This repository contains the quantum error-correcting codes constructed by Renyu Wang and Leonid P. Pryadko for the paper "Distance bounds for generalized bicycle codes".
- The zip arxive
gb-codes.zip
contains the actual code files in the MTX format. - The file
gb-verify.gap
contains the list of all codes (circulant length, distance, and two lists of degrees of the non-zero monomials) and a GAP program to verify the distance or write the files. - The file
gb-verify_gap.out.gz
is the stdout generated by runninggap.sh gb-verify.gap
.
The following is the output of zgrep dZ= gb-verify_gap.out.gz
n0=5 [ 0, 2 ] [0,1] n=10 dX=3 dZ=3 d0=3
n0=11 [ 0, 3 ] [0,1] n=22 dX=4 dZ=5 d0=4
n0=13 [ 0, 5 ] [0,1] n=26 dX=6 dZ=5 d0=5
n0=19 [ 0, 4 ] [0,1] n=38 dX=5 dZ=6 d0=5
n0=29 [ 0, 8 ] [0,1] n=58 dX=9 dZ=7 d0=7
n0=37 [ 0, 8 ] [0,1] n=74 dX=9 dZ=8 d0=8
n0=53 [ 0, 8 ] [0,1] n=106 dX=9 dZ=10 d0=9
n0=59 [ 0, 9 ] [0,1] n=118 dX=10 dZ=11 d0=10
n0=61 [ 0, 11 ] [0,1] n=122 dX=12 dZ=11 d0=11
n0=67 [ 0, 12 ] [0,1] n=134 dX=13 dZ=11 d0=11
n0=83 [ 0, 11 ] [0,1] n=166 dX=12 dZ=13 d0=12
n0=101 [ 0, 12 ] [0,1] n=202 dX=13 dZ=13 d0=13
n0=107 [ 0, 41 ] [0,1] n=214 dX=14 dZ=15 d0=14
n0=131 [ 0, 20 ] [0,1] n=262 dX=15 dZ=16 d0=15
n0=139 [ 0, 30 ] [0,1] n=278 dX=17 dZ=16 d0=16
n0=149 [ 0, 34 ] [0,1] n=298 dX=17 dZ=17 d0=17
n0=163 [ 0, 17 ] [0,1] n=326 dX=18 dZ=17 d0=17
n0=173 [ 0, 51 ] [0,1] n=346 dX=18 dZ=19 d0=18
n0=179 [ 0, 17 ] [0,1] n=358 dX=18 dZ=19 d0=18
n0=181 [ 0, 19 ] [0,1] n=362 dX=20 dZ=19 d0=19
n0=197 [ 0, 23 ] [0,1] n=394 dX=20 dZ=19 d0=19
n0=211 [ 0, 20 ] [0,1] n=422 dX=21 dZ=20 d0=20
n0=227 [ 0, 61 ] [0,1] n=454 dX=22 dZ=21 d0=21
n0=5 [ 0, 1, 2, 3 ] [0,1] n=10 dX=3 dZ=3 d0=3
n0=11 [ 0, 1, 2, 5 ] [0,1] n=22 dX=5 dZ=5 d0=5
n0=13 [ 0, 1, 2, 5 ] [0,1] n=26 dX=5 dZ=6 d0=5
n0=19 [ 0, 2, 3, 7 ] [0,1] n=38 dX=7 dZ=7 d0=7
n0=29 [ 0, 1, 3, 10 ] [0,1] n=58 dX=9 dZ=9 d0=9
n0=37 [ 0, 1, 4, 14 ] [0,1] n=74 dX=12 dZ=11 d0=11
n0=53 [ 0, 3, 4, 15 ] [0,1] n=106 dX=15 dZ=13 d0=13
n0=59 [ 0, 8, 11, 21 ] [0,1] n=118 dX=15 dZ=15 d0=15
n0=61 [ 0, 6, 9, 22 ] [0,1] n=122 dX=16 dZ=15 d0=15
n0=67 [ 0, 3, 24, 41 ] [0,1] n=134 dX=17 dZ=16 d0=16
n0=83 [ 0, 5, 13, 27 ] [0,1] n=166 dX=18 dZ=19 d0=18
n0=101 [ 0, 9, 15, 56 ] [0,1] n=202 dX=21 dZ=21 d0=21
n0=107 [ 0, 11, 14, 29 ] [0,1] n=214 dX=21 dZ=21 d0=21
n0=131 [ 0, 9, 17, 32 ] [0,1] n=262 dX=23 dZ=23 d0=23
n0=139 [ 0, 10, 39, 75 ] [0,1] n=278 dX=25 dZ=25 d0=25
n0=149 [ 0, 15, 20, 39 ] [0,1] n=298 dX=25 dZ=25 d0=25
n0=163 [ 0, 8, 25, 44 ] [0,1] n=326 dX=28 dZ=27 d0=27
n0=173 [ 0, 13, 22, 46 ] [0,1] n=346 dX=28 dZ=29 d0=28
n0=179 [ 0, 14, 51, 99 ] [0,1] n=358 dX=29 dZ=29 d0=29
n0=181 [ 0, 12, 52, 94 ] [0,1] n=362 dX=29 dZ=29 d0=29
n0=197 [ 0, 17, 30, 54 ] [0,1] n=394 dX=30 dZ=31 d0=30
n0=211 [ 0, 12, 34, 54 ] [0,1] n=422 dX=33 dZ=31 d0=31
n0=227 [ 0, 22, 27, 63 ] [0,1] n=454 dX=35 dZ=33 d0=33
n0=5 [ 0, 1, 2, 3 ] [0,1] n=10 dX=3 dZ=3 d0=3
n0=7 [ 0, 1, 2, 3 ] [0,1] n=14 dX=3 dZ=4 d0=3
n0=11 [ 0, 1, 2, 5 ] [0,1] n=22 dX=5 dZ=5 d0=5
n0=13 [ 0, 1, 2, 5 ] [0,1] n=26 dX=5 dZ=6 d0=5
n0=17 [ 0, 1, 3, 9 ] [0,1] n=34 dX=8 dZ=7 d0=7
n0=19 [ 0, 1, 2, 8 ] [0,1] n=38 dX=8 dZ=7 d0=7
n0=23 [ 0, 1, 3, 9 ] [0,1] n=46 dX=8 dZ=9 d0=8
n0=29 [ 0, 1, 3, 10 ] [0,1] n=58 dX=9 dZ=9 d0=9
n0=31 [ 0, 5, 11, 17 ] [0,1] n=62 dX=10 dZ=11 d0=10
n0=37 [ 0, 1, 4, 14 ] [0,1] n=74 dX=12 dZ=11 d0=11
n0=41 [ 0, 4, 15, 27 ] [0,1] n=82 dX=13 dZ=12 d0=12
n0=43 [ 0, 3, 8, 17 ] [0,1] n=86 dX=13 dZ=12 d0=12
n0=47 [ 0, 2, 5, 18 ] [0,1] n=94 dX=14 dZ=13 d0=13
n0=53 [ 0, 2, 5, 17 ] [0,1] n=106 dX=13 dZ=13 d0=13
n0=59 [ 0, 5, 22, 31 ] [0,1] n=118 dX=15 dZ=15 d0=15
n0=61 [ 0, 5, 13, 25 ] [0,1] n=122 dX=16 dZ=15 d0=15
n0=67 [ 0, 3, 24, 41 ] [0,1] n=134 dX=17 dZ=16 d0=16
n0=71 [ 0, 4, 11, 23 ] [0,1] n=142 dX=17 dZ=17 d0=17
n0=73 [ 0, 8, 20, 46 ] [0,1] n=146 dX=17 dZ=17 d0=17
n0=79 [ 0, 5, 11, 24 ] [0,1] n=158 dX=17 dZ=17 d0=17
n0=83 [ 0, 5, 13, 27 ] [0,1] n=166 dX=18 dZ=19 d0=18
n0=89 [ 0, 7, 16, 27 ] [0,1] n=178 dX=19 dZ=19 d0=19
n0=97 [ 0, 7, 15, 54 ] [0,1] n=194 dX=21 dZ=20 d0=20
n0=101 [ 0, 6, 15, 60 ] [0,1] n=202 dX=22 dZ=21 d0=21
n0=103 [ 0, 5, 24, 46 ] [0,1] n=206 dX=22 dZ=21 d0=21
n0=107 [ 0, 6, 16, 35 ] [0,1] n=214 dX=22 dZ=21 d0=21
n0=109 [ 0, 4, 15, 31 ] [0,1] n=218 dX=21 dZ=21 d0=21
n0=113 [ 0, 7, 18, 31 ] [0,1] n=226 dX=21 dZ=21 d0=21
n0=11 [ 0, 1, 2, 4, 5, 8 ] [0,1] n=22 dX=7 dZ=6 d0=6
n0=13 [ 0, 2, 3, 6, 7, 9 ] [0,1] n=26 dX=6 dZ=7 d0=6
n0=19 [ 0, 1, 2, 3, 4, 8 ] [0,1] n=38 dX=7 dZ=7 d0=7
n0=29 [ 0, 1, 2, 7, 10, 13 ] [0,1] n=58 dX=10 dZ=11 d0=10
n0=37 [ 0, 3, 4, 9, 13, 16 ] [0,1] n=74 dX=12 dZ=13 d0=12
n0=53 [ 0, 2, 6, 12, 13, 19 ] [0,1] n=106 dX=15 dZ=15 d0=15
n0=59 [ 0, 6, 7, 10, 23, 31 ] [0,1] n=118 dX=18 dZ=17 d0=17
n0=67 [ 0, 4, 10, 16, 24, 33 ] [0,1] n=134 dX=18 dZ=19 d0=18
n0=83 [ 0, 7, 10, 16, 18, 35 ] [0,1] n=166 dX=21 dZ=21 d0=21
n0=101 [ 0, 1, 4, 16, 27, 36 ] [0,1] n=202 dX=23 dZ=23 d0=23
n0=107 [ 0, 9, 13, 21, 27, 59 ] [0,1] n=214 dX=26 dZ=25 d0=25