-
Notifications
You must be signed in to change notification settings - Fork 22
/
naive_bayes.py
40 lines (25 loc) · 1.01 KB
/
naive_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import nltk
import random
from nltk.corpus import movie_reviews
documents = [(list( movie_reviews.words(fileid), category)
for category in movie_reviews.categories()
for fileid in movie_reviews.fileids(category)]
random.shuffle(documents)
all_words = []
for w in movie_reviews.words():
all_words.append(w.lower())
all_words = nltk.FreqDist(all_words)
word_features = list(all_words.keys())[:3000]
def find_features(document):
words = set(document)
features = {}
for w in word_features:
features[w] = (w in words)
return features
print ((find_features(movie_reviews.words('neg/cv000_29416.txt'))))
featuresets = [(find_features(rev) , category) for (rev , category) in documents]
training = featuresets[:1900]
testing = featuresets[1900:]
classifier = nltk.NaiveBayesClassifier.train(training)
print ("Naive Bayes Algo Accuracy: ", (nltk.classify.accuracy(classifier, testing))*100)
classifier.show_most_informative_features(20)