forked from sloisel/numeric
-
Notifications
You must be signed in to change notification settings - Fork 0
/
benchmark.html
248 lines (235 loc) · 10.1 KB
/
benchmark.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
<html>
<head>
<link rel="SHORTCUT ICON" href="favicon.ico">
<link rel="stylesheet" type="text/css" href="resources/style.css">
<title>Numeric Javascript: Benchmarks</title>
</head>
<body>
<!--#include file="resources/header.html" -->
We are now running a linear algebra performance benchmark in your browser! Please ensure that your seatbelt
is fastened and your tray table is upright while we invert 100x100 matrices.<br><br>
<b>Performance (<a href="http://en.wikipedia.org/wiki/FLOPS">MFLOPS</a>)</b>
<div style="width:1000px;overflow:hidden;font-size:14px;">
<div id="placeholder" style="width:700px;height:500px;float:left;"></div>
<div id="legend" style="width:250px;height:100px;overflow:hidden;"></div>
</div>
<div id="meanscore">Geometric mean of scores: </div><br>
<b>Higher is better:</b> For each benchmark and library, a function is called repeatedly for a certain amount of time.
The number of function calls per seconds is converted into a FLOP rate. As we move right within each test, the matrix size increases.<br><br>
<b>What tricks are used to increase performance in Numeric?</b>
<ul>
<li>Replace inner loop <tt>for(j=0;j<n;j++) A[i][j]</tt> by the equivalent <tt>Ai = A[i]; for(j=0;j<n;j++) Ai[j]</tt> ("hoisting" the <tt>[i]</tt> out of the loop</tt>).
<li>Preallocate Arrays: <tt>A = new Array(n)</tt> instead of <tt>A = []</tt>.
<li>Use <tt>Array</tt> objects directly (abstractions slow you down). Getters and setters are bad.
<li>Use <tt>for(j=n-1;j>=0;j--)</tt> if it is faster.
<li>Do not put anything in <tt>Array.prototype</tt>. If you modify <tt>Array.prototype</tt>, it slows down everything significantly.
<li>Big Matrix*Matrix product: transpose the second matrix and rearrange the loops to exploit locality.
<li>Unroll loops.
<li>Don't nest functions.
<li>Don't call functions, inline them manually. Except...
<li>...big functions can confuse the JIT. If a new code path is run in a function, the function can be deoptimized by the JIT.
<li>Avoid polymorphism.
<li>Localize references. For example: replace <tt>for(i=n-1;i>=0;i--) x[i] = Math.random();</tt> by <tt>rnd = Math.random; for(i=n-1;i>=0;i--) x[i] = rnd();</tt>. (Make sure <tt>rnd</tt> and <tt>x</tt> really are local variables!)
<li>Deep lexical scopes are bad. You can create a function without much of a lexical scope by using
<tt>new Function('...');</tt>.
</ul>
<br>
<b>GC pauses?</b>
If you reload the page, the benchmark will run again and will give slightly different results.
This could be due to GC pauses or other background tasks, DOM updates, etc...
To get an idea of the impact of this, load this page in two or more different tabs (not at the same time,
one after the other) and switch between the tabs and see the differences in the performance chart.
<br><br><br>
<table id="bench"></table>
<!--[if lte IE 9]><script language="javascript" type="text/javascript" src="tools/excanvas.min.js"></script><![endif]-->
<!--<script src="lib/numeric.js"></script>
<script src="tools/sylvester.js"></script>
<script src="tools/trunk/closure/goog/base.js"></script>
<script src="tools/jquery-1.7.1.min.js"></script>
<script src="tools/jquery.flot.min.js"></script>-->
<script src="tools/benchlib.js"></script>
<script>
"use strict";
// Guess which browser needs this.
if (!('map' in Array.prototype)) {
Array.prototype.map= function(mapper, that /*opt*/) {
var other= new Array(this.length);
for (var i= 0, n= this.length; i<n; i++)
if (i in this)
other[i]= mapper.call(that, this[i], i, this);
return other;
};
}
goog.require('goog.math.Matrix');
var bench = numeric.bench;
var geometricmeans = [0,0,0];
var mkA = function(n) { return numeric.random([n,n]); };
var mkV = function(n) { return numeric.random([n]); };
var benchmarks = [
[
'abs(vector)', [3,10,30,100,300,1000,3000],
function(n) { var V = mkV(n); return bench(function() { numeric.abs(V); }); },
function(n) { var V = new goog.math.Matrix([mkV(n)]); return bench(function() { V.toArray().map(Math.abs); }); },
function(n) { var V = $V(mkV(n)); return bench(function() { V.map(Math.abs); }); }
],
[
'Create identity', [3,10,30,100,300,1000],
function(n) { return bench(function() { numeric.identity(n); }); },
function(n) { return bench(function() { goog.math.Matrix.createIdentityMatrix(n); }); },
function(n) { return bench(function() { Matrix.I(n); }); }
],
[
'Matrix transpose', [3,10,30,100,300,1000],
function(n) { var A = mkA(n); return bench(function() { numeric.transpose(A); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)); return bench(function() { A.getTranspose(); }); },
function(n) { var A = $M(mkA(n)); return bench(function() { A.transpose(); }); }
],
[
'Matrix-Vector product', [3,10,30,100,300,1000],
function(n) { var A = mkA(n), V = mkV(n); return bench(function() { numeric.dot(A,V); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)), V = new goog.math.Matrix([mkV(n)]).getTranspose(); return bench(function() { A.multiply(V); }); },
function(n) { var A = $M(mkA(n)), V = $V(mkV(n)); return bench(function() { A.multiply(V); }); }
],
[
'Vector-Matrix product', [3,10,30,100,300,1000],
function(n) { var A = mkA(n), V = mkV(n); return bench(function() { numeric.dot(V,A); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)), V = new goog.math.Matrix([mkV(n)]); return bench(function() { V.multiply(A); }); },
function(n) { var A = $M(mkA(n)), V = $V(mkV(n)); return bench(function() { A.transpose().multiply(V); }); }
],
['Ax+b', [3,10,30,100,300,1000],
function(n) { var A = mkA(n), x = mkV(n), b = mkV(n); return bench(function() { numeric.addeq(numeric.dot(A,x),b); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)), x = new goog.math.Matrix([mkV(n)]).getTranspose(), b = new goog.math.Matrix([mkV(n)]).getTranspose(); return bench(function() { A.multiply(x).add(b); }); },
function(n) { var A = $M(mkA(n)), x = $V(mkV(n)), b = $V(mkV(n)); return bench(function() { A.multiply(x).add(b); }); }
],
[
'Matrix-Matrix product', [3,5,10,20,30,50,75,100],
function(n) { var A = mkA(n), B = mkA(n); return bench(function() { numeric.dot(A,B); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)), B = new goog.math.Matrix(mkA(n)); return bench(function() { A.multiply(B); }); },
function(n) { var A = $M(mkA(n)), B = $M(mkA(n)); return bench(function() { A.multiply(B); }); }
],
[
'Matrix-Matrix sum', [3,5,10,20,30,50,75,100],
function(n) { var A = mkA(n); return bench(function() { numeric.add(A,A); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)); return bench(function() { A.add(A); }); },
function(n) { var A = $M(mkA(n)); return bench(function() { A.add(A); }); }
],
[
'Matrix inverse', [3,5,10,20,30,50,75,100],
function(n) { var A = mkA(n); return bench(function() { numeric.inv(A); }); },
function(n) { var A = new goog.math.Matrix(mkA(n)); return bench(function() { A.getInverse(); }); },
function(n) { var A = $M(mkA(n)); return bench(function() { A.inv(); }); }
],
[
'Sparse Laplacian LU', [3,5,10,20,30],
function(n) { var A = numeric.sscatter(numeric.cdelsq(numeric.cgrid(n))); return bench(function() { numeric.sLUP(A); }); },
function(n) { return 0; },
function(n) { return 0; }
],
[
'Banded Laplacian LU', [3,5,10,20,30],
function(n) { var A = numeric.cdelsq(numeric.cgrid(n)); return bench(function() { numeric.cLU(A); }); },
function(n) { return 0; },
function(n) { return 0; }
]
];
var pwr = [1,2,2,2,2,2,3,2,3,4,4];
var k=0,b=0;
var libs = ['Numeric '+numeric.version,'Closure 5 Dec 2011','Sylvester 5 Dec 2011'];
var datasets = [];
var l;
var colors = ["#000","#00f","#0f0","#f80","#f0f","#0ff"];
for(l=0;l<libs.length;l++) {
datasets[l] = {
data: [],
label: libs[l],
color: colors[l],
points: { show: true },
lines: { show: true }
};
}
l=1;
var l0,xticks = [];
for(b=0;b<benchmarks.length;b++) {
l0 = l;
for(k=0;k<benchmarks[b][1].length;k++) {
l++;
}
xticks.push([(l0+l)*0.5,benchmarks[b][0]]);
}
k=0;
b=0;
var count = 1;
var MSIE = (/MSIE (\d+\.\d+);/.test(navigator.userAgent));
numeric.precision = 6;
var c0 = [[],[],[]];
var counts = [0,0,0];
function invbench(b,k,lib,rep) {
var ks,sz = benchmarks[b][1][k];
var i,j,foo;
ks = sz.toString();
if(rep>0 && c0[lib][rep-1] < 10) { c0[lib][rep] = c0[lib][rep-1]; }
else { foo = benchmarks[b][lib+2]; c0[lib][rep] = foo(sz); }
rep++;
if(rep === 1) { rep = 0; lib++; }
if(lib+2 === benchmarks[b].length) {
k++;
lib=0;
var cps = [];
var mi = 1e6/Math.pow(benchmarks[b][1][k-1],pwr[b]);
for(i=0;i<c0.length;i++) {
cps[i] = 0;
for(j=0;j<c0[i].length;j++) cps[i] += c0[i][j];
cps[i] /= (c0[i].length*mi);
}
for(i=0;i<cps.length;i++) {
if(MSIE || cps[i]) datasets[i].data.push([count,cps[i]]);
if(cps[i]) {
counts[i]++;
geometricmeans[i] += Math.log(cps[i]);
}
}
var foo = '<td>n='+ks+'</td>';
var color = '', uncolor='';
for(i=0;i<cps.length;i++) {
foo += '<td>'+cps[i].toPrecision(8)+'</td>';
}
if(!MSIE) {
var t = document.getElementById('bench');
var r = t.insertRow(-1);
if(k === 1) {
r.innerHTML = ('<td width=200px><b>'+benchmarks[b][0]+'</b></td>'
+'<td width=125px><b>Numeric</b></td>'
+'<td width=125px><b>Google Closure</b></td>'
+'<td width=125px><b>Sylvester</b></td>');
r = t.insertRow(-1);
}
r.innerHTML = foo;
}
$.plot($("#placeholder"), datasets,
{
legend: {container: '#legend'},
xaxis: {ticks:xticks, tickLength:0, min:1, max: l-1},
yaxis: {ticks:20}
});
c0 = [[],[],[]];
count++;
}
if(k === benchmarks[b][1].length) {
for(i=0;i<cps.length;i++) datasets[i].data.push(null);
k=0; b++;
}
if(b < benchmarks.length) {
setTimeout('invbench('+b.toString()
+','+k.toString()
+','+lib.toString()
+','+rep.toString()
+')',MSIE?10:0);
} else {
geometricmeans = numeric.exp(numeric.div(geometricmeans,counts));
$('#meanscore')[0].innerHTML += numeric.prettyPrint(geometricmeans)+'MFLOPS';
}
}
window.onload = function() { invbench(0,0,0,0); }
</script>
<br><br><br>
</body>