forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_comparison_utils.py
52 lines (35 loc) · 1.47 KB
/
test_comparison_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/usr/bin/env python3
# Owner(s): ["module: internals"]
import unittest
import torch
from torch.testing._internal.common_utils import run_tests, TestCase
class TestComparisonUtils(TestCase):
def test_all_equal_no_assert(self):
t = torch.tensor([0.5])
torch._assert_tensor_metadata(t, [1], [1], torch.float)
def test_all_equal_no_assert_nones(self):
t = torch.tensor([0.5])
torch._assert_tensor_metadata(t, None, None, None)
def test_assert_dtype(self):
t = torch.tensor([0.5])
with self.assertRaises(RuntimeError):
torch._assert_tensor_metadata(t, None, None, torch.int32)
def test_assert_strides(self):
t = torch.tensor([0.5])
with self.assertRaises(RuntimeError):
torch._assert_tensor_metadata(t, None, [3], torch.float)
def test_assert_sizes(self):
t = torch.tensor([0.5])
with self.assertRaises(RuntimeError):
torch._assert_tensor_metadata(t, [3], [1], torch.float)
@unittest.skipIf(not torch.cuda.is_available(), "Requires cuda")
def test_assert_device(self):
t = torch.tensor([0.5], device="cpu")
with self.assertRaises(RuntimeError):
torch._assert_tensor_metadata(t, device="cuda")
def test_assert_layout(self):
t = torch.tensor([0.5])
with self.assertRaises(RuntimeError):
torch._assert_tensor_metadata(t, layout=torch.sparse_coo)
if __name__ == "__main__":
run_tests()