-
Notifications
You must be signed in to change notification settings - Fork 11
/
sec_emission_model_ECLOUD.py
223 lines (185 loc) · 8.3 KB
/
sec_emission_model_ECLOUD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#-Begin-preamble-------------------------------------------------------
#
# CERN
#
# European Organization for Nuclear Research
#
#
# This file is part of the code:
#
# PyECLOUD Version 8.7.1
#
#
# Main author: Giovanni IADAROLA
# BE-ABP Group
# CERN
# CH-1211 GENEVA 23
# SWITZERLAND
#
# Contributors: Eleonora Belli
# Philipp Dijkstal
# Lorenzo Giacomel
# Lotta Mether
# Annalisa Romano
# Giovanni Rumolo
# Eric Wulff
#
#
# Copyright CERN, Geneva 2011 - Copyright and any other
# appropriate legal protection of this computer program and
# associated documentation reserved in all countries of the
# world.
#
# Organizations collaborating with CERN may receive this program
# and documentation freely and without charge.
#
# CERN undertakes no obligation for the maintenance of this
# program, nor responsibility for its correctness, and accepts
# no liability whatsoever resulting from its use.
#
# Program and documentation are provided solely for the use of
# the organization to which they are distributed.
#
# This program may not be copied or otherwise distributed
# without permission. This message must be retained on this and
# any other authorized copies.
#
# The material cannot be sold. CERN should be given credit in
# all references.
#
#-End-preamble---------------------------------------------------------
import numpy as np
from numpy import sqrt, exp
from numpy.random import rand
from . import electron_emission as ee
def yield_fun2(E, costheta, Emax, del_max, R0, E0, s, flag_costheta_delta_scale=True, flag_costheta_Emax_shift=True):
if flag_costheta_delta_scale:
del_max_tilde = del_max * exp(0.5 * (1. - costheta))
else:
del_max_tilde = del_max
if flag_costheta_Emax_shift:
E_max_tilde = Emax * (1. + 0.7 * (1. - costheta))
else:
E_max_tilde = Emax
x = E / E_max_tilde
true_sec = del_max_tilde * (s * x) / (s - 1. + x**s)
reflected = R0 * ((sqrt(E) - sqrt(E + E0)) / (sqrt(E) + sqrt(E + E0)))**2.
delta = true_sec + reflected
ref_frac = 0. * delta
mask_non_zero = (delta > 0)
ref_frac[mask_non_zero] = reflected[mask_non_zero] / delta[mask_non_zero]
return delta, ref_frac
class SEY_model_ECLOUD(object):
event_types = {0: 'elast',
1: 'true',
}
def __init__(
self, Emax, del_max, R0,
E_th=None, sigmafit=None, mufit=None,
switch_no_increase_energy=0, thresh_low_energy=None, secondary_angle_distribution=None,
E0=150., s=1.35, flag_costheta_delta_scale=True, flag_costheta_Emax_shift=True
):
self.E_th = E_th
self.sigmafit = sigmafit
self.mufit = mufit
self.switch_no_increase_energy = switch_no_increase_energy
self.thresh_low_energy = thresh_low_energy
self.secondary_angle_distribution = secondary_angle_distribution
if secondary_angle_distribution is not None:
from . import electron_emission
self.angle_dist_func = electron_emission.get_angle_dist_func(secondary_angle_distribution)
else:
self.angle_dist_func = None
self.Emax = Emax
self.del_max = del_max
self.R0 = R0
self.E0 = E0
self.s = s
self.flag_costheta_delta_scale = flag_costheta_delta_scale
self.flag_costheta_Emax_shift = flag_costheta_Emax_shift
print(('Secondary emission model: ECLOUD E0=%.4f s=%.4f' % (self.E0, self.s)))
def SEY_model_evol(self, Dt):
pass
def SEY_process(self, nel_impact, E_impact_eV, costheta_impact, i_impact):
yiel, ref_frac = yield_fun2(
E_impact_eV, costheta_impact, self.Emax, self.del_max, self.R0, E0=self.E0, s=self.s,
flag_costheta_delta_scale=self.flag_costheta_delta_scale, flag_costheta_Emax_shift=self.flag_costheta_Emax_shift)
flag_elast = (rand(len(ref_frac)) < ref_frac)
flag_truesec = ~(flag_elast)
nel_emit = nel_impact * yiel
return nel_emit, flag_elast, flag_truesec
def impacts_on_surface(self, mass, nel_impact, x_impact, y_impact, z_impact,
vx_impact, vy_impact, vz_impact, Norm_x, Norm_y, i_found,
v_impact_n, E_impact_eV, costheta_impact, nel_mp_th, flag_seg):
nel_emit_tot_events, flag_elast, flag_truesec = self.SEY_process(nel_impact, E_impact_eV, costheta_impact, i_found)
nel_replace = nel_emit_tot_events.copy()
x_replace = x_impact.copy()
y_replace = y_impact.copy()
z_replace = z_impact.copy()
vx_replace = vx_impact.copy()
vy_replace = vy_impact.copy()
vz_replace = vz_impact.copy()
if i_found is not None:
i_seg_replace = i_found.copy()
else:
i_seg_replace = i_found
# Handle elastics
vx_replace[flag_elast], vy_replace[flag_elast] = ee.specular_velocity(
vx_impact[flag_elast], vy_impact[flag_elast],
Norm_x[flag_elast], Norm_y[flag_elast], v_impact_n[flag_elast]
)
# true secondary
N_true_sec = np.sum(flag_truesec)
n_add_total = 0
if N_true_sec > 0:
n_add = np.zeros_like(flag_truesec, dtype=int)
n_add[flag_truesec] = np.ceil(nel_replace[flag_truesec] / nel_mp_th) - 1
n_add[n_add < 0] = 0. # in case of underflow
nel_replace[flag_truesec] = nel_replace[flag_truesec] / (n_add[flag_truesec] + 1.)
n_add_total = np.sum(n_add)
# MPs to be replaced
En_truesec_eV = ee.sec_energy_hilleret_model2(
self.switch_no_increase_energy, N_true_sec, self.sigmafit, self.mufit,
self.E_th, E_impact_eV[flag_truesec], self.thresh_low_energy)
vx_replace[flag_truesec], vy_replace[flag_truesec], vz_replace[flag_truesec] = self.angle_dist_func(
N_true_sec, En_truesec_eV, Norm_x[flag_truesec], Norm_y[flag_truesec], mass)
# Add new MPs
if n_add_total != 0:
# Clone MPs
x_new_MPs = np.repeat(x_impact, n_add)
y_new_MPs = np.repeat(y_impact, n_add)
z_new_MPs = np.repeat(z_impact, n_add)
norm_x_add = np.repeat(Norm_x, n_add)
norm_y_add = np.repeat(Norm_y, n_add)
nel_new_MPs = np.repeat(nel_replace, n_add)
E_impact_eV_add = np.repeat(E_impact_eV, n_add)
# Generate new MP properties, angles and energies
En_truesec_eV_add = ee.sec_energy_hilleret_model2(
self.switch_no_increase_energy, n_add_total, self.sigmafit, self.mufit,
self.E_th, E_impact_eV_add, self.thresh_low_energy)
vx_new_MPs, vy_new_MPs, vz_new_MPs = self.angle_dist_func(
n_add_total, En_truesec_eV_add, norm_x_add, norm_y_add, mass)
if flag_seg:
i_seg_new_MPs = np.repeat(i_found, n_add)
else:
i_seg_new_MPs = None
if n_add_total == 0:
nel_new_MPs = np.array([])
x_new_MPs = np.array([])
y_new_MPs = np.array([])
z_new_MPs = np.array([])
vx_new_MPs = np.array([])
vy_new_MPs = np.array([])
vz_new_MPs = np.array([])
i_seg_new_MPs = np.array([])
events = flag_truesec
event_type = flag_truesec
if n_add_total != 0:
events_add = np.repeat(event_type, n_add)
events = np.concatenate([event_type, events_add])
extended_event_type = events
event_info = {'extended_event_type': extended_event_type}
return nel_emit_tot_events, event_type, event_info,\
nel_replace, x_replace, y_replace, z_replace, vx_replace, vy_replace, vz_replace, i_seg_replace,\
nel_new_MPs, x_new_MPs, y_new_MPs, z_new_MPs, vx_new_MPs, vy_new_MPs, vz_new_MPs, i_seg_new_MPs