-
Notifications
You must be signed in to change notification settings - Fork 4
/
superposed_generation.py
198 lines (184 loc) · 8.08 KB
/
superposed_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import json
import os
import sys
import time
from pathlib import Path
from typing import List, Optional
import torch
import torch.nn.functional as F
from fairscale.nn.model_parallel.initialize import (
get_model_parallel_rank,
initialize_model_parallel,
model_parallel_is_initialized,
)
from superposed.llama.model import ModelArgs
from superposed.llama.superposed_model import SuperposedTransformer
from superposed.llama.tokenizer import Tokenizer
from superposed.llama.superpose import Superpose
from superposed.llama.utils import *
from superposed.ngrams.ngram_models import make_models
class SuperposedLlama:
@staticmethod
def build(
ckpt_dir: str,
tokenizer_path: str,
max_seq_len: int,
max_batch_size: int,
device = None,
model_parallel_size: Optional[int] = None,
seed: int = 1,
):
if not torch.distributed.is_initialized():
torch.distributed.init_process_group("nccl")
if not model_parallel_is_initialized():
if model_parallel_size is None:
model_parallel_size = int(os.environ.get("WORLD_SIZE", 1))
initialize_model_parallel(model_parallel_size)
local_rank = int(os.environ.get("LOCAL_RANK", 0))
if device == None:
torch.cuda.set_device(local_rank)
device = torch.cuda.current_device()
torch.manual_seed(seed)
if local_rank > 0:
sys.stdout = open(os.devnull, "w")
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
assert model_parallel_size == len(
checkpoints
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {model_parallel_size}"
ckpt_path = checkpoints[get_model_parallel_rank()]
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
**params,
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
# Set up superposed decoding
model = SuperposedTransformer(model_args)
model.load_state_dict(checkpoint, strict=False)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return SuperposedLlama(model, tokenizer, device)
def __init__(self, model: SuperposedTransformer, tokenizer: Tokenizer, device):
print(device)
self.model = model.to(device).eval()
self.tokenizer = tokenizer
self.device = device
@torch.inference_mode()
def sup_generate(
self,
prompt_tokens: List[List[int]],
smoothing,
max_gen_len: int,
n_token_sample: int,
alpha: int, # weight on bigram probs
temp: int,
n_drafts: int = 1, # number of beams
verbose: bool = False,
i_weights = None,
i_length = None,
ngrams = None,
get_time: bool = False,
penalty = 200
):
"""
Run multi-sequence generation using superposed embeddings.
Args:
prompt_tokens (List[List[int]]): Initial tokenized prompts
max_gen_len (int): Maximum numbers of tokens to generate
alpha (float): Alpha value
temp (float): Temperature
n_drafts (int): Number of drafts
verbose (bool): Whether to save intermediate embeddings for analysis
bsz (int): Batch size (default = 16)
i_weights (List[float]): Ngram interpolation weights
i_length (List[int]): Ngram models to interpolate (1 for bigram, 2 for trigram, etc.)
ngrams (Tuple): Ngram models
get_time (bool): Return information on time spent doing Ngram lookup
penalty (float): Penalty on uninterpolated drafts
Returns:
(alive_seq, alive_ppl), (fin_seq, fin_ppl): Tuple of (n_prompts, n_drafts, seqlen),
(n_prompts, n_drafts) for sequences still generating and sequences that have finished.
"""
# Check batch size and prompt lengths
params = self.model.params
bsz = len(prompt_tokens)
assert bsz <= params.max_batch_size, (bsz, params.max_batch_size)
min_prompt_len = min(len(t) for t in prompt_tokens)
max_prompt_len = max(len(t) for t in prompt_tokens)
prompt_len = min_prompt_len
assert max_prompt_len <= params.max_seq_len
total_len = min(params.max_seq_len, max_gen_len + max_prompt_len)
pad_id = self.tokenizer.pad_id
# Initialize token tensor and pad where necessary
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device=self.device)
for k, t in enumerate(prompt_tokens):
tokens[k, :len(t)] = torch.tensor(t, dtype=torch.long, device=self.device)
# If no generation is possible
if min_prompt_len == total_len:
raise RuntimeError("no generation possible")
# Initialize decoding object
initial_tokens = tokens.unsqueeze(1).repeat(1, n_drafts, 1)
superpose = Superpose(initial_tokens,
tokenizer=self.tokenizer,
vocab_size=params.vocab_size,
smoothing=smoothing,
alpha=alpha,
i_weights=i_weights,
i_length=i_length,
ngrams=ngrams,
get_time=get_time,
penalty=penalty)
unseen_first = torch.ones(bsz)
# Superposition matrix
token_weights = torch.zeros(bsz, self.model.vocab_size)
if verbose:
state_list = []
prev_pos = 0
# Begin inference
for cur_pos in range(min_prompt_len, total_len):
input_text_mask = tokens != pad_id
# Take model step
if cur_pos == min_prompt_len:
token_weights = None
logits = self.model.forward(tokens[:, prev_pos:cur_pos],
start_pos=prev_pos,
token_weights=token_weights,
verbose=verbose)
if verbose:
logits, states = logits
# Softmax
if temp > 0:
probs = torch.softmax(logits[:, -1] / temp, dim=-1)
else:
raise RuntimeError("Temperature must be greater than 0 while mixing")
if verbose:
states["end_probs"] = probs
state_list.append(states)
# Flag prompts on first generation
is_first = torch.mul(tokens[:, cur_pos] == pad_id, unseen_first)
unseen_first[is_first.nonzero(as_tuple=True)[0]] = 0
# Flag prompts not yet generating
still_prompt = input_text_mask[:, cur_pos]
# Superposition pass
token_weights = superpose(probs, still_prompt, is_first, cur_pos, n_token_sample)
# Do not superpose for prompts not yet generating
keep_idx = input_text_mask[:, cur_pos].ravel().nonzero()
keep_token_weights = torch.zeros_like(token_weights)
keep_token_weights[keep_idx, tokens[keep_idx, cur_pos]] = 1
token_weights = torch.where(input_text_mask[:, cur_pos].unsqueeze(1).expand(-1, self.model.vocab_size),
keep_token_weights, token_weights)
prev_pos = cur_pos
results = superpose.return_results(prompt_len)
if verbose:
torch.save(state_list, "../embeddings.pt")
return results
else:
return results