forked from tjwill95/voronizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pointGen.py
53 lines (49 loc) · 1.92 KB
/
pointGen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from numba import cuda
from Frep import union
import numpy as np
import userInput as u
try: TPB = u.TPB
except: TPB = 8
@cuda.reduce
def sum_reduce(a, b):
return a + b
@cuda.jit
def genRandPointsKernel(d_u, d_r, d_v, threshold):
i,j, k = cuda.grid(3)
m,n,p = d_u.shape
if i < m and j < n and k < p:
if d_u[i,j,k] < 0 and d_r[i,j,k] < threshold/abs(d_u[i,j,k]):
#Uses a simple function for the thresholding calculation,
#threshold/abs(d_u[i,j,k]) can be replaced with any desired function.
d_v[i,j,k] = 0
def genRandPoints(u,threshold):
#u = Voxel model of boundary object.
#threshold = normalized value to determine how likely it is for each voxel to have a point placed in it.
#Outputs a matrix with random points within the boundaries of object u. The random points are set to 0 while the rest of the matrix is ones.
x,y,z = u.shape
threshold=threshold/max(x,y,z)
TPBX, TPBY, TPBZ = TPB, TPB, TPB
d_r = cuda.to_device(np.random.rand(x,y,z))
d_u = cuda.to_device(u)
d_v = cuda.to_device(np.ones(u.shape)) #Generates a matrix for us to plot the points in
gridDims = (x+TPBX-1)//TPBX, (y+TPBY-1)//TPBY, (z+TPBZ-1)//TPBZ
blockDims = TPBX, TPBY, TPBZ
genRandPointsKernel[gridDims, blockDims](d_u, d_r, d_v, threshold)
print(str(int((x*y*z-sum_reduce(cuda.to_device(d_v.copy_to_host().flatten())))+0.5))+" Points") #Prints how many random points were generated.
return d_v.copy_to_host()
def explode(u):
#u = points, negative = internal
m,n,p = u.shape
x = u.min(0)
y = u.min(1)
z = u.min(2)
x_stretch = np.ones(u.shape)
y_stretch = np.ones(u.shape)
z_stretch = np.ones(u.shape)
for i in range(m):
x_stretch[i,:,:] = x
for j in range(n):
y_stretch[:,j,:] = y
for k in range(p):
z_stretch[:,:,k] = z
return union(union(x_stretch,y_stretch),z_stretch)-np.ones(u.shape)/2