forked from trinhvg/MoMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_student_moma.py
608 lines (510 loc) · 26.4 KB
/
train_student_moma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
"""
DDP training for Contrastive Learning
"""
from __future__ import print_function
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
import re
import argparse
import time
import torch
import torch.optim as optim
import torch.multiprocessing as mp
import torch.nn as nn
import torch.backends.cudnn as cudnn
import tensorboard_logger as tb_logger
import random
import pandas as pd
import numpy as np
from models import model_dict
from models.util import ConvReg, SelfA, SRRL, SimKD
from dataset.cifar100 import get_cifar100_dataloaders, get_cifar100_dataloaders_sample
from dataset.imagenet import get_imagenet_dataloader, get_dataloader_sample
from dataset.imagenet_dali import get_dali_data_loader
from helper.loops_moma import validate_vanilla, validate_distill, train_distill_moma
from helper.util import save_dict_to_json, reduce_tensor, adjust_learning_rate, update_dict_to_json
from crd.criterion import CRDLoss
from distiller_zoo import DistillKL, HintLoss, Attention, Similarity, VIDLoss, SemCKDLoss
from dataset.histo_dataset import get_histo_dataloader, get_histo_dataloader_sample
from learning.contrast_trainer import ContrastTrainer
from MoMA.mem_moco import build_mem
from MoMA.criterion_moco_att import CMO
from model_def import load_model
split_symbol = '~' if os.name == 'nt' else ':'
def parse_option():
parser = argparse.ArgumentParser('argument for training')
# basic
parser.add_argument('--print_freq', type=int, default=50, help='print frequency')
parser.add_argument('--batch_size', type=int, default=64, help='batch_size')
parser.add_argument('--num_workers', type=int, default=8, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=60, help='number of training epochs')
parser.add_argument('--gpu_id', type=str, default='0', help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--seed', default=12345, type=int,
help='seed for initializing training. choices=[None, 0, 1],')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.05, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='30,40,60', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--cosine', action='store_true', help='using cosine annealing')
# dataset and model
parser.add_argument('--dataset', type=str, default='prostate_hv', help='dataset')
parser.add_argument('--model_s', type=str, default='effiB0',
choices=['resnet8', 'resnet14', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110',
'ResNet18', 'ResNet34',
'resnet8x4', 'resnet32x4', 'wrn_16_1', 'wrn_16_2', 'wrn_40_1', 'wrn_40_2',
'vgg8', 'vgg11', 'vgg13', 'vgg16', 'vgg19',
'MobileNetV2', 'ShuffleV1', 'ShuffleV2', 'ResNet50',
'effiB0'])
parser.add_argument('--model_t', type=str, default='effiB0')
parser.add_argument('--path_t', type=str, default=None, help='teacher model snapshot')
# Augment
parser.add_argument('--aug_train', type=str, default='RA', choices=['NULL', 'RA'], help='aug_train')
parser.add_argument('--crop', type=float, default=0.2, help='crop threshold for RandomResizedCrop')
parser.add_argument('--image_size', type=int, default=512, help='image_size')
parser.add_argument('--image_resize', action='store_true')
parser.add_argument('--n_cls', type=int, default=8, help='image_size')
parser.add_argument('--skip_test', action='store_true', help='strict by default')
# distillation
parser.add_argument('--trial', type=str, default='1', help='trial id')
parser.add_argument('--kd_T', type=float, default=4, help='temperature for KD distillation')
parser.add_argument('--distill', type=str, default='kd')
# choices=['kd', 'hint', 'attention', 'similarity', 'vid', 'crd', 'semckd','srrl', 'simkd', 'moma'])
parser.add_argument('-c', '--cls', type=float, default=1.0, help='weight for classification')
parser.add_argument('-d', '--div', type=float, default=1.0, help='weight balance for KD')
parser.add_argument('-b', '--beta', type=float, default=0.0, help='weight balance for other losses')
parser.add_argument('-f', '--factor', type=int, default=2, help='factor size of SimKD')
parser.add_argument('-s', '--soft', type=float, default=1.0, help='attention scale of SemCKD')
# hint layer
parser.add_argument('--hint_layer', default=1, type=int, choices=[0, 1, 2, 3, 4])
# NCE distillation
parser.add_argument('--feat_dim', default=512, type=int, help='feature dimension')
parser.add_argument('--mode', default='exact', type=str, choices=['exact', 'relax'])
parser.add_argument('--nce_k', default=16384, type=int, help='number of negative samples for NCE')
parser.add_argument('--nce_t', default=0.07, type=float, help='temperature parameter for softmax')
parser.add_argument('--nce_m', default=0.5, type=float, help='momentum for non-parametric updates')
parser.add_argument('--alpha', default=0.999, type=float,
help='momentum coefficients for moco encoder update')
parser.add_argument('--mem', default='MoCo', type=str,
choices=['MoCo', 'MoCoST', 'MoCoSSTT'])
parser.add_argument('--head', default='None', type=str,
choices=['None', 'linear', 'mlp'])
# Distill option
parser.add_argument('--weight', type=float, default=1e-4, help='number')
parser.add_argument('--std_pre', type=str, default='PANDA', help='tma_class, tma_kd, ImageNet')
parser.add_argument('--std_strict', action='store_false', help='strict by default')
parser.add_argument('--tec_pre', type=str, default='ImageNet', help='tma_class, tma_kd, ImageNet')
parser.add_argument('--tec_strict', action='store_false', help='strict by default')
parser.add_argument('--attn', type=str, default='self')
# multiprocessing
parser.add_argument('--dali', type=str, choices=['cpu', 'gpu'], default=None)
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--dist-url', default='tcp://127.0.0.1:23451', type=str,
help='url used to set up distributed training')
parser.add_argument('--deterministic', action='store_false', help='Make results reproducible, true by default')
parser.add_argument('--skip_validation', action='store_false', help='Skip validation of teacher')
opt = parser.parse_args()
if opt.distill == 'moma':
opt.nce_t = 0.15
# set the path of model and tensorboard
opt.model_path = f'./save/kd_{opt.dataset}_{opt.model_s}_StdPre_{opt.std_pre}_and_TecPre_{opt.tec_pre}_CPU{opt.num_workers}_GPU{torch.cuda.device_count()}/'
opt.tb_path = './save/students/'
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
model_name_template = split_symbol.join(['S', '{}_T', '{}_{}_{}_r', '{}_a', '{}_b', '{}_{}'])
opt.model_name = model_name_template.format(opt.model_s, opt.model_t, opt.dataset, opt.distill,
opt.cls, opt.div, opt.beta, opt.trial)
print(opt.model_name)
opt.model_name = f'{opt.distill}_{opt.dataset}_{opt.model_s}_BS{opt.batch_size}_lr_{opt.learning_rate}_decay' \
f'_{opt.weight_decay}_seed{opt.seed}_imageS_{opt.image_size}_cosine_{opt.cosine}' \
f'_StdPre_{opt.std_pre}_strict_{opt.std_strict}_and_TecPre_{opt.tec_pre}_strict_{opt.tec_strict}_TB0_SB0_BZ64_attn_{opt.attn}'
if opt.distill == 'moma':
opt.model_name = f'{opt.model_name}_{opt.mem}_head_{opt.head}_{opt.feat_dim}'
opt.model_name = f'{opt.model_name}_c{opt.cls}_d{opt.div}_b{opt.beta}_trial_{opt.trial}'
print('opt.model_path: ', opt.model_path)
print('opt.model_name: ', opt.model_name)
if opt.dali is not None:
opt.model_name += '_dali:' + opt.dali
opt.tb_folder = os.path.join(opt.tb_path, opt.model_name)
if not os.path.isdir(opt.tb_folder):
os.makedirs(opt.tb_folder)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
return opt
def get_teacher_name(model_path):
"""parse teacher name"""
directory = model_path.split('/')[-2]
pattern = ''.join(['S', split_symbol, '(.+)', '_T', split_symbol])
name_match = re.match(pattern, directory)
if name_match:
return name_match[1]
segments = directory.split('_')
if segments[0] == 'wrn':
return segments[0] + '_' + segments[1] + '_' + segments[2]
return segments[0]
def load_teacher(model_path, n_cls, gpu=None, opt=None):
print('==> loading teacher model')
model_t = get_teacher_name(model_path)
model = model_dict[model_t](num_classes=n_cls)
map_location = None if gpu is None else {'cuda:0': 'cuda:%d' % (gpu if opt.multiprocessing_distributed else 0)}
model.load_state_dict(torch.load(model_path, map_location=map_location)['model'])
print('==> done')
return model
best_acc = 0
best_f1 = 0
total_time = time.time()
def main():
opt = parse_option()
# ASSIGN CUDA_ID
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
ngpus_per_node = torch.cuda.device_count()
opt.ngpus_per_node = ngpus_per_node
if opt.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
world_size = 1
opt.world_size = ngpus_per_node * world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, opt))
else:
main_worker(None if ngpus_per_node > 1 else opt.gpu_id, ngpus_per_node, opt)
def main_worker(gpu, ngpus_per_node, opt):
global best_acc, best_f1, total_time
opt.gpu = int(gpu)
opt.gpu_id = int(gpu)
opt.rank = 0
opt.dist_backend = 'nccl'
if opt.gpu is not None:
print("Use GPU: {} for training".format(opt.gpu))
trainer = ContrastTrainer(opt)
trainer.init_ddp_environment(gpu, ngpus_per_node)
# if opt.deterministic:
if opt.seed is not None:
random.seed(opt.seed)
torch.manual_seed(opt.seed)
cudnn.deterministic = True
cudnn.benchmark = False
np.random.seed(opt.seed)
# model
n_cls = {
'cifar100': 100,
'imagenet': 1000,
'colon_tma_manual': 4,
'panda_512': 4,
'prostate_hv': 4,
'gastric': 8,
'gastric_cancer_ano0810_bright230_8class_wsi_downsample': 8,
'gastric_cancer_ano0805_bright230_8class_wsi_downsample': 8,
'gastric_cancer_tma_sv0': 8,
}.get(opt.dataset, None)
print('opt.n_cls: ', opt.n_cls)
if opt.dataset == 'cifar100':
data = torch.randn(2, 3, 32, 32)
elif opt.dataset == 'imagenet':
data = torch.randn(2, 3, 224, 224)
else:
data = torch.randn(2, 3, 512, 512)
model_s = load_model(opt.model_s, opt.std_pre, opt.n_cls, opt.std_strict, opt.gpu, opt.multiprocessing_distributed)
model_t = load_model(opt.model_t, opt.tec_pre, opt.n_cls, opt.tec_strict, opt.gpu, opt.multiprocessing_distributed)
model_t.eval()
model_s.eval()
feat_t, _ = model_t(data, is_feat=True)
feat_s, _ = model_s(data, is_feat=True)
module_list = nn.ModuleList([])
module_list.append(model_s)
trainable_list = nn.ModuleList([])
trainable_list.append(model_s)
criterion_cls = nn.CrossEntropyLoss()
criterion_div = DistillKL(opt.kd_T)
if opt.distill == 'kd':
criterion_kd = DistillKL(opt.kd_T)
elif opt.distill == 'hint':
criterion_kd = HintLoss()
regress_s = ConvReg(feat_s[opt.hint_layer].shape, feat_t[opt.hint_layer].shape)
module_list.append(regress_s)
trainable_list.append(regress_s)
elif opt.distill == 'attention':
criterion_kd = Attention()
elif opt.distill == 'similarity':
criterion_kd = Similarity()
elif opt.distill == 'vid':
s_n = [f.shape[1] for f in feat_s[1:-1]]
t_n = [f.shape[1] for f in feat_t[1:-1]]
criterion_kd = nn.ModuleList(
[VIDLoss(s, t, t) for s, t in zip(s_n, t_n)]
)
# add this as some parameters in VIDLoss need to be updated
trainable_list.append(criterion_kd)
elif opt.distill == 'crd':
"Contrastive Representation Distillation"
opt.s_dim = feat_s[-1].shape[1]
opt.t_dim = feat_t[-1].shape[1]
if opt.dataset == 'cifar100':
opt.n_data = 50000
if opt.dataset == 'colon_tma_manual':
opt.n_data = 7027
if opt.dataset == 'cifar100':
opt.n_data = 15303
else:
opt.n_data = 1281167
criterion_kd = CRDLoss(opt)
module_list.append(criterion_kd.embed_s)
module_list.append(criterion_kd.embed_t)
trainable_list.append(criterion_kd.embed_s)
trainable_list.append(criterion_kd.embed_t)
elif opt.distill == 'moma':
"Contrastive Representation Distillation with momentum contrastive learning"
opt.s_dim = feat_s[-1].shape[1]
opt.t_dim = feat_t[-1].shape[1]
#############################################################################################################
# This part for CMO
if opt.head == 'None':
opt.feat_dim = opt.s_dim
contrast = build_mem(opt)
contrast.cuda()
# optional step: synchronize memory
trainer.broadcast_memory(contrast)
#############################################################################################################
criterion_kd = CMO(opt)
if opt.head == 'mlp':
module_list.append(criterion_kd.embed_s)
module_list.append(criterion_kd.embed_t)
trainable_list.append(criterion_kd.embed_s)
criterion_kd.embed_t.eval()
if opt.attn == 'self_mix':
trainable_list.append(criterion_kd.atts)
elif opt.attn == 'dual':
trainable_list.append(criterion_kd.atts_p)
trainable_list.append(criterion_kd.atts_n)
elif opt.attn == 'self_nomix':
trainable_list.append(criterion_kd.atts_q)
trainable_list.append(criterion_kd.atts_k)
else:
trainable_list.append(criterion_kd.atts_q)
trainable_list.append(criterion_kd.atts_k)
trainable_list.append(criterion_kd.atts_queue)
elif opt.distill == 'semckd':
s_n = [f.shape[1] for f in feat_s[1:-1]]
t_n = [f.shape[1] for f in feat_t[1:-1]]
criterion_kd = SemCKDLoss()
self_attention = SelfA(opt.batch_size, s_n, t_n, opt.soft)
module_list.append(self_attention)
trainable_list.append(self_attention)
elif opt.distill == 'srrl':
s_n = feat_s[-1].shape[1]
t_n = feat_t[-1].shape[1]
model_fmsr = SRRL(s_n=s_n, t_n=t_n)
criterion_kd = nn.MSELoss()
module_list.append(model_fmsr)
trainable_list.append(model_fmsr)
elif opt.distill == 'simkd':
s_n = feat_s[-2].shape[1]
t_n = feat_t[-2].shape[1]
model_simkd = SimKD(s_n=s_n, t_n=t_n, factor=opt.factor)
criterion_kd = nn.MSELoss()
module_list.append(model_simkd)
trainable_list.append(model_simkd)
else:
raise NotImplementedError(opt.distill)
criterion_list = nn.ModuleList([])
criterion_list.append(criterion_cls) # classification loss
criterion_list.append(criterion_div) # KL divergence loss, original knowledge distillation
criterion_list.append(criterion_kd) # other knowledge distillation loss
module_list.append(model_t)
optimizer = optim.SGD(trainable_list.parameters(),
lr=opt.learning_rate,
momentum=opt.momentum,
weight_decay=opt.weight_decay)
if torch.cuda.is_available():
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if opt.multiprocessing_distributed:
if opt.gpu is not None:
torch.cuda.set_device(opt.gpu)
module_list.cuda(opt.gpu)
distributed_modules = []
# for module in module_list:
DDP = torch.nn.parallel.DistributedDataParallel
print([opt.gpu])
distributed_modules.append(DDP(model_s, device_ids=[opt.gpu]))
# distributed_modules.append(module_list[1].cuda())
distributed_modules.append(model_t.cuda())
module_list = distributed_modules
criterion_list.cuda(opt.gpu)
else:
print('multiprocessing_distributed must be with a specifiec gpu id')
else:
criterion_list.cuda()
module_list.cuda()
if not opt.deterministic:
cudnn.benchmark = True
print('opt.batch_size', opt.batch_size)
# dataloader
if opt.dataset == 'cifar100':
if opt.distill in ['crd']:
train_loader, val_loader, n_data = get_cifar100_dataloaders_sample(batch_size=opt.batch_size,
num_workers=opt.num_workers,
k=opt.nce_k,
mode=opt.mode)
else:
train_loader, val_loader = get_cifar100_dataloaders(batch_size=opt.batch_size,
num_workers=opt.num_workers)
elif opt.dataset == 'imagenet':
if opt.dali is None:
if opt.distill in ['crd']:
train_loader, val_loader, n_data, _, train_sampler = get_dataloader_sample(dataset=opt.dataset,
batch_size=opt.batch_size,
num_workers=opt.num_workers,
is_sample=True,
k=opt.nce_k,
multiprocessing_distributed=opt.multiprocessing_distributed)
else:
train_loader, val_loader, train_sampler = get_imagenet_dataloader(dataset=opt.dataset,
batch_size=opt.batch_size,
num_workers=opt.num_workers,
multiprocessing_distributed=opt.multiprocessing_distributed)
else:
train_loader, val_loader = get_dali_data_loader(opt)
else:
if opt.distill in ['crd']:
train_loader, val_loader, test_loader, train_sampler = get_histo_dataloader_sample(
opt=opt,
dataset=opt.dataset,
batch_size=opt.batch_size, num_workers=opt.num_workers,
multiprocessing_distributed=opt.multiprocessing_distributed)
else:
train_loader, val_loader, test_loader, train_sampler = get_histo_dataloader(
opt=opt,
batch_size=opt.batch_size, num_workers=opt.num_workers,
multiprocessing_distributed=opt.multiprocessing_distributed)
# tensorboard
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
logger = tb_logger.Logger(logdir=opt.tb_folder, flush_secs=2)
if not opt.skip_validation:
# validate teacher accuracy
teacher_acc, avg, output_stat = validate_vanilla(test_loader, model_t, criterion_cls, opt)
print(output_stat)
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
print('teacher accuracy: ', teacher_acc)
else:
print('Skipping teacher validation.')
# routine
for epoch in range(1, opt.epochs + 1):
torch.cuda.empty_cache()
if opt.multiprocessing_distributed:
if opt.dali is None:
train_sampler.set_epoch(epoch)
# No test_sampler because epoch is random seed, not needed in sequential testing.
adjust_learning_rate(epoch, opt, optimizer)
print("==> training...")
time1 = time.time()
if opt.distill in ['moma']:
train_acc, train_loss = train_distill_moma(epoch, train_loader, module_list, criterion_list,
trainer, contrast, optimizer, opt)
else:
train_acc, train_loss = train_distill_moma(epoch, train_loader, module_list, criterion_list,
None, None, optimizer, opt)
time2 = time.time()
if opt.multiprocessing_distributed:
metrics = torch.tensor([train_acc, train_loss]).cuda(opt.gpu, non_blocking=True)
reduced = reduce_tensor(metrics, opt.world_size if 'world_size' in opt else 1)
train_acc, train_loss = reduced.tolist()
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
print(' * Epoch {}, Acc@1 {:.3f}, Time {:.2f}'.format(epoch, train_acc, time2 - time1))
logger.log_value('lr', optimizer.param_groups[0]['lr'], epoch)
logger.log_value('train_acc', train_acc, epoch)
logger.log_value('train_loss', train_loss, epoch)
print('GPU %d validating' % (opt.gpu))
val_acc, val_loss, val_output_stat = validate_distill(val_loader, module_list, criterion_cls, opt, prefix='Val')
for i in val_output_stat.keys():
print(i, [val_output_stat[i]])
if not opt.skip_test:
print('GPU %d testing' % (opt.gpu))
test_acc, test_loss, test_output_stat = validate_distill(test_loader, module_list, criterion_cls, opt,
prefix='Test')
for i in test_output_stat.keys():
print(i, [test_output_stat[i]])
def f1(a):
"F1"
f = 0
for i in range(a.shape[0]):
if a[i][i] == 0:
f += 0
else:
f += (2 * a[i][i] / a[:, i].sum() * a[i][i] / a[i, :].sum()) / (
a[i][i] / a[:, i].sum() + a[i][i] / a[i, :].sum())
return f / opt.n_cls
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
print(' ** Acc_val@1 {:.3f}'.format(val_acc))
print(' ** Best Acc_val@1 {:.3f}'.format(best_acc))
val_f1 = f1(val_output_stat['conf_mat'])
if not opt.skip_test:
print(' ** Acc_test@1 {:.3f}'.format(test_acc))
logger.log_value('val_acc', val_acc, epoch)
logger.log_value('val_loss', val_loss, epoch)
if not opt.skip_test:
logger.log_value('test_acc', test_acc, epoch)
logger.log_value('test_loss', test_loss, epoch)
# Save all
state = {
'epoch': epoch,
'model': model_s.state_dict(),
'best_acc': best_acc,
'optimizer': optimizer.state_dict(),
}
print(opt.save_folder)
# save the best model
if val_acc > best_acc:
best_acc = val_acc
state['best_acc'] = best_acc
state['best_acc_epoch'] = epoch
save_file = os.path.join(opt.save_folder, 'net_best_acc.pth')
print('saving the best acc model!')
torch.save(state, save_file)
# save the best f1 model
if val_f1 > best_f1:
best_f1 = val_f1
state['best_f1'] = best_f1
state['best_f1_epoch'] = epoch
save_file = os.path.join(opt.save_folder, 'net_best_f1.pth')
print('saving the best f1 model!')
torch.save(state, save_file)
if not opt.skip_test:
test_merics = {
'val_cf': pd.Series({'conf_mat': val_output_stat['conf_mat']}).to_json(orient='records'),
'val_loss': val_loss,
'val_acc': val_acc,
'test_cf': pd.Series({'conf_mat': test_output_stat['conf_mat']}).to_json(orient='records'),
'test_loss': test_loss,
'test_acc': test_acc
}
else:
test_merics = {
'val_cf': pd.Series({'conf_mat': val_output_stat['conf_mat']}).to_json(orient='records'),
'val_loss': val_loss,
'val_acc': val_acc,
}
update_dict_to_json(epoch, test_merics, os.path.join(opt.save_folder, "stat.json"))
if not opt.multiprocessing_distributed or opt.rank % ngpus_per_node == 0:
# This best accuracy is only for printing purpose.
print('best accuracy:', best_acc)
# save parameters
save_state = {k: v for k, v in opt._get_kwargs()}
# No. parameters(M)
num_params = (sum(p.numel() for p in model_s.parameters()) / 1000000.0)
save_state['Total params'] = num_params
save_state['Total time'] = (time.time() - total_time) / 3600.0
params_json_path = os.path.join(opt.save_folder, "parameters.json")
save_dict_to_json(save_state, params_json_path)
if __name__ == '__main__':
main()