-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
FastTrig.cpp
452 lines (374 loc) · 9 KB
/
FastTrig.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
//
// FILE: FastTrig.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.3.3
// PURPOSE: Arduino library for a faster approximation of sin() and cos()
// DATE: 2011-08-18
// URL: https://github.com/RobTillaart/FastTrig
// https://forum.arduino.cc/index.php?topic=69723.0
#include "FastTrig.h"
// 91 x 2 bytes ==> 182 bytes
// use 65535.0 as divider
uint16_t sinTable16[] = {
0,
1145, 2289, 3435, 4572, 5716, 6853, 7989, 9125, 10255, 11385,
12508, 13631, 14745, 15859, 16963, 18067, 19165, 20253, 21342, 22417,
23489, 24553, 25610, 26659, 27703, 28731, 29755, 30773, 31777, 32772,
33756, 34734, 35697, 36649, 37594, 38523, 39445, 40350, 41247, 42131,
42998, 43856, 44701, 45528, 46344, 47147, 47931, 48708, 49461, 50205,
50933, 51646, 52342, 53022, 53686, 54334, 54969, 55579, 56180, 56760,
57322, 57866, 58394, 58908, 59399, 59871, 60327, 60768, 61184, 61584,
61969, 62330, 62677, 63000, 63304, 63593, 63858, 64108, 64334, 64545,
64731, 64903, 65049, 65177, 65289, 65377, 65449, 65501, 65527, 65535,
65535
};
/* 0.1.4 table
uint16_t sinTable16[] = {
0,
1145, 2289, 3435, 4571, 5715, 6852, 7988, 9125, 10254, 11385,
12508, 13630, 14745, 15859, 16963, 18067, 19165, 20253, 21342, 22416,
23488, 24553, 25610, 26659, 27699, 28730, 29754, 30773, 31777, 32771,
33755, 34734, 35697, 36649, 37594, 38523, 39445, 40350, 41247, 42127,
42998, 43856, 44697, 45527, 46344, 47146, 47931, 48708, 49461, 50205,
50933, 51645, 52341, 53022, 53686, 54333, 54969, 55578, 56180, 56759,
57322, 57866, 58394, 58908, 59399, 59871, 60327, 60767, 61184, 61584,
61969, 62330, 62677, 63000, 63304, 63592, 63857, 64108, 64333, 64544,
64731, 64902, 65049, 65177, 65289, 65376, 65449, 65501, 65527, 65535,
65535
};
*/
// use 255.0 as divider
uint8_t sinTable8[] = {
0, 4, 9, 13, 18, 22, 27, 31, 35, 40, 44,
49, 53, 57, 62, 66, 70, 75, 79, 83, 87,
91, 96, 100, 104, 108, 112, 116, 120, 124, 128,
131, 135, 139, 143, 146, 150, 153, 157, 160, 164,
167, 171, 174, 177, 180, 183, 186, 190, 192, 195,
198, 201, 204, 206, 209, 211, 214, 216, 219, 221,
223, 225, 227, 229, 231, 233, 235, 236, 238, 240,
241, 243, 244, 245, 246, 247, 248, 249, 250, 251,
252, 253, 253, 254, 254, 254, 255, 255, 255, 255,
255
};
///////////////////////////////////////////////////////
//
// GONIO INT EXPERIMENTAL
// works with only whole degrees.
//
int isin256(uint32_t v)
{
bool negative = false;
long whole = v;
if (whole >= 360) whole %= 360;
int y = whole; // 16 bit math is faster than 32 bit
if (y >= 180)
{
y -= 180;
negative = true;
}
if (y >= 90)
{
y = 180 - y;
}
int g = sinTable16[y] >> 8;
if (negative) return -g;
return g;
}
int icos256(uint32_t v)
{
return isin256(v + 90);
}
void isincos256(uint32_t v, int *si, int *co)
{
bool sneg = false;
bool cneg = false;
long whole = v;
if (whole >= 360)
{
whole %= 360;
}
int y = whole; // 16 bit math is faster than 32 bit
if (y >= 180)
{
y -= 180;
sneg = !sneg;
cneg = !cneg;
}
if (y >= 90)
{
y = 180 - y;
cneg = !cneg;
}
*si = sinTable16[y] >> 8;
*co = sinTable16[90-y] >> 8;
if (sneg) *si = - *si;
if (cneg) *co = - *co;
}
///////////////////////////////////////////////////////
//
// GONIO LOOKUP
//
float isin(float f)
{
bool negative = (f < 0);
if (negative)
{
f = -f;
negative = true;
}
long whole = f;
uint8_t remain = (f - whole) * 256;
if (whole >= 360)
{
whole %= 360;
// possible faster for 360-720
// if (whole >= 720) whole %= 360;
// else whole -= 360;
}
int y = whole; // 16 bit math is faster than 32 bit
if (y >= 180)
{
y -= 180;
negative = !negative;
}
if (y >= 90)
{
y = 180 - y;
if (remain != 0)
{
remain = 256 - remain;
y--;
}
}
// float value improves ~4% on avg error for ~60 bytes.
uint16_t value = sinTable16[y];
// interpolate if needed
if (remain > 0)
{
value = value + ((sinTable16[y + 1] - value) / 8 * remain) / 32; // == * remain / 256
}
float g = value * 0.0000152590219; // = / 65535.0
if (negative) return -g;
return g;
}
float icos(float x)
{
// prevent modulo math if x in 0..360
return isin(x - 270.0); // better than x + 90;
}
void isincos(float f, float *si, float *co)
{
bool sneg = (f < 0);
bool cneg = false;
if (sneg)
{
f = -f;
}
long whole = f;
uint8_t remain = (f - whole) * 256;
if (whole >= 360)
{
whole %= 360;
// possible faster for 360-720
// if (whole >= 720) whole %= 360;
// else whole -= 360;
}
int y = whole; // 16 bit math is faster than 32 bit
if (y >= 180)
{
y -= 180;
sneg = !sneg;
cneg = !cneg;
}
if (y >= 90)
{
y = 180 - y;
if (remain != 0)
{
remain = - remain;
y--;
}
cneg = !cneg;
}
// float value improves ~4% on avg error for ~60 bytes.
// SIN
uint16_t value = sinTable16[y];
// interpolate if needed
if (remain > 0)
{
value = value + ((sinTable16[y + 1] - value) / 8 * remain) / 32; // == * remain / 256
}
*si = value * 0.0000152590219; // = / 65535.0
if (sneg) *si = - *si;
// COS
value = sinTable16[90-y];
if (remain > 0)
{
value = sinTable16[89-y];
remain = 256 - remain;
value = value + ((sinTable16[90-y] - value) / 8 * remain) / 32; // == * remain / 256
}
*co = value * 0.0000152590219; // = / 65535.0
if (cneg) *co = - *co;
}
///////////////////////////////////////////////
//
// TAN
//
// tan() should be done with isincos()
// as icos() is less accurate => tan() less accurate.
/*
float itan(float f)
{
float x, y;
isincos(f,x,y);
if (y != 0) return x/y;
return NAN;
}
*/
float itan(float f)
{
// reference
// return isin(f)/icos(f);
// idea is to divide two (interpolated) values from the table
// so no divide by 65535
// FOLDING
bool mirror = false;
bool negative = (f < 0);
if (negative) f = -f;
long whole = f;
float remain = f - whole;
if (whole >= 180) whole %= 180;
float value = remain + whole; // normalised value 0..179.9999
if (value > 90)
{
value = 180 - value;
negative = !negative;
mirror = true;
}
uint8_t d = value;
if (d == 90) return NAN;
// COS FIRST
uint8_t p = 90 - d;
float co = sinTable16[p];
if (remain != 0)
{
float delta = (sinTable16[p] - sinTable16[p - 1]);
if (mirror) co = sinTable16[p - 1] + remain * delta;
else co = sinTable16[p] - remain * delta;
}
else if (co == 0) return 0;
float si = sinTable16[d];
if (remain != 0) si += remain * (sinTable16[d + 1] - sinTable16[d]);
float ta = si/co;
if (negative) return -ta;
return ta;
}
// some problem at 0 but at least we have a icot(x) cotangent.
float icot(float f)
{
float ta = itan(f);
if (ta == 0) return NAN;
return 1.0 / ta;
}
///////////////////////////////////////////////////////
//
// INVERSE GONIO LOOKUP
//
float iasin(float f)
{
bool negative = (f < 0);
if (negative)
{
f = -f;
negative = true;
}
uint16_t value = round(f * 65535);
uint8_t lo = 0;
uint8_t hi = 90;
while (hi - lo > 1)
{
uint8_t mi = (lo + hi) / 2;
if (sinTable16[mi] == value)
{
if (negative) return -mi;
return mi;
}
if (sinTable16[mi] < value) lo = mi;
else hi = mi;
}
float delta = value - sinTable16[lo];
uint16_t range = sinTable16[hi] - sinTable16[lo];
delta /= range;
if (negative) return -(lo + delta);
return (lo + delta);
}
float iacos(float f)
{
return 90 - iasin(f);
}
// PLACEHOLDER
float iatan(float f)
{
return 0 * f;
}
float atanFast(float x)
{
// remove two test will limit the input range but makes it even faster.
if ( x > 1) return ( M_PI / 2) - atanHelper(1.0 / x);
if ( x < -1) return (-M_PI / 2) - atanHelper(1.0 / x);
return atanHelper(x);
}
inline float atanHelper(float x)
{
float x2 = x * x;
return (((0.079331 * x2) - 0.288679) * x2 + 0.995354) * x;
// an even more accurate alternative, less fast
// return ((((-0.0389929 * x2) + 0.1462766) * x2 - 0.3211819) * x2 + 0.9992150) * x;
}
float atan2Fast(float y, float x)
{
// catch singularity.
if ((x == 0) && (y == 0)) return NAN;
if (x >= 0)
{
if (y >= 0)
{
if (fabs(y) >= fabs(x)) return M_PI / 2 - atanFast(x / y);
return atanFast(y / x);
}
if (fabs(y) >= fabs(x)) return -M_PI / 2 - atanFast(x / y);
return atanFast(y / x);
}
else
{
if (y >= 0)
{
if (fabs(y) >= fabs(x)) return M_PI / 2 - atanFast(x / y);
return M_PI + atanFast(y / x);
}
if (fabs(y) >= fabs(x)) return -M_PI / 2 - atanFast(x / y);
return -M_PI + atanFast(y / x);
}
}
///////////////////////////////////////////////////////
//
// HYPOT
// related but not strict gonio.
//
// hypotFast() formula for faster hypot() at the price of accuracy
// experimental!
float hypotFast(float x, float y)
{
float a = fabs(x);
float b = fabs(y);
if (a > b)
{
a = fabs(y);
b = fabs(x);
}
float z = 0.917981 * (b + a / 2);
if (z > b) return z;
return b;
}
// -- END OF FILE --