-
Notifications
You must be signed in to change notification settings - Fork 0
/
11_pq_label_review.Rmd
443 lines (357 loc) · 15.7 KB
/
11_pq_label_review.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
---
title: "pq_label_review"
output:
pdf_document: default
html_notebook: default
---
# STEP 3 - Review results from DTM_inferLDATopics_LabelCorpus
This notebook:
1. Reads in labeled outputs from 10_pq_model.Rmd ("10_pq_labels.csv")
2. Joins "10_pq_labels.csv" with "01_pq_metaclean.csv"
3. Subsets dataset based on labels and percent probabilities
4. Writes subsets to CSVs
# Notes
1. "SUBSETTING" keyword for searching 11_pq_label_review.Rmd
```{r, echo=FALSE, results="hide", messages=FALSE}
# Load and Install Libraries
source("SEN_functions.R")
## Check libraries & install
LibraryList<-c("stringr","data.table","dplyr","tidyr","magrittr","NLP","tidytext","tm","ggplot2",
"scales", "ggwordcloud","textmineR","digest", "broom", "stringi", "xlsx")
install_or_load_pack(LibraryList)
outputFolder = "Data/02_Working/"
outputImgFolder = "Images/"
rFileNum = "11"
rFileModelNum = "10"
outputPngFolder<-file.path(outputImgFolder, paste0(rFileNum,"_pq_review"))
if (!dir.exists(outputPngFolder)) dir.create(outputPngFolder)
overwrite = FALSE
```
```{r}
#load data
# 01_pq_metaclean.csv
pq_metaclean <- data.table::fread('Data/02_Working/01_pq_metaclean.csv')
# read in columns as characters so that doc id does not read in as numeric
# 04_pq_labels.csv
pq_labels <- data.table::fread(paste0('Data/02_Working/',rFileModelNum,'_pq_labels.csv'), colClasses = 'character')
# Head displays the first 6 rows of the data.table
#head(pq_metaclean)
#head(pq_labels)
```
```{r}
# displays column names
print("pq_metaclean columns:")
names(pq_metaclean)
print("")
print("pq_labels columns:")
names(pq_labels)
nrow(pq_metaclean);nrow(pq_labels)
```
# join cleaned dataset with labels
```{r}
# join tables
# inner_join because pq_metaclean was subset based on topic 2 when the model was re-ran in "04_pq_model.Rmd"
# so we only want where the Proquest ID exists in both the original dataset and the labels.
pq_metajoin <- pq_labels %>%
inner_join(pq_metaclean, by = c("document" = "ProQuest document ID"))
pq_metajoin <- pq_metajoin %>%
rename(`ProQuest document ID` = document)
nrow(pq_metajoin);head(pq_metajoin)
pq_empty<-pq_metajoin[pq_metajoin$topic == "" | is.na(pq_metajoin$topic),]
nrow(pq_empty)
# write labeled corpus to CSV
outputFileName = "pq_topics"
outputFilexlsx = paste(outputFolder,rFileNum,"_",outputFileName,".xlsx",sep="")
if (!file.exists(outputFilexlsx) | overwrite) {
write.xlsx(pq_metajoin, outputFilexlsx, row.names=FALSE)
#write.htmltable(pq_metajoin,title=outputFile, outputFile, sortby="topic","val")
}
```
# Code now ready for SUBSETTING if you want to skip the following sections --
# exploratory data analysis of topics generated
Do we want to keep both topics, or drop one of the topics and dig deeper into the other topic?
# number of topics by publication title
```{r, messages=FALSE}
plotTitle = "Count of Articles by Topic and Publication Title"
# count by pub title and topic
count_topic_pubtitle <-pq_metajoin %>%
group_by(`Publication title`,topic) %>%
summarise(n= n()) %>%
arrange(as.numeric(topic),as.numeric(n))
count_topic_pubtitle
# save plot in png format
outputPNGFileName <- file.path(outputPngFolder,paste0("count_topic_pubtitle.png"))
png(outputPNGFileName,height=6,width=12, units='in', res=300)
ggplot(count_topic_pubtitle, aes(x = as.factor(as.numeric(topic)), y = n, fill = `Publication title`, label = n )) +
geom_bar(stat = "identity") +
geom_text(size = 3, position = position_stack(vjust = 0.5)) +
ggtitle(plotTitle) +
theme(plot.title = element_text(hjust = 0.5)) +
xlab("Topic") +
ylab("Article Count") +
labs(fill = "Topic")
print(paste("Plot saved as:",outputPNGFileName))
dev.off()
knitr::include_graphics(paste0("Images/",rFileNum,"_pq_review/count_topic_pubtitle.png"))
```
# number of topics by location
# Count articles by topic and year
Important to consider the total articles/year in addition to the raw count of articles per topic.
Peaks in articles may simply be due to an overall increase of articles for a particular year.
```{r, messages=FALSE}
# article count per year and topic
count_topic_year <-pq_metajoin %>%
group_by(`Publication year`,topic) %>%
summarise(n= n()) %>%
arrange(as.numeric(topic),as.numeric(`Publication year`))
count_topic_year
# article count per year
count_year <-pq_metajoin %>%
group_by(`Publication year`) %>%
summarise(perYear= n()) %>%
arrange(as.numeric(`Publication year`))
count_topic_year<-count_topic_year %>%
left_join(count_year, by = "Publication year")
count_topic_year<-count_topic_year %>%
mutate(ratio = round(n/perYear,2))
plotTitle = "Count of Articles by Topic and Year"
# save plot in png format
outputPNGFileName <- file.path(outputPngFolder,paste0("count_topic_year.png"))
png(outputPNGFileName,height=5,width=15, units='in', res=300)
ggplot(count_topic_year, aes(x = `Publication year`, colour = as.factor(as.numeric(topic)))) +
geom_line(aes(y = n)) +
scale_x_continuous(breaks=seq(min(na.omit(count_topic_year$`Publication year`)), max(na.omit(count_topic_year$`Publication year`)),1)) +
theme(axis.text.x = element_text(angle = 90),
plot.title = element_text(hjust = 0.5)) +
facet_wrap(vars(as.numeric(topic))) +
ggtitle(plotTitle) +
xlab("Publication Year") +
ylab("Article Count") +
guides(colour=FALSE)
print(paste("Plot saved as:",outputPNGFileName))
dev.off()
plotTitle = "Count of Articles by Topic and Year with Year Total"
# save plot in png format
outputPNGFileName <- file.path(outputPngFolder,paste0("count_topic_year_tot.png"))
png(outputPNGFileName,height=5,width=15, units='in', res=300)
ggplot(count_topic_year, aes(x = `Publication year`, colour = as.factor(as.numeric(topic)))) +
geom_line(aes(y = n)) +
geom_line(linetype = "dashed", color="black", aes(y = perYear)) +
scale_x_continuous(breaks=seq(min(na.omit(count_topic_year$`Publication year`)), max(na.omit(count_topic_year$`Publication year`)),1)) +
theme(axis.text.x = element_text(angle = 90),
plot.title = element_text(hjust = 0.5)) +
facet_wrap(vars(as.numeric(topic))) +
ggtitle(plotTitle) +
xlab("Publication Year") +
ylab("Article Count") +
guides(colour=FALSE)
print(paste("Plot saved as:",outputPNGFileName))
dev.off()
plotTitle = "Ratio of Articles by Topic and Year"
# save plot in png format
outputPNGFileName <- file.path(outputPngFolder,paste0("ratio_topic_year.png"))
png(outputPNGFileName,height=5,width=15, units='in', res=300)
ggplot(count_topic_year, aes(x = `Publication year`, colour = as.factor(as.numeric(topic)))) +
geom_line(aes(y = ratio)) +
scale_x_continuous(breaks=seq(min(na.omit(count_topic_year$`Publication year`)), max(na.omit(count_topic_year$`Publication year`)),1)) +
theme(axis.text.x = element_text(angle = 90),
plot.title = element_text(hjust = 0.5)) +
facet_wrap(vars(as.numeric(topic))) +
ggtitle(plotTitle) +
xlab("Publication Year") +
ylab("(Article Count)/(Article Total)") +
guides(colour=FALSE)
print(paste("Plot saved as:",outputPNGFileName))
dev.off()
knitr::include_graphics(paste0("Images/",rFileNum,"_pq_review/count_topic_year.png"))
knitr::include_graphics(paste0("Images/",rFileNum,"_pq_review/count_topic_year_tot.png"))
knitr::include_graphics(paste0("Images/",rFileNum,"_pq_review/ratio_topic_year.png"))
```
# Coherence score by topic
```{r, out.width="50%", fig.pos="h"}
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/coherence_score_topic.png"))
```
# Wordclouds
```{r, out.width="50%", fig.pos="h"}
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/1_lda_topic_wc.png"))
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/2_lda_topic_wc.png"))
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/3_lda_topic_wc.png"))
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/4_lda_topic_wc.png"))
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/5_lda_topic_wc.png"))
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/6_lda_topic_wc.png"))
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/7_lda_topic_wc.png"))
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/8_lda_topic_wc.png"))
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/9_lda_topic_wc.png"))
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/10_lda_topic_wc.png"))
```
# Count of Article by Topic
```{r, out.width="50%", fig.pos="h"}
# bar chart
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/topic_count_bar.png"))
# pie chart
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/topic_count_pie.png"))
```
# Count of Probabilities by Percentage
```{r, out.width="50%", fig.pos="h"}
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/prob_count.png"))
```
# Count of Topic Probabilities by Percentage
```{r, out.width="50%", fig.pos="h"}
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/prob_topic_count.png"))
```
#5. Visualising of topics in a dendrogram - not enough topics (<2)
```{r, out.width="50%", fig.pos="h"}
knitr::include_graphics(paste0("Images/",rFileModelNum,"_pq_model/hclust_dendrogram.png"))
```
# explore term frequencies by year - how do words in our corpus change over time?
Referenced walk-through from: https://cran.r-project.org/web/packages/tidytext/vignettes/tidying_casting.html
Are articles normalized based on the number of articles per year
```{r}
# subset corpus to unique identifier & year
pq_time <- pq_metaclean %>%
select(`ProQuest document ID`, `Publication year`)
# tokens generated from 06_pq_model.Rmd
outputTokenFile = paste0(rFileModelNum,"_tokens.RData")
tokensFileName = file.path(outputFolder,outputTokenFile)
load(file=tokensFileName)
tokens <- tokens %>%
full_join(pq_time, by = c("ProQuest document ID" = "ProQuest document ID")) %>%
rename(Year = `Publication year`) %>%
rename(pq_id = `ProQuest document ID`) %>%
mutate_at(vars(Year), funs(as.integer))
rm(pq_time)
outputFreqsFile = paste0(rFileNum,"_tokens_freq")
tokens_freq<-create_ifnot_tokens_freq(outputFolder, outputFreqsFile, tokens, overwrite)
outputFreqModelFile = paste0(rFileNum,"_freq_models")
freq_models <- create_ifnot_freqmodels(outputFolder, outputFreqModelFile, tokens_freq, overwrite)
```
# model results
```{r}
freq_models %>%
filter(term == "Year") %>%
arrange(desc(abs(estimate)))
```
# Models displayed as a volcano plot, which compares the effect size with the significance
```{r}
# save plot in png format
outputPNGFileName <- file.path(outputPngFolder,paste0("word_change_over_time.png"))
png(outputPNGFileName,height=5,width=15, units='in', res=300)
freq_models %>%
mutate(adjusted.p.value = p.adjust(p.value)) %>%
ggplot(aes(estimate, adjusted.p.value)) +
geom_point() +
scale_y_log10() +
geom_text(aes(label = word), vjust = 1, hjust = 1,
check_overlap = TRUE) +
xlab("Estimated change over time") +
ylab("Adjusted p-value")
print(paste("Plot saved as:",outputPNGFileName))
dev.off()
knitr::include_graphics(paste0("Images/",rFileNum,"_pq_review/word_change_over_time.png"))
```
# Top 6 terms that have changed in frequency over time
```{r}
# save plot in png format
outputPNGFileName <- file.path(outputPngFolder,paste0("top_word_change_over_time.png"))
png(outputPNGFileName,height=5,width=15, units='in', res=300)
freq_models %>%
top_n(6, abs(estimate)) %>%
inner_join(tokens_freq) %>%
ggplot(aes(Year, percent)) +
geom_point() +
geom_smooth() +
facet_wrap(~ word) +
scale_y_continuous(labels = percent_format()) +
ylab("Frequency of word in speech")
print(paste("Plot saved as:",outputPNGFileName))
dev.off()
knitr::include_graphics(paste0("Images/",rFileNum,"_pq_review/top_word_change_over_time.png"))
```
# START SUBSETTING - Subset Function
#### topic_subset_csv <- function(outputFolderName, rFileNum, outputFileName, inputCorpus, minPerc, maxPerc, theTopic, overwrite)
* outputFolderName = folder to save to -- i.e., "Data/02_Working/" (this is set at the top of the code where the libraries are loaded/installed)
* rFileNum = The number in the r file -- i.e., "05" (this is set at the top of the code where the libraries are loaded/installed)
* outputFileName = the file name to save as -- i.e., "pq_topic5_90perc" (this needs to be set at least 1 line above where the function is ran)
* inputCorpus = the labeled corpus -- i.e., pq_metajoin (this is created shortly after where libraries are loaded/installed in review.Rmd by joining pq_metaclean with pq_labels)
* minPerc = minimum percentage -- i.e., 0.9 (this needs to be set at least 1 line above where the function is ran)
* maxPerc = maximum percentage -- i.e., 1 (this needs to be set at least 1 line above where the function is ran)
* theTopic = the topic category -- i.e., "1" (this needs to be set at least 1 line above where the function is ran)
* overwrite = whether to overwrite the file if it already exists -- i.e., FALSE (this needs to be set at least 1 line above where the function is ran)
# Subset topic 1
```{r}
# subset corpus to unique identifier & full text of article
# investigate topic 1
outputFileName_1t <- "pq_topic1"
minPerc <- 0
maxPerc <- 1
theTopic <- "1"
## e.g, minPerc = 0 & maxPerc = 0.4 is zero to 0.3999999999 ...
pq_topic1_subset<-topic_subset_csv(outputFolder, rFileNum, outputFileName_1t, pq_metajoin , minPerc, maxPerc, theTopic, overwrite)
head(pq_topic1_subset);nrow(pq_topic1_subset)
```
# Subset topic 2
```{r}
# subset corpus to unique identifier & full text of article
# investigate topic 2
outputFileName_1t <- "pq_topic2"
minPerc <- 0
maxPerc <- 1
theTopic <- "2"
## e.g, minPerc = 0 & maxPerc = 0.4 is zero to 0.3999999999 ...
pq_topic1_subset<-topic_subset_csv(outputFolder, rFileNum, outputFileName_1t, pq_metajoin , minPerc, maxPerc, theTopic, overwrite)
head(pq_topic1_subset);nrow(pq_topic1_subset)
```
# Subset topic 1, 90%
```{r}
# subset corpus to unique identifier & full text of article
# investigate topic 1, 90%
outputFile_1t90perc <- "pq_topic1_90perc"
minPerc <- 0.9
maxPerc <- 1
theTopic <- "1"
## e.g, minPerc = 0 & maxPerc = 0.4 is zero to 0.3999999999 ...
pq_topic1_90perc<-topic_subset_csv(outputFolder, rFileNum, outputFile_1t90perc, pq_metajoin , minPerc, maxPerc, theTopic, overwrite)
head(pq_topic1_90perc);nrow(pq_topic1_90perc)
```
# Subset topic 2, 90%
```{r}
# subset corpus to unique identifier & full text of article
# investigate topic 2, 90%
outputFile_5t90perc <- "pq_topic2_90perc"
minPerc <- 0.9
maxPerc <- 1
theTopic <- "2"
## e.g, minPerc = 0 & maxPerc = 0.4 is zero to 0.3999999999 ...
pq_topic5_90perc<-topic_subset_csv(outputFolder, rFileNum, outputFile_5t90perc, pq_metajoin , minPerc, maxPerc, theTopic, overwrite)
head(pq_topic5_90perc);nrow(pq_topic5_90perc)
```
# Subset 50-60%-ers
```{r}
# subset corpus to unique identifier & full text of article
# investigate all topics, 50-60%
outputFile_56perc <- "pq_56perc"
minPerc <- 0.5
maxPerc <- 0.6
theTopic <- "all"
## e.g, minPerc = 0 & maxPerc = 0.4 is zero to 0.3999999999 ...
pq_56perc<-topic_subset_csv(outputFolder, rFileNum, outputFile_56perc, pq_metajoin , minPerc, maxPerc, theTopic, overwrite)
head(pq_56perc);nrow(pq_56perc)
```
# Subset 0-60%-ers
```{r}
# subset corpus to unique identifier & full text of article
# investigate all topics, 0-60%
# if within the function you write overwrite=TRUE, then the output CSV file will be re-written.
# overwrite, outputFolder, rFileName are set in the first chunk of code
outputFileName_06perc <- "pq_06perc"
minPerc <- 0
maxPerc <- 0.6
theTopic <- "all"
## e.g, minPerc = 0 & maxPerc = 0.6 is zero to 0.59999999 ...
pq_perc06_subset<-topic_subset_csv(outputFolder, rFileNum, outputFileName_06perc, pq_metajoin , minPerc, maxPerc, theTopic, overwrite)
head(pq_perc06_subset);nrow(pq_topic1_subset)
unique(pq_perc06_subset$topic)
min(pq_perc06_subset$val)
max(pq_perc06_subset$val)
```
# END SUBSETTING