Skip to content

Latest commit

 

History

History
287 lines (224 loc) · 10.2 KB

0045.跳跃游戏II.md

File metadata and controls

287 lines (224 loc) · 10.2 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

相对于贪心算法:跳跃游戏难了不少,做好心里准备!

45.跳跃游戏II

力扣题目链接

给定一个非负整数数组,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

你的目标是使用最少的跳跃次数到达数组的最后一个位置。

示例:

  • 输入: [2,3,1,1,4]
  • 输出: 2
  • 解释: 跳到最后一个位置的最小跳跃数是 2。从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

说明: 假设你总是可以到达数组的最后一个位置。

思路

本题相对于55.跳跃游戏还是难了不少。

但思路是相似的,还是要看最大覆盖范围。

本题要计算最小步数,那么就要想清楚什么时候步数才一定要加一呢?

贪心的思路,局部最优:当前可移动距离尽可能多走,如果还没到终点,步数再加一。整体最优:一步尽可能多走,从而达到最小步数。

思路虽然是这样,但在写代码的时候还不能真的就能跳多远跳远,那样就不知道下一步最远能跳到哪里了。

所以真正解题的时候,要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最小步数!

这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖

如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。

如图:

45.跳跃游戏II

图中覆盖范围的意义在于,只要红色的区域,最多两步一定可以到!(不用管具体怎么跳,反正一定可以跳到)

方法一

从图中可以看出来,就是移动下标达到了当前覆盖的最远距离下标时,步数就要加一,来增加覆盖距离。最后的步数就是最少步数。

这里还是有个特殊情况需要考虑,当移动下标达到了当前覆盖的最远距离下标时

  • 如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。
  • 如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。

C++代码如下:(详细注释)

// 版本一
class Solution {
public:
    int jump(vector<int>& nums) {
        if (nums.size() == 1) return 0;
        int curDistance = 0;    // 当前覆盖最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖最远距离下标
        for (int i = 0; i < nums.size(); i++) {
            nextDistance = max(nums[i] + i, nextDistance);  // 更新下一步覆盖最远距离下标
            if (i == curDistance) {                         // 遇到当前覆盖最远距离下标
                if (curDistance != nums.size() - 1) {       // 如果当前覆盖最远距离下标不是终点
                    ans++;                                  // 需要走下一步
                    curDistance = nextDistance;             // 更新当前覆盖最远距离下标(相当于加油了)
                    if (nextDistance >= nums.size() - 1) break; // 下一步的覆盖范围已经可以达到终点,结束循环
                } else break;                               // 当前覆盖最远距离下标是集合终点,不用做ans++操作了,直接结束
            }
        }
        return ans;
    }
};

方法二

依然是贪心,思路和方法一差不多,代码可以简洁一些。

针对于方法一的特殊情况,可以统一处理,即:移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不考虑是不是终点的情况。

想要达到这样的效果,只要让移动下标,最大只能移动到nums.size - 2的地方就可以了。

因为当移动下标指向nums.size - 2时:

  • 如果移动下标等于当前覆盖最大距离下标, 需要再走一步(即ans++),因为最后一步一定是可以到的终点。(题目假设总是可以到达数组的最后一个位置),如图: 45.跳跃游戏II2

  • 如果移动下标不等于当前覆盖最大距离下标,说明当前覆盖最远距离就可以直接达到终点了,不需要再走一步。如图:

45.跳跃游戏II1

代码如下:

// 版本二
class Solution {
public:
    int jump(vector<int>& nums) {
        int curDistance = 0;    // 当前覆盖的最远距离下标
        int ans = 0;            // 记录走的最大步数
        int nextDistance = 0;   // 下一步覆盖的最远距离下标
        for (int i = 0; i < nums.size() - 1; i++) { // 注意这里是小于nums.size() - 1,这是关键所在
            nextDistance = max(nums[i] + i, nextDistance); // 更新下一步覆盖的最远距离下标
            if (i == curDistance) {                 // 遇到当前覆盖的最远距离下标
                curDistance = nextDistance;         // 更新当前覆盖的最远距离下标
                ans++;
            }
        }
        return ans;
    }
};

可以看出版本二的代码相对于版本一简化了不少!

其精髓在于控制移动下标i只移动到nums.size() - 2的位置,所以移动下标只要遇到当前覆盖最远距离的下标,直接步数加一,不用考虑别的了。

总结

相信大家可以发现,这道题目相当于55.跳跃游戏难了不止一点。

但代码又十分简单,贪心就是这么巧妙。

理解本题的关键在于:以最小的步数增加最大的覆盖范围,直到覆盖范围覆盖了终点,这个范围内最小步数一定可以跳到,不用管具体是怎么跳的,不纠结于一步究竟跳一个单位还是两个单位。

其他语言版本

Java

// 版本一
class Solution {
    public int jump(int[] nums) {
        if (nums == null || nums.length == 0 || nums.length == 1) {
            return 0;
        }
        //记录跳跃的次数
        int count=0;
        //当前的覆盖最大区域
        int curDistance = 0;
        //最大的覆盖区域
        int maxDistance = 0;
        for (int i = 0; i < nums.length; i++) {
            //在可覆盖区域内更新最大的覆盖区域
            maxDistance = Math.max(maxDistance,i+nums[i]);
            //说明当前一步,再跳一步就到达了末尾
            if (maxDistance>=nums.length-1){
                count++;
                break;
            }
            //走到当前覆盖的最大区域时,更新下一步可达的最大区域
            if (i==curDistance){
                curDistance = maxDistance;
                count++;
            }
        }
        return count;
    }
}
// 版本二
class Solution {
    public int jump(int[] nums) {
        int result = 0;
        // 当前覆盖的最远距离下标
        int end = 0;
        // 下一步覆盖的最远距离下标
        int temp = 0;
        for (int i = 0; i <= end && end < nums.length - 1; ++i) {
            temp = Math.max(temp, i + nums[i]);
            // 可达位置的改变次数就是跳跃次数
            if (i == end) {
                end = temp;
                result++;
            }
        }
        return result;
    }
}

Python

class Solution:
    def jump(self, nums: List[int]) -> int:
        if len(nums) == 1: return 0
        ans = 0
        curDistance = 0
        nextDistance = 0
        for i in range(len(nums)):
            nextDistance = max(i + nums[i], nextDistance)
            if i == curDistance: 
                if curDistance != len(nums) - 1:
                    ans += 1
                    curDistance = nextDistance
                    if nextDistance >= len(nums) - 1: break
        return ans

Go

func jump(nums []int) int {
    dp := make([]int, len(nums))
    dp[0] = 0//初始第一格跳跃数一定为0

    for i := 1; i < len(nums); i++ {
        dp[i] = i
        for j := 0; j < i; j++ {
            if nums[j] + j >= i {//nums[j]为起点,j为往右跳的覆盖范围,这行表示从j能跳到i
                dp[i] = min(dp[j] + 1, dp[i])//更新最小能到i的跳跃次数
            }
        }
    }
    return dp[len(nums)-1]
}

func min(a, b int) int {
    if a < b {
        return a
    } else {
        return b 
    }
}

Javascript

var jump = function(nums) {
    let curIndex = 0
    let nextIndex = 0
    let steps = 0
    for(let i = 0; i < nums.length - 1; i++) {
        nextIndex = Math.max(nums[i] + i, nextIndex)
        if(i === curIndex) {
            curIndex = nextIndex
            steps++
        }
    }

    return steps
};

TypeScript

function jump(nums: number[]): number {
    const length: number = nums.length;
    let curFarthestIndex: number = 0,
        nextFarthestIndex: number = 0;
    let curIndex: number = 0;
    let stepNum: number = 0;
    while (curIndex < length - 1) {
        nextFarthestIndex = Math.max(nextFarthestIndex, curIndex + nums[curIndex]);
        if (curIndex === curFarthestIndex) {
            curFarthestIndex = nextFarthestIndex;
            stepNum++;
        }
        curIndex++;
    }
    return stepNum;
};