diff --git a/lectures/dynamic_programming/coleman_policy_iter.md b/lectures/dynamic_programming/coleman_policy_iter.md index 6f22195e..2d760c55 100644 --- a/lectures/dynamic_programming/coleman_policy_iter.md +++ b/lectures/dynamic_programming/coleman_policy_iter.md @@ -404,7 +404,7 @@ function K!(Kg, g, grid, beta, dudc, f, f_prime, shocks) for (i, y) in enumerate(grid) function h(c) vals = dudc.(g_func.(f(y - c) * shocks)) .* f_prime(y - c) .* shocks - return dudc*c - beta * mean(vals) + return dudc * c - beta * mean(vals) end Kg[i] = find_zero(h, (1e-10, y - 1e-10)) end @@ -465,7 +465,7 @@ Here's an object containing data from the log-linear growth model we used in the ```{code-cell} julia isoelastic(c, gamma) = isone(gamma) ? log(c) : (c^(1 - gamma) - 1) / (1 - gamma) -function Model(;alpha = 0.65, # Productivity parameter +function Model(; alpha = 0.65, # Productivity parameter beta = 0.95, # Discount factor gamma = 1.0, # Risk aversion mu = 0.0, # First parameter in lognorm(mu, sigma) diff --git a/lectures/dynamic_programming/mccall_model_with_separation.md b/lectures/dynamic_programming/mccall_model_with_separation.md index 0b169b6d..92db3999 100644 --- a/lectures/dynamic_programming/mccall_model_with_separation.md +++ b/lectures/dynamic_programming/mccall_model_with_separation.md @@ -288,7 +288,7 @@ We'll use the default parameterizations found in the code above. u(c, sigma) = (c^(1 - sigma) - 1) / (1 - sigma) # model constructor -function McCallModel(;alpha = 0.2, +function McCallModel(; alpha = 0.2, beta = 0.98, # discount rate gamma = 0.7, c = 6.0, # unemployment compensation diff --git a/lectures/dynamic_programming/odu.md b/lectures/dynamic_programming/odu.md index 51d5b400..0abca506 100644 --- a/lectures/dynamic_programming/odu.md +++ b/lectures/dynamic_programming/odu.md @@ -591,7 +591,7 @@ phi_init = ones(sp.n_pi) g(x) = res_wage_operator(sp, x) w_bar_vals = compute_fixed_point(g, phi_init) w_bar = extrapolate(interpolate((sp.pi_grid,), w_bar_vals, - Gridded(Linear())), Flat()) + Gridded(Linear())), Flat()) # Holds the employment state and beliefs of an individual agent. mutable struct Agent{TF <: AbstractFloat, TI <: Integer}