Skip to content

Latest commit

 

History

History
 
 

eulers_totient_function

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Euler's Totient Function

Euler’s Totient function Φ(n) for an input n is count of numbers in {1, 2, 3, …, n} that are relatively prime to n, i.e., the numbers whose GCD (Greatest Common Divisor) with n is 1.

Φ(1) = 1
gcd(1, 1) is 1

Φ(2) = 1
gcd(1, 2) is 1, but gcd(2, 2) is 2.

Φ(3) = 2
gcd(1, 3) is 1 and gcd(2, 3) is 1

Φ(4) = 2
gcd(1, 4) is 1 and gcd(3, 4) is 1

Φ(5) = 4
gcd(1, 5) is 1, gcd(2, 5) is 1, 
gcd(3, 5) is 1 and gcd(4, 5) is 1

Φ(6) = 2
gcd(1, 6) is 1 and gcd(5, 6) is 1

How to compute Φ(n) for an input n?

A simple solution is to iterate through all numbers from 1 to n-1 and count numbers with gcd with n as 1.