines, use the --list
option. This can
be restricted to particular machines as well:
./virtualenv/bin/teuthology-lock --list machine1 machine2
It is possible to run jobs against machines of one or more machine_type
values. It is also possible to tell teuthology
to only select those
machines which match the following criteria specified in the job's YAML:
os_type
(e.g. 'rhel', 'ubuntu')os_version
(e.g. '7.0', '14.04')arch
(e.g. 'x86_64')
A task is a Python module in the teuthology.task
package, with a
callable named task
. It gets the following arguments:
ctx
: a context that is available through the lifetime of the test run, and has useful attributes such ascluster
, letting the task access the remote hosts. Tasks can also store their internal state here. (TODO beware of namespace collisions.)config
: the data structure after the colon in the config file, e.g. for the aboveceph-fuse
example, it would be a list like["client.0"]
.
Tasks can be simple functions, called once in the order they are
listed in tasks
. But sometimes it makes sense for a task to be
able to clean up after itself: for example, unmounting the filesystem
after a test run. A task callable that returns a Python context
manager
will have the manager added to a stack, and the stack will be unwound
at the end of the run. This means the cleanup actions are run in
reverse order, both on success and failure. A nice way of writing
context managers is the contextlib.contextmanager
decorator; look
for that string in the existing tasks to see examples, and note where
they use yield
.
Further details on some of the more complex tasks such as install or workunit can be obtained via python help. For example:
>>> import teuthology.task.workunit >>> help(teuthology.task.workunit)
displays a page of more documentation and more concrete examples.
Some of the more important / commonly used tasks include:
ansible
: Run the ansible task.install
: by default, the install task goes to gitbuilder and installs the results of the latest build. You can, however, add additional parameters to the test configuration to cause it to install any branch, SHA, archive or URL. The following are valid parameters.branch
: specify a branch (firefly, giant...)flavor
: specify a flavor (next, unstable...). Flavors can be thought of as subsets of branches. Sometimes (unstable, for example) they may have a predefined meaning.project
: specify a project (ceph, samba...)sha1
: install the build with this sha1 value.tag
: specify a tag/identifying text for this build (v47.2, v48.1...)
ceph
: Bring up Cephoverrides
: override behavior. Typically, this includes sub-tasks being overridden. Overrides technically is not a task (there is no 'def task' in an overrides.py file), but from a user's standpoint can be described as behaving like one. Sub-tasks can nest further information. For example, overrides of install tasks are project specific, so the following section of a yaml file would cause all ceph installations to default to using the jewel branch:overrides: install: ceph: branch: jewel
workunit
: workunits are a way of grouping tasks and behavior on targets.sequential
: group the sub-tasks into a unit where the sub-tasks run sequentially as listed.parallel
: group the sub-tasks into a unit where the sub-tasks all run in parallel.
Sequential and parallel tasks can be nested. Tasks run sequentially unless specified otherwise.
The above list is a very incomplete description of the tasks available on teuthology. The teuthology/task subdirectory contains the teuthology-specific python files that implement tasks.
Extra tasks used by teuthology can be found in ceph-qa-suite/tasks. These tasks are not needed for teuthology to run, but do test specific independent features. A user who wants to define a test for a new feature can implement new tasks in this directory.
Many of these tasks are used to run python scripts that are defined in the ceph/ceph-qa-suite.
If machines were locked as part of the run (with the --lock switch),
teuthology normally leaves them locked when there is any task failure
for investigation of the machine state. When developing new teuthology
tasks, sometimes this behavior is not useful. The unlock_on_failure
global option can be set to true to make the unlocking happen unconditionally.
After completion of a test, the archive
subdirectory is archived under
the corresponding remote
subdirectory. We can disable this behavior
using the top-level configuration, like:
archive-on-error: true
If archive-on-error
is true
, the archive
subdirectory is
archived only for failed tests.
If the size of the archived file exceeds 128MB, the file will be compressed
using GZip. This threshold can be configured using the top-level option
named log-compress-min-size
, like:
log-compress-min-size: 256GB
Other size unit postfixes are also supported, see humanfriendly document for more details.
Sometimes when a bug triggers, instead of automatic cleanup, you want to explore the system as is. Adding a top-level:
interactive-on-error: true
as a config file for teuthology will make that possible. With that
option, any task that fails will have the interactive
task
called after it. This means that before any cleanup happens, you get a
chance to inspect the system -- both through Teuthology and via extra
SSH connections -- and the cleanup completes only when you choose.
Just exit the interactive Python session to continue the cleanup.
You can enable interactive-on-error with the teuthology
command option
--interactive-on-error
The interactive
task presents a prompt for you to interact with the
teuthology configuration. The ctx
variable is available to explore,
and a pprint.PrettyPrinter().pprint
object is added for convenience as
pp
, so you can do things like pp(dict-of-interest) to see a formatted
view of the dict.
This is also useful to pause the execution of the test between two tasks,
either to perform ad hoc operations, or to examine the state of the cluster.
Hit control-D
to continue when done.
You need to nest interactive
underneath tasks
in your config. You
can have has many interactive
tasks as needed in your task list.
An example:
tasks: - ceph: - interactive:
Teuthology currently places most test files and mount points in a
sandbox directory, defaulting to /home/$USER/cephtest
. To change
the location of the sandbox directory, the following option can be
specified in $HOME/.teuthology.yaml
:
test_path: <directory>
Shaman is a helper class which could be used to build the uri for specified packages based the 'shaman_host': 'shaman.ceph.com'.
Options:
use_shaman: True # Enable to use Shaman, False as default shaman: force_noarch: True # Force to use "noarch" to build the uri