diff --git a/desc/compute/__init__.py b/desc/compute/__init__.py index 87f03068bb..1b345a6492 100644 --- a/desc/compute/__init__.py +++ b/desc/compute/__init__.py @@ -26,8 +26,6 @@ # just need to import all the submodules here to register everything in the # data_index -from desc.utils import flatten_list - from . import ( _basis_vectors, _bootstrap, diff --git a/desc/compute/_bootstrap.py b/desc/compute/_bootstrap.py index 9bfd532775..48af83b4e5 100644 --- a/desc/compute/_bootstrap.py +++ b/desc/compute/_bootstrap.py @@ -13,8 +13,8 @@ from scipy.special import roots_legendre from ..backend import fori_loop, jnp +from ..integrals import surface_averages_map from .data_index import register_compute_fun -from .utils import surface_averages_map @register_compute_fun( diff --git a/desc/compute/_equil.py b/desc/compute/_equil.py index e5c7736dbc..7cd01491ed 100644 --- a/desc/compute/_equil.py +++ b/desc/compute/_equil.py @@ -14,8 +14,9 @@ from desc.backend import jnp +from ..integrals import surface_averages from .data_index import register_compute_fun -from .utils import cross, dot, safediv, safenorm, surface_averages +from .utils import cross, dot, safediv, safenorm @register_compute_fun( diff --git a/desc/compute/_field.py b/desc/compute/_field.py index 06cd51a869..31a9d58a18 100644 --- a/desc/compute/_field.py +++ b/desc/compute/_field.py @@ -13,17 +13,14 @@ from desc.backend import jnp -from .data_index import register_compute_fun -from .utils import ( - cross, - dot, - safediv, - safenorm, +from ..integrals import ( surface_averages, surface_integrals_map, surface_max, surface_min, ) +from .data_index import register_compute_fun +from .utils import cross, dot, safediv, safenorm @register_compute_fun( diff --git a/desc/compute/_geometry.py b/desc/compute/_geometry.py index 5e38a5c89b..139f91f537 100644 --- a/desc/compute/_geometry.py +++ b/desc/compute/_geometry.py @@ -11,8 +11,9 @@ from desc.backend import jnp +from ..integrals.surface_integral import line_integrals, surface_integrals from .data_index import register_compute_fun -from .utils import cross, dot, line_integrals, safenorm, surface_integrals +from .utils import cross, dot, safenorm @register_compute_fun( diff --git a/desc/compute/_metric.py b/desc/compute/_metric.py index 96228ffc06..536bd05bb7 100644 --- a/desc/compute/_metric.py +++ b/desc/compute/_metric.py @@ -13,8 +13,9 @@ from desc.backend import jnp +from ..integrals import surface_averages from .data_index import register_compute_fun -from .utils import cross, dot, safediv, safenorm, surface_averages +from .utils import cross, dot, safediv, safenorm @register_compute_fun( diff --git a/desc/compute/_profiles.py b/desc/compute/_profiles.py index 6ff0a84dd5..84de48e576 100644 --- a/desc/compute/_profiles.py +++ b/desc/compute/_profiles.py @@ -13,8 +13,9 @@ from desc.backend import cond, jnp +from ..integrals import surface_averages, surface_integrals from .data_index import register_compute_fun -from .utils import cumtrapz, dot, safediv, surface_averages, surface_integrals +from .utils import cumtrapz, dot, safediv @register_compute_fun( diff --git a/desc/compute/_stability.py b/desc/compute/_stability.py index 57a7eef98d..4a985a4dc5 100644 --- a/desc/compute/_stability.py +++ b/desc/compute/_stability.py @@ -13,8 +13,9 @@ from desc.backend import jnp +from ..integrals import surface_integrals_map from .data_index import register_compute_fun -from .utils import dot, surface_integrals_map +from .utils import dot @register_compute_fun( diff --git a/desc/compute/utils.py b/desc/compute/utils.py index f6c7b12e68..0c6e2f7de3 100644 --- a/desc/compute/utils.py +++ b/desc/compute/utils.py @@ -5,10 +5,10 @@ import numpy as np -from desc.backend import cond, execute_on_cpu, fori_loop, jnp, put -from desc.grid import ConcentricGrid, Grid, LinearGrid +from desc.backend import execute_on_cpu, jnp +from desc.grid import Grid -from ..utils import errorif, warnif +from ..utils import errorif from .data_index import allowed_kwargs, data_index # map from profile name to equilibrium parameter name @@ -869,713 +869,3 @@ def tupleset(t, i, value): ) return res - - -def _get_grid_surface(grid, surface_label): - """Return grid quantities associated with the given surface label. - - Parameters - ---------- - grid : Grid - Collocation grid containing the nodes to evaluate at. - surface_label : str - The surface label of rho, poloidal, or zeta. - - Returns - ------- - unique_size : int - The number of the unique values of the surface_label. - inverse_idx : ndarray - Indexing array to go from unique values to full grid. - spacing : ndarray - The relevant columns of grid.spacing. - has_endpoint_dupe : bool - Whether this surface label's nodes have a duplicate at the endpoint - of a periodic domain. (e.g. a node at 0 and 2π). - has_idx : bool - Whether the grid knows the number of unique nodes and inverse idx. - - """ - assert surface_label in {"rho", "poloidal", "zeta"} - if surface_label == "rho": - spacing = grid.spacing[:, 1:] - has_endpoint_dupe = False - elif surface_label == "poloidal": - spacing = grid.spacing[:, [0, 2]] - has_endpoint_dupe = isinstance(grid, LinearGrid) and grid._poloidal_endpoint - else: - spacing = grid.spacing[:, :2] - has_endpoint_dupe = isinstance(grid, LinearGrid) and grid._toroidal_endpoint - has_idx = hasattr(grid, f"num_{surface_label}") and hasattr( - grid, f"_inverse_{surface_label}_idx" - ) - unique_size = getattr(grid, f"num_{surface_label}", -1) - inverse_idx = getattr(grid, f"_inverse_{surface_label}_idx", jnp.array([])) - return unique_size, inverse_idx, spacing, has_endpoint_dupe, has_idx - - -def line_integrals( - grid, - q=jnp.array([1.0]), - line_label="poloidal", - fix_surface=("rho", 1.0), - expand_out=True, - tol=1e-14, -): - """Compute line integrals over curves covering the given surface. - - As an example, by specifying the combination of ``line_label="poloidal"`` and - ``fix_surface=("rho", 1.0)``, the intention is to integrate along the - outermost perimeter of a particular zeta surface (toroidal cross-section), - for each zeta surface in the grid. - - Notes - ----- - It is assumed that the integration curve has length 1 when the line - label is rho and length 2π when the line label is theta or zeta. - You may want to multiply the input by the line length Jacobian. - - The grid must have nodes on the specified surface in ``fix_surface``. - - Correctness is not guaranteed on grids with duplicate nodes. - An attempt to print a warning is made if the given grid has duplicate - nodes and is one of the predefined grid types - (``Linear``, ``Concentric``, ``Quadrature``). - If the grid is custom, no attempt is made to warn. - - Parameters - ---------- - grid : Grid - Collocation grid containing the nodes to evaluate at. - q : ndarray - Quantity to integrate. - The first dimension of the array should have size ``grid.num_nodes``. - When ``q`` is n-dimensional, the intention is to integrate, - over the domain parameterized by rho, poloidal, and zeta, - an n-dimensional function over the previously mentioned domain. - line_label : str - The coordinate curve to compute the integration over. - To clarify, a theta (poloidal) curve is the intersection of a - rho surface (flux surface) and zeta (toroidal) surface. - fix_surface : str, float - A tuple of the form: label, value. - ``fix_surface`` label should differ from ``line_label``. - By default, ``fix_surface`` is chosen to be the flux surface at rho=1. - expand_out : bool - Whether to expand the output array so that the output has the same - shape as the input. Defaults to true so that the output may be - broadcast in the same way as the input. Setting to false will save - memory. - tol : float - Tolerance for considering nodes the same. - Only relevant if the grid object doesn't already have this information. - - Returns - ------- - integrals : ndarray - Line integrals of the input over curves covering the given surface. - By default, the returned array has the same shape as the input. - - """ - line_label = grid.get_label(line_label) - fix_label = grid.get_label(fix_surface[0]) - errorif( - line_label == fix_label, - msg="There is no valid use for this combination of inputs.", - ) - errorif( - line_label != "poloidal" and isinstance(grid, ConcentricGrid), - msg="ConcentricGrid should only be used for poloidal line integrals.", - ) - warnif( - isinstance(grid, LinearGrid) and grid.endpoint, - msg="Correctness not guaranteed on grids with duplicate nodes.", - ) - # Generate a new quantity q_prime which is zero everywhere - # except on the fixed surface, on which q_prime takes the value of q. - # Then forward the computation to surface_integrals(). - # The differential element of the line integral, denoted dl, - # should correspond to the line label's spacing. - # The differential element of the surface integral is - # ds = dl * fix_surface_dl, so we scale q_prime by 1 / fix_surface_dl. - axis = {"rho": 0, "poloidal": 1, "zeta": 2} - column_id = axis[fix_label] - mask = grid.nodes[:, column_id] == fix_surface[1] - q_prime = (mask * jnp.atleast_1d(q).T / grid.spacing[:, column_id]).T - (surface_label,) = axis.keys() - {line_label, fix_label} - return surface_integrals(grid, q_prime, surface_label, expand_out, tol) - - -def surface_integrals( - grid, q=jnp.array([1.0]), surface_label="rho", expand_out=True, tol=1e-14 -): - """Compute a surface integral for each surface in the grid. - - Notes - ----- - It is assumed that the integration surface has area 4π² when the - surface label is rho and area 2π when the surface label is theta or - zeta. You may want to multiply the input by the surface area Jacobian. - - Parameters - ---------- - grid : Grid - Collocation grid containing the nodes to evaluate at. - q : ndarray - Quantity to integrate. - The first dimension of the array should have size ``grid.num_nodes``. - When ``q`` is n-dimensional, the intention is to integrate, - over the domain parameterized by rho, poloidal, and zeta, - an n-dimensional function over the previously mentioned domain. - surface_label : str - The surface label of rho, poloidal, or zeta to compute the integration over. - expand_out : bool - Whether to expand the output array so that the output has the same - shape as the input. Defaults to true so that the output may be - broadcast in the same way as the input. Setting to false will save - memory. - tol : float - Tolerance for considering nodes the same. - Only relevant if the grid object doesn't already have this information. - - Returns - ------- - integrals : ndarray - Surface integral of the input over each surface in the grid. - By default, the returned array has the same shape as the input. - - """ - return surface_integrals_map(grid, surface_label, expand_out, tol)(q) - - -def surface_integrals_map(grid, surface_label="rho", expand_out=True, tol=1e-14): - """Returns a method to compute any surface integral for each surface in the grid. - - Parameters - ---------- - grid : Grid - Collocation grid containing the nodes to evaluate at. - surface_label : str - The surface label of rho, poloidal, or zeta to compute the integration over. - expand_out : bool - Whether to expand the output array so that the output has the same - shape as the input. Defaults to true so that the output may be - broadcast in the same way as the input. Setting to false will save - memory. - tol : float - Tolerance for considering nodes the same. - Only relevant if the grid object doesn't already have this information. - - Returns - ------- - function : callable - Method to compute any surface integral of the input ``q`` over each - surface in the grid with code: ``function(q)``. - - """ - surface_label = grid.get_label(surface_label) - warnif( - surface_label == "poloidal" and isinstance(grid, ConcentricGrid), - msg="Integrals over constant poloidal surfaces" - " are poorly defined for ConcentricGrid.", - ) - unique_size, inverse_idx, spacing, has_endpoint_dupe, has_idx = _get_grid_surface( - grid, surface_label - ) - spacing = jnp.prod(spacing, axis=1) - - # Todo: Define mask as a sparse matrix once sparse matrices are no longer - # experimental in jax. - if has_idx: - # The ith row of masks is True only at the indices which correspond to the - # ith surface. The integral over the ith surface is the dot product of the - # ith row vector and the integrand defined over all the surfaces. - mask = inverse_idx == jnp.arange(unique_size)[:, jnp.newaxis] - # Imagine a torus cross-section at zeta=π. - # A grid with a duplicate zeta=π node has 2 of those cross-sections. - # In grid.py, we multiply by 1/n the areas of surfaces with - # duplicity n. This prevents the area of that surface from being - # double-counted, as surfaces with the same node value are combined - # into 1 integral, which sums their areas. Thus, if the zeta=π - # cross-section has duplicity 2, we ensure that the area on the zeta=π - # surface will have the correct total area of π+π = 2π. - # An edge case exists if the duplicate surface has nodes with - # different values for the surface label, which only occurs when - # has_endpoint_dupe is true. If ``has_endpoint_dupe`` is true, this grid - # has a duplicate surface at surface_label=0 and - # surface_label=max surface value. Although the modulo of these values - # are equal, their numeric values are not, so the integration - # would treat them as different surfaces. We solve this issue by - # combining the indices corresponding to the integrands of the duplicated - # surface, so that the duplicate surface is treated as one, like in the - # previous paragraph. - mask = cond( - has_endpoint_dupe, - lambda _: put(mask, jnp.array([0, -1]), mask[0] | mask[-1]), - lambda _: mask, - operand=None, - ) - else: - # If we don't have the idx attributes, we are forced to expand out. - errorif( - not has_idx and not expand_out, - msg=f"Grid lacks attributes 'num_{surface_label}' and " - f"'inverse_{surface_label}_idx', so this method " - f"can't satisfy the request expand_out={expand_out}.", - ) - # don't try to expand if already expanded - expand_out = expand_out and has_idx - axis = {"rho": 0, "poloidal": 1, "zeta": 2}[surface_label] - # Converting nodes from numpy.ndarray to jaxlib.xla_extension.ArrayImpl - # reduces memory usage by > 400% for the forward computation and Jacobian. - nodes = jnp.asarray(grid.nodes[:, axis]) - # This branch will execute for custom grids, which don't have a use - # case for having duplicate nodes, so we don't bother to modulo nodes - # by 2pi or 2pi/NFP. - mask = jnp.abs(nodes - nodes[:, jnp.newaxis]) <= tol - # The above implementation was benchmarked to be more efficient than - # alternatives with explicit loops in GitHub pull request #934. - - def integrate(q=jnp.array([1.0])): - """Compute a surface integral for each surface in the grid. - - Notes - ----- - It is assumed that the integration surface has area 4π² when the - surface label is rho and area 2π when the surface label is theta or - zeta. You may want to multiply the input by the surface area Jacobian. - - Parameters - ---------- - q : ndarray - Quantity to integrate. - The first dimension of the array should have size ``grid.num_nodes``. - When ``q`` is n-dimensional, the intention is to integrate, - over the domain parameterized by rho, poloidal, and zeta, - an n-dimensional function over the previously mentioned domain. - - Returns - ------- - integrals : ndarray - Surface integral of the input over each surface in the grid. - - """ - integrands = (spacing * jnp.nan_to_num(q).T).T - integrals = jnp.tensordot(mask, integrands, axes=1) - return grid.expand(integrals, surface_label) if expand_out else integrals - - return integrate - - -def surface_averages( - grid, - q, - sqrt_g=jnp.array([1.0]), - surface_label="rho", - denominator=None, - expand_out=True, - tol=1e-14, -): - """Compute a surface average for each surface in the grid. - - Notes - ----- - Implements the flux-surface average formula given by equation 4.9.11 in - W.D. D'haeseleer et al. (1991) doi:10.1007/978-3-642-75595-8. - - Parameters - ---------- - grid : Grid - Collocation grid containing the nodes to evaluate at. - q : ndarray - Quantity to average. - The first dimension of the array should have size ``grid.num_nodes``. - When ``q`` is n-dimensional, the intention is to average, - over the domain parameterized by rho, poloidal, and zeta, - an n-dimensional function over the previously mentioned domain. - sqrt_g : ndarray - Coordinate system Jacobian determinant; see ``data_index["sqrt(g)"]``. - surface_label : str - The surface label of rho, poloidal, or zeta to compute the average over. - denominator : ndarray - By default, the denominator is computed as the surface integral of - ``sqrt_g``. This parameter can optionally be supplied to avoid - redundant computations or to use a different denominator to compute - the average. This array should broadcast with arrays of size - ``grid.num_nodes`` (``grid.num_surface_label``) if ``expand_out`` - is true (false). - expand_out : bool - Whether to expand the output array so that the output has the same - shape as the input. Defaults to true so that the output may be - broadcast in the same way as the input. Setting to false will save - memory. - tol : float - Tolerance for considering nodes the same. - Only relevant if the grid object doesn't already have this information. - - Returns - ------- - averages : ndarray - Surface average of the input over each surface in the grid. - By default, the returned array has the same shape as the input. - - """ - return surface_averages_map(grid, surface_label, expand_out, tol)( - q, sqrt_g, denominator - ) - - -def surface_averages_map(grid, surface_label="rho", expand_out=True, tol=1e-14): - """Returns a method to compute any surface average for each surface in the grid. - - Parameters - ---------- - grid : Grid - Collocation grid containing the nodes to evaluate at. - surface_label : str - The surface label of rho, poloidal, or zeta to compute the average over. - expand_out : bool - Whether to expand the output array so that the output has the same - shape as the input. Defaults to true so that the output may be - broadcast in the same way as the input. Setting to false will save - memory. - tol : float - Tolerance for considering nodes the same. - Only relevant if the grid object doesn't already have this information. - - Returns - ------- - function : callable - Method to compute any surface average of the input ``q`` and optionally - the volume Jacobian ``sqrt_g`` over each surface in the grid with code: - ``function(q, sqrt_g)``. - - """ - surface_label = grid.get_label(surface_label) - has_idx = hasattr(grid, f"num_{surface_label}") and hasattr( - grid, f"_inverse_{surface_label}_idx" - ) - # If we don't have the idx attributes, we are forced to expand out. - errorif( - not has_idx and not expand_out, - msg=f"Grid lacks attributes 'num_{surface_label}' and " - f"'inverse_{surface_label}_idx', so this method " - f"can't satisfy the request expand_out={expand_out}.", - ) - integrate = surface_integrals_map( - grid, surface_label, expand_out=not has_idx, tol=tol - ) - # don't try to expand if already expanded - expand_out = expand_out and has_idx - - def _surface_averages(q, sqrt_g=jnp.array([1.0]), denominator=None): - """Compute a surface average for each surface in the grid. - - Notes - ----- - Implements the flux-surface average formula given by equation 4.9.11 in - W.D. D'haeseleer et al. (1991) doi:10.1007/978-3-642-75595-8. - - Parameters - ---------- - q : ndarray - Quantity to average. - The first dimension of the array should have size ``grid.num_nodes``. - When ``q`` is n-dimensional, the intention is to average, - over the domain parameterized by rho, poloidal, and zeta, - an n-dimensional function over the previously mentioned domain. - sqrt_g : ndarray - Coordinate system Jacobian determinant; see ``data_index["sqrt(g)"]``. - denominator : ndarray - By default, the denominator is computed as the surface integral of - ``sqrt_g``. This parameter can optionally be supplied to avoid - redundant computations or to use a different denominator to compute - the average. This array should broadcast with arrays of size - ``grid.num_nodes`` (``grid.num_surface_label``) if ``expand_out`` - is true (false). - - Returns - ------- - averages : ndarray - Surface average of the input over each surface in the grid. - - """ - q, sqrt_g = jnp.atleast_1d(q, sqrt_g) - numerator = integrate((sqrt_g * q.T).T) - # memory optimization to call expand() at most once - if denominator is None: - # skip integration if constant - denominator = ( - (4 * jnp.pi**2 if surface_label == "rho" else 2 * jnp.pi) * sqrt_g - if sqrt_g.size == 1 - else integrate(sqrt_g) - ) - averages = (numerator.T / denominator).T - if expand_out: - averages = grid.expand(averages, surface_label) - else: - if expand_out: - # implies denominator given with size grid.num_nodes - numerator = grid.expand(numerator, surface_label) - averages = (numerator.T / denominator).T - return averages - - return _surface_averages - - -def surface_integrals_transform(grid, surface_label="rho"): - """Returns a method to compute any integral transform over each surface in grid. - - The returned method takes an array input ``q`` and returns an array output. - - Given a set of kernel functions in ``q``, each parameterized by at most - five variables, the returned method computes an integral transform, - reducing ``q`` to a set of functions of at most three variables. - - Define the domain D = u₁ × u₂ × u₃ and the codomain C = u₄ × u₅ × u₆. - For every surface of constant u₁ in the domain, the returned method - evaluates the transform Tᵤ₁ : u₂ × u₃ × C → C, where Tᵤ₁ projects - away the parameters u₂ and u₃ via an integration of the given kernel - function Kᵤ₁ over the corresponding surface of constant u₁. - - Notes - ----- - It is assumed that the integration surface has area 4π² when the - surface label is rho and area 2π when the surface label is theta or - zeta. You may want to multiply the input ``q`` by the surface area - Jacobian. - - Parameters - ---------- - grid : Grid - Collocation grid containing the nodes to evaluate at. - surface_label : str - The surface label of rho, poloidal, or zeta to compute the integration over. - These correspond to the domain parameters discussed in this method's - description. In particular, ``surface_label`` names u₁. - - Returns - ------- - function : callable - Method to compute any surface integral transform of the input ``q`` over - each surface in the grid with code: ``function(q)``. - - The first dimension of ``q`` should always discretize some function, g, - over the domain, and therefore, have size ``grid.num_nodes``. - The second dimension may discretize some function, f, over the - codomain, and therefore, have size that matches the desired number of - points at which the output is evaluated. - - This method can also be used to compute the output one point at a time, - in which case ``q`` can have shape (``grid.num_nodes``, ). - - Input - ----- - If ``q`` has one dimension, then it should have shape - (``grid.num_nodes``, ). - If ``q`` has multiple dimensions, then it should have shape - (``grid.num_nodes``, *f.shape). - - Output - ------ - Each element along the first dimension of the returned array, stores - Tᵤ₁ for a particular surface of constant u₁ in the given grid. - The order is sorted in increasing order of the values which specify u₁. - - If ``q`` has one dimension, the returned array has shape - (grid.num_surface_label, ). - If ``q`` has multiple dimensions, the returned array has shape - (grid.num_surface_label, *f.shape). - - """ - # Expansion should not occur here. The typical use case of this method is to - # transform into the computational domain, so the second dimension that - # discretizes f over the codomain will typically have size grid.num_nodes - # to broadcast with quantities in data_index. - surface_label = grid.get_label(surface_label) - has_idx = hasattr(grid, f"num_{surface_label}") and hasattr( - grid, f"_inverse_{surface_label}_idx" - ) - errorif( - not has_idx, - msg=f"Grid lacks attributes 'num_{surface_label}' and " - f"'inverse_{surface_label}_idx', which are required for this function.", - ) - return surface_integrals_map(grid, surface_label, expand_out=False) - - -def surface_variance( - grid, - q, - weights=jnp.array([1.0]), - bias=False, - surface_label="rho", - expand_out=True, - tol=1e-14, -): - """Compute the weighted sample variance of ``q`` on each surface of the grid. - - Computes nₑ / (nₑ − b) * (∑ᵢ₌₁ⁿ (qᵢ − q̅)² wᵢ) / (∑ᵢ₌₁ⁿ wᵢ). - wᵢ is the weight assigned to qᵢ given by the product of ``weights[i]`` and - the differential surface area element (not already weighted by the area - Jacobian) at the node where qᵢ is evaluated, - q̅ is the weighted mean of q, - b is 0 if the biased sample variance is to be returned and 1 otherwise, - n is the number of samples on a surface, and - nₑ ≝ (∑ᵢ₌₁ⁿ wᵢ)² / ∑ᵢ₌₁ⁿ wᵢ² is the effective number of samples. - - As the weights wᵢ approach each other, nₑ approaches n, and the output - converges to ∑ᵢ₌₁ⁿ (qᵢ − q̅)² / (n − b). - - Notes - ----- - There are three different methods to unbias the variance of a weighted - sample so that the computed variance better estimates the true variance. - Whether the method is correct for a particular use case depends on what - the weights assigned to each sample represent. - - This function implements the first case, where the weights are not random - and are intended to assign more weight to some samples for reasons - unrelated to differences in uncertainty between samples. See - https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Reliability_weights. - - The second case is when the weights are intended to assign more weight - to samples with less uncertainty. See - https://en.wikipedia.org/wiki/Inverse-variance_weighting. - The unbiased sample variance for this case is obtained by replacing the - effective number of samples in the formula this function implements, - nₑ, with the actual number of samples n. - - The third case is when the weights denote the integer frequency of each - sample. See - https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Frequency_weights. - This is indeed a distinct case from the above two because here the - weights encode additional information about the distribution. - - Parameters - ---------- - grid : Grid - Collocation grid containing the nodes to evaluate at. - q : ndarray - Quantity to compute the sample variance. - weights : ndarray - Weight assigned to each sample of ``q``. - A good candidate for this parameter is the surface area Jacobian. - bias : bool - If this condition is true, then the biased estimator of the sample - variance is returned. This is desirable if you are only concerned with - computing the variance of the given set of numbers and not the - distribution the numbers are (potentially) sampled from. - surface_label : str - The surface label of rho, poloidal, or zeta to compute the variance over. - expand_out : bool - Whether to expand the output array so that the output has the same - shape as the input. Defaults to true so that the output may be - broadcast in the same way as the input. Setting to false will save - memory. - tol : float - Tolerance for considering nodes the same. - Only relevant if the grid object doesn't already have this information. - - Returns - ------- - variance : ndarray - Variance of the given weighted sample over each surface in the grid. - By default, the returned array has the same shape as the input. - - """ - surface_label = grid.get_label(surface_label) - _, _, spacing, _, has_idx = _get_grid_surface(grid, surface_label) - # If we don't have the idx attributes, we are forced to expand out. - errorif( - not has_idx and not expand_out, - msg=f"Grid lacks attributes 'num_{surface_label}' and " - f"'inverse_{surface_label}_idx', so this method " - f"can't satisfy the request expand_out={expand_out}.", - ) - integrate = surface_integrals_map( - grid, surface_label, expand_out=not has_idx, tol=tol - ) - - v1 = integrate(weights) - v2 = integrate(weights**2 * jnp.prod(spacing, axis=-1)) - # effective number of samples per surface - n_e = v1**2 / v2 - # analogous to Bessel's bias correction - correction = n_e / (n_e - (not bias)) - - q = jnp.atleast_1d(q) - # compute variance in two passes to avoid catastrophic round off error - mean = (integrate((weights * q.T).T).T / v1).T - if has_idx: # guard so that we don't try to expand when already expanded - mean = grid.expand(mean, surface_label) - variance = (correction * integrate((weights * ((q - mean) ** 2).T).T).T / v1).T - if expand_out and has_idx: - return grid.expand(variance, surface_label) - else: - return variance - - -def surface_max(grid, x, surface_label="rho"): - """Get the max of x for each surface in the grid. - - Parameters - ---------- - grid : Grid - Collocation grid containing the nodes to evaluate at. - x : ndarray - Quantity to find max. - The array should have size grid.num_nodes. - surface_label : str - The surface label of rho, poloidal, or zeta to compute max over. - - Returns - ------- - maxs : ndarray - Maximum of x over each surface in grid. - The returned array has the same shape as the input. - - """ - return -surface_min(grid, -x, surface_label) - - -def surface_min(grid, x, surface_label="rho"): - """Get the min of x for each surface in the grid. - - Parameters - ---------- - grid : Grid - Collocation grid containing the nodes to evaluate at. - x : ndarray - Quantity to find min. - The array should have size grid.num_nodes. - surface_label : str - The surface label of rho, poloidal, or zeta to compute min over. - - Returns - ------- - mins : ndarray - Minimum of x over each surface in grid. - The returned array has the same shape as the input. - - """ - surface_label = grid.get_label(surface_label) - unique_size, inverse_idx, _, _, has_idx = _get_grid_surface(grid, surface_label) - errorif( - not has_idx, - NotImplementedError, - msg=f"Grid lacks attributes 'num_{surface_label}' and " - f"'inverse_{surface_label}_idx', which are required for this function.", - ) - inverse_idx = jnp.asarray(inverse_idx) - x = jnp.asarray(x) - mins = jnp.full(unique_size, jnp.inf) - - def body(i, mins): - mins = put(mins, inverse_idx[i], jnp.minimum(x[i], mins[inverse_idx[i]])) - return mins - - mins = fori_loop(0, inverse_idx.size, body, mins) - # The above implementation was benchmarked to be more efficient than - # alternatives without explicit loops in GitHub pull request #501. - return grid.expand(mins, surface_label) diff --git a/desc/integrals/__init__.py b/desc/integrals/__init__.py new file mode 100644 index 0000000000..f223e39606 --- /dev/null +++ b/desc/integrals/__init__.py @@ -0,0 +1,20 @@ +"""Classes for function integration.""" + +from .singularities import ( + DFTInterpolator, + FFTInterpolator, + compute_B_plasma, + singular_integral, + virtual_casing_biot_savart, +) +from .surface_integral import ( + line_integrals, + surface_averages, + surface_averages_map, + surface_integrals, + surface_integrals_map, + surface_integrals_transform, + surface_max, + surface_min, + surface_variance, +) diff --git a/desc/singularities.py b/desc/integrals/singularities.py similarity index 99% rename from desc/singularities.py rename to desc/integrals/singularities.py index 4c3b2d9558..3730c172af 100644 --- a/desc/singularities.py +++ b/desc/integrals/singularities.py @@ -8,7 +8,7 @@ from desc.backend import fori_loop, jnp, put, vmap from desc.basis import DoubleFourierSeries -from desc.compute import rpz2xyz, rpz2xyz_vec, xyz2rpz_vec +from desc.compute.geom_utils import rpz2xyz, rpz2xyz_vec, xyz2rpz_vec from desc.compute.utils import safediv, safenorm from desc.grid import LinearGrid from desc.io import IOAble diff --git a/desc/integrals/surface_integral.py b/desc/integrals/surface_integral.py new file mode 100644 index 0000000000..acc1e6c1b9 --- /dev/null +++ b/desc/integrals/surface_integral.py @@ -0,0 +1,724 @@ +"""Surface integrals of non-singular functions. + +If you would like to view a detailed tutorial for use of these functions, see +https://desc-docs.readthedocs.io/en/latest/notebooks/dev_guide/grid.html. +""" + +from desc.backend import cond, fori_loop, jnp, put +from desc.grid import ConcentricGrid, LinearGrid +from desc.utils import errorif, warnif + +# TODO: Make the surface integral stuff objects with a callable method instead of +# returning functions. Would make simpler, allow users to actually see the +# docstrings of the methods, and less bookkeeping to default to more +# efficient methods on tensor product grids. + + +def _get_grid_surface(grid, surface_label): + """Return grid quantities associated with the given surface label. + + Parameters + ---------- + grid : Grid + Collocation grid containing the nodes to evaluate at. + surface_label : str + The surface label of rho, poloidal, or zeta. + + Returns + ------- + unique_size : int + The number of the unique values of the surface_label. + inverse_idx : ndarray + Indexing array to go from unique values to full grid. + spacing : ndarray + The relevant columns of grid.spacing. + has_endpoint_dupe : bool + Whether this surface label's nodes have a duplicate at the endpoint + of a periodic domain. (e.g. a node at 0 and 2π). + has_idx : bool + Whether the grid knows the number of unique nodes and inverse idx. + + """ + assert surface_label in {"rho", "poloidal", "zeta"} + if surface_label == "rho": + spacing = grid.spacing[:, 1:] + has_endpoint_dupe = False + elif surface_label == "poloidal": + spacing = grid.spacing[:, [0, 2]] + has_endpoint_dupe = isinstance(grid, LinearGrid) and grid._poloidal_endpoint + else: + spacing = grid.spacing[:, :2] + has_endpoint_dupe = isinstance(grid, LinearGrid) and grid._toroidal_endpoint + has_idx = hasattr(grid, f"num_{surface_label}") and hasattr( + grid, f"_inverse_{surface_label}_idx" + ) + unique_size = getattr(grid, f"num_{surface_label}", -1) + inverse_idx = getattr(grid, f"_inverse_{surface_label}_idx", jnp.array([])) + return unique_size, inverse_idx, spacing, has_endpoint_dupe, has_idx + + +def line_integrals( + grid, + q=jnp.array([1.0]), + line_label="poloidal", + fix_surface=("rho", 1.0), + expand_out=True, + tol=1e-14, +): + """Compute line integrals over curves covering the given surface. + + As an example, by specifying the combination of ``line_label="poloidal"`` and + ``fix_surface=("rho", 1.0)``, the intention is to integrate along the + outermost perimeter of a particular zeta surface (toroidal cross-section), + for each zeta surface in the grid. + + Notes + ----- + It is assumed that the integration curve has length 1 when the line + label is rho and length 2π when the line label is theta or zeta. + You may want to multiply the input by the line length Jacobian. + + The grid must have nodes on the specified surface in ``fix_surface``. + + Correctness is not guaranteed on grids with duplicate nodes. + An attempt to print a warning is made if the given grid has duplicate + nodes and is one of the predefined grid types + (``Linear``, ``Concentric``, ``Quadrature``). + If the grid is custom, no attempt is made to warn. + + Parameters + ---------- + grid : Grid + Collocation grid containing the nodes to evaluate at. + q : ndarray + Quantity to integrate. + The first dimension of the array should have size ``grid.num_nodes``. + When ``q`` is n-dimensional, the intention is to integrate, + over the domain parameterized by rho, poloidal, and zeta, + an n-dimensional function over the previously mentioned domain. + line_label : str + The coordinate curve to compute the integration over. + To clarify, a theta (poloidal) curve is the intersection of a + rho surface (flux surface) and zeta (toroidal) surface. + fix_surface : str, float + A tuple of the form: label, value. + ``fix_surface`` label should differ from ``line_label``. + By default, ``fix_surface`` is chosen to be the flux surface at rho=1. + expand_out : bool + Whether to expand the output array so that the output has the same + shape as the input. Defaults to true so that the output may be + broadcast in the same way as the input. Setting to false will save + memory. + tol : float + Tolerance for considering nodes the same. + Only relevant if the grid object doesn't already have this information. + + Returns + ------- + integrals : ndarray + Line integrals of the input over curves covering the given surface. + By default, the returned array has the same shape as the input. + + """ + line_label = grid.get_label(line_label) + fix_label = grid.get_label(fix_surface[0]) + errorif( + line_label == fix_label, + msg="There is no valid use for this combination of inputs.", + ) + errorif( + line_label != "poloidal" and isinstance(grid, ConcentricGrid), + msg="ConcentricGrid should only be used for poloidal line integrals.", + ) + warnif( + isinstance(grid, LinearGrid) and grid.endpoint, + msg="Correctness not guaranteed on grids with duplicate nodes.", + ) + # Generate a new quantity q_prime which is zero everywhere + # except on the fixed surface, on which q_prime takes the value of q. + # Then forward the computation to surface_integrals(). + # The differential element of the line integral, denoted dl, + # should correspond to the line label's spacing. + # The differential element of the surface integral is + # ds = dl * fix_surface_dl, so we scale q_prime by 1 / fix_surface_dl. + axis = {"rho": 0, "poloidal": 1, "zeta": 2} + column_id = axis[fix_label] + mask = grid.nodes[:, column_id] == fix_surface[1] + q_prime = (mask * jnp.atleast_1d(q).T / grid.spacing[:, column_id]).T + (surface_label,) = axis.keys() - {line_label, fix_label} + return surface_integrals(grid, q_prime, surface_label, expand_out, tol) + + +def surface_integrals( + grid, q=jnp.array([1.0]), surface_label="rho", expand_out=True, tol=1e-14 +): + """Compute a surface integral for each surface in the grid. + + Notes + ----- + It is assumed that the integration surface has area 4π² when the + surface label is rho and area 2π when the surface label is theta or + zeta. You may want to multiply the input by the surface area Jacobian. + + Parameters + ---------- + grid : Grid + Collocation grid containing the nodes to evaluate at. + q : ndarray + Quantity to integrate. + The first dimension of the array should have size ``grid.num_nodes``. + When ``q`` is n-dimensional, the intention is to integrate, + over the domain parameterized by rho, poloidal, and zeta, + an n-dimensional function over the previously mentioned domain. + surface_label : str + The surface label of rho, poloidal, or zeta to compute the integration over. + expand_out : bool + Whether to expand the output array so that the output has the same + shape as the input. Defaults to true so that the output may be + broadcast in the same way as the input. Setting to false will save + memory. + tol : float + Tolerance for considering nodes the same. + Only relevant if the grid object doesn't already have this information. + + Returns + ------- + integrals : ndarray + Surface integral of the input over each surface in the grid. + By default, the returned array has the same shape as the input. + + """ + return surface_integrals_map(grid, surface_label, expand_out, tol)(q) + + +def surface_integrals_map(grid, surface_label="rho", expand_out=True, tol=1e-14): + """Returns a method to compute any surface integral for each surface in the grid. + + Parameters + ---------- + grid : Grid + Collocation grid containing the nodes to evaluate at. + surface_label : str + The surface label of rho, poloidal, or zeta to compute the integration over. + expand_out : bool + Whether to expand the output array so that the output has the same + shape as the input. Defaults to true so that the output may be + broadcast in the same way as the input. Setting to false will save + memory. + tol : float + Tolerance for considering nodes the same. + Only relevant if the grid object doesn't already have this information. + + Returns + ------- + function : callable + Method to compute any surface integral of the input ``q`` over each + surface in the grid with code: ``function(q)``. + + """ + surface_label = grid.get_label(surface_label) + warnif( + surface_label == "poloidal" and isinstance(grid, ConcentricGrid), + msg="Integrals over constant poloidal surfaces" + " are poorly defined for ConcentricGrid.", + ) + unique_size, inverse_idx, spacing, has_endpoint_dupe, has_idx = _get_grid_surface( + grid, surface_label + ) + spacing = jnp.prod(spacing, axis=1) + + # Todo: Define mask as a sparse matrix once sparse matrices are no longer + # experimental in jax. + if has_idx: + # The ith row of masks is True only at the indices which correspond to the + # ith surface. The integral over the ith surface is the dot product of the + # ith row vector and the integrand defined over all the surfaces. + mask = inverse_idx == jnp.arange(unique_size)[:, jnp.newaxis] + # Imagine a torus cross-section at zeta=π. + # A grid with a duplicate zeta=π node has 2 of those cross-sections. + # In grid.py, we multiply by 1/n the areas of surfaces with + # duplicity n. This prevents the area of that surface from being + # double-counted, as surfaces with the same node value are combined + # into 1 integral, which sums their areas. Thus, if the zeta=π + # cross-section has duplicity 2, we ensure that the area on the zeta=π + # surface will have the correct total area of π+π = 2π. + # An edge case exists if the duplicate surface has nodes with + # different values for the surface label, which only occurs when + # has_endpoint_dupe is true. If ``has_endpoint_dupe`` is true, this grid + # has a duplicate surface at surface_label=0 and + # surface_label=max surface value. Although the modulo of these values + # are equal, their numeric values are not, so the integration + # would treat them as different surfaces. We solve this issue by + # combining the indices corresponding to the integrands of the duplicated + # surface, so that the duplicate surface is treated as one, like in the + # previous paragraph. + mask = cond( + has_endpoint_dupe, + lambda _: put(mask, jnp.array([0, -1]), mask[0] | mask[-1]), + lambda _: mask, + operand=None, + ) + else: + # If we don't have the idx attributes, we are forced to expand out. + errorif( + not has_idx and not expand_out, + msg=f"Grid lacks attributes 'num_{surface_label}' and " + f"'inverse_{surface_label}_idx', so this method " + f"can't satisfy the request expand_out={expand_out}.", + ) + # don't try to expand if already expanded + expand_out = expand_out and has_idx + axis = {"rho": 0, "poloidal": 1, "zeta": 2}[surface_label] + # Converting nodes from numpy.ndarray to jaxlib.xla_extension.ArrayImpl + # reduces memory usage by > 400% for the forward computation and Jacobian. + nodes = jnp.asarray(grid.nodes[:, axis]) + # This branch will execute for custom grids, which don't have a use + # case for having duplicate nodes, so we don't bother to modulo nodes + # by 2pi or 2pi/NFP. + mask = jnp.abs(nodes - nodes[:, jnp.newaxis]) <= tol + # The above implementation was benchmarked to be more efficient than + # alternatives with explicit loops in GitHub pull request #934. + + def integrate(q=jnp.array([1.0])): + """Compute a surface integral for each surface in the grid. + + Notes + ----- + It is assumed that the integration surface has area 4π² when the + surface label is rho and area 2π when the surface label is theta or + zeta. You may want to multiply the input by the surface area Jacobian. + + Parameters + ---------- + q : ndarray + Quantity to integrate. + The first dimension of the array should have size ``grid.num_nodes``. + When ``q`` is n-dimensional, the intention is to integrate, + over the domain parameterized by rho, poloidal, and zeta, + an n-dimensional function over the previously mentioned domain. + + Returns + ------- + integrals : ndarray + Surface integral of the input over each surface in the grid. + + """ + integrands = (spacing * jnp.nan_to_num(q).T).T + integrals = jnp.tensordot(mask, integrands, axes=1) + return grid.expand(integrals, surface_label) if expand_out else integrals + + return integrate + + +def surface_averages( + grid, + q, + sqrt_g=jnp.array([1.0]), + surface_label="rho", + denominator=None, + expand_out=True, + tol=1e-14, +): + """Compute a surface average for each surface in the grid. + + Notes + ----- + Implements the flux-surface average formula given by equation 4.9.11 in + W.D. D'haeseleer et al. (1991) doi:10.1007/978-3-642-75595-8. + + Parameters + ---------- + grid : Grid + Collocation grid containing the nodes to evaluate at. + q : ndarray + Quantity to average. + The first dimension of the array should have size ``grid.num_nodes``. + When ``q`` is n-dimensional, the intention is to average, + over the domain parameterized by rho, poloidal, and zeta, + an n-dimensional function over the previously mentioned domain. + sqrt_g : ndarray + Coordinate system Jacobian determinant; see ``data_index["sqrt(g)"]``. + surface_label : str + The surface label of rho, poloidal, or zeta to compute the average over. + denominator : ndarray + By default, the denominator is computed as the surface integral of + ``sqrt_g``. This parameter can optionally be supplied to avoid + redundant computations or to use a different denominator to compute + the average. This array should broadcast with arrays of size + ``grid.num_nodes`` (``grid.num_surface_label``) if ``expand_out`` + is true (false). + expand_out : bool + Whether to expand the output array so that the output has the same + shape as the input. Defaults to true so that the output may be + broadcast in the same way as the input. Setting to false will save + memory. + tol : float + Tolerance for considering nodes the same. + Only relevant if the grid object doesn't already have this information. + + Returns + ------- + averages : ndarray + Surface average of the input over each surface in the grid. + By default, the returned array has the same shape as the input. + + """ + return surface_averages_map(grid, surface_label, expand_out, tol)( + q, sqrt_g, denominator + ) + + +def surface_averages_map(grid, surface_label="rho", expand_out=True, tol=1e-14): + """Returns a method to compute any surface average for each surface in the grid. + + Parameters + ---------- + grid : Grid + Collocation grid containing the nodes to evaluate at. + surface_label : str + The surface label of rho, poloidal, or zeta to compute the average over. + expand_out : bool + Whether to expand the output array so that the output has the same + shape as the input. Defaults to true so that the output may be + broadcast in the same way as the input. Setting to false will save + memory. + tol : float + Tolerance for considering nodes the same. + Only relevant if the grid object doesn't already have this information. + + Returns + ------- + function : callable + Method to compute any surface average of the input ``q`` and optionally + the volume Jacobian ``sqrt_g`` over each surface in the grid with code: + ``function(q, sqrt_g)``. + + """ + surface_label = grid.get_label(surface_label) + has_idx = hasattr(grid, f"num_{surface_label}") and hasattr( + grid, f"_inverse_{surface_label}_idx" + ) + # If we don't have the idx attributes, we are forced to expand out. + errorif( + not has_idx and not expand_out, + msg=f"Grid lacks attributes 'num_{surface_label}' and " + f"'inverse_{surface_label}_idx', so this method " + f"can't satisfy the request expand_out={expand_out}.", + ) + integrate = surface_integrals_map( + grid, surface_label, expand_out=not has_idx, tol=tol + ) + # don't try to expand if already expanded + expand_out = expand_out and has_idx + + def _surface_averages(q, sqrt_g=jnp.array([1.0]), denominator=None): + """Compute a surface average for each surface in the grid. + + Notes + ----- + Implements the flux-surface average formula given by equation 4.9.11 in + W.D. D'haeseleer et al. (1991) doi:10.1007/978-3-642-75595-8. + + Parameters + ---------- + q : ndarray + Quantity to average. + The first dimension of the array should have size ``grid.num_nodes``. + When ``q`` is n-dimensional, the intention is to average, + over the domain parameterized by rho, poloidal, and zeta, + an n-dimensional function over the previously mentioned domain. + sqrt_g : ndarray + Coordinate system Jacobian determinant; see ``data_index["sqrt(g)"]``. + denominator : ndarray + By default, the denominator is computed as the surface integral of + ``sqrt_g``. This parameter can optionally be supplied to avoid + redundant computations or to use a different denominator to compute + the average. This array should broadcast with arrays of size + ``grid.num_nodes`` (``grid.num_surface_label``) if ``expand_out`` + is true (false). + + Returns + ------- + averages : ndarray + Surface average of the input over each surface in the grid. + + """ + q, sqrt_g = jnp.atleast_1d(q, sqrt_g) + numerator = integrate((sqrt_g * q.T).T) + # memory optimization to call expand() at most once + if denominator is None: + # skip integration if constant + denominator = ( + (4 * jnp.pi**2 if surface_label == "rho" else 2 * jnp.pi) * sqrt_g + if sqrt_g.size == 1 + else integrate(sqrt_g) + ) + averages = (numerator.T / denominator).T + if expand_out: + averages = grid.expand(averages, surface_label) + else: + if expand_out: + # implies denominator given with size grid.num_nodes + numerator = grid.expand(numerator, surface_label) + averages = (numerator.T / denominator).T + return averages + + return _surface_averages + + +def surface_integrals_transform(grid, surface_label="rho"): + """Returns a method to compute any integral transform over each surface in grid. + + The returned method takes an array input ``q`` and returns an array output. + + Given a set of kernel functions in ``q``, each parameterized by at most + five variables, the returned method computes an integral transform, + reducing ``q`` to a set of functions of at most three variables. + + Define the domain D = u₁ × u₂ × u₃ and the codomain C = u₄ × u₅ × u₆. + For every surface of constant u₁ in the domain, the returned method + evaluates the transform Tᵤ₁ : u₂ × u₃ × C → C, where Tᵤ₁ projects + away the parameters u₂ and u₃ via an integration of the given kernel + function Kᵤ₁ over the corresponding surface of constant u₁. + + Notes + ----- + It is assumed that the integration surface has area 4π² when the + surface label is rho and area 2π when the surface label is theta or + zeta. You may want to multiply the input ``q`` by the surface area + Jacobian. + + Parameters + ---------- + grid : Grid + Collocation grid containing the nodes to evaluate at. + surface_label : str + The surface label of rho, poloidal, or zeta to compute the integration over. + These correspond to the domain parameters discussed in this method's + description. In particular, ``surface_label`` names u₁. + + Returns + ------- + function : callable + Method to compute any surface integral transform of the input ``q`` over + each surface in the grid with code: ``function(q)``. + + The first dimension of ``q`` should always discretize some function, g, + over the domain, and therefore, have size ``grid.num_nodes``. + The second dimension may discretize some function, f, over the + codomain, and therefore, have size that matches the desired number of + points at which the output is evaluated. + + This method can also be used to compute the output one point at a time, + in which case ``q`` can have shape (``grid.num_nodes``, ). + + Input + ----- + If ``q`` has one dimension, then it should have shape + (``grid.num_nodes``, ). + If ``q`` has multiple dimensions, then it should have shape + (``grid.num_nodes``, *f.shape). + + Output + ------ + Each element along the first dimension of the returned array, stores + Tᵤ₁ for a particular surface of constant u₁ in the given grid. + The order is sorted in increasing order of the values which specify u₁. + + If ``q`` has one dimension, the returned array has shape + (grid.num_surface_label, ). + If ``q`` has multiple dimensions, the returned array has shape + (grid.num_surface_label, *f.shape). + + """ + # Expansion should not occur here. The typical use case of this method is to + # transform into the computational domain, so the second dimension that + # discretizes f over the codomain will typically have size grid.num_nodes + # to broadcast with quantities in data_index. + surface_label = grid.get_label(surface_label) + has_idx = hasattr(grid, f"num_{surface_label}") and hasattr( + grid, f"_inverse_{surface_label}_idx" + ) + errorif( + not has_idx, + msg=f"Grid lacks attributes 'num_{surface_label}' and " + f"'inverse_{surface_label}_idx', which are required for this function.", + ) + return surface_integrals_map(grid, surface_label, expand_out=False) + + +def surface_variance( + grid, + q, + weights=jnp.array([1.0]), + bias=False, + surface_label="rho", + expand_out=True, + tol=1e-14, +): + """Compute the weighted sample variance of ``q`` on each surface of the grid. + + Computes nₑ / (nₑ − b) * (∑ᵢ₌₁ⁿ (qᵢ − q̅)² wᵢ) / (∑ᵢ₌₁ⁿ wᵢ). + wᵢ is the weight assigned to qᵢ given by the product of ``weights[i]`` and + the differential surface area element (not already weighted by the area + Jacobian) at the node where qᵢ is evaluated, + q̅ is the weighted mean of q, + b is 0 if the biased sample variance is to be returned and 1 otherwise, + n is the number of samples on a surface, and + nₑ ≝ (∑ᵢ₌₁ⁿ wᵢ)² / ∑ᵢ₌₁ⁿ wᵢ² is the effective number of samples. + + As the weights wᵢ approach each other, nₑ approaches n, and the output + converges to ∑ᵢ₌₁ⁿ (qᵢ − q̅)² / (n − b). + + Notes + ----- + There are three different methods to unbias the variance of a weighted + sample so that the computed variance better estimates the true variance. + Whether the method is correct for a particular use case depends on what + the weights assigned to each sample represent. + + This function implements the first case, where the weights are not random + and are intended to assign more weight to some samples for reasons + unrelated to differences in uncertainty between samples. See + https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Reliability_weights. + + The second case is when the weights are intended to assign more weight + to samples with less uncertainty. See + https://en.wikipedia.org/wiki/Inverse-variance_weighting. + The unbiased sample variance for this case is obtained by replacing the + effective number of samples in the formula this function implements, + nₑ, with the actual number of samples n. + + The third case is when the weights denote the integer frequency of each + sample. See + https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Frequency_weights. + This is indeed a distinct case from the above two because here the + weights encode additional information about the distribution. + + Parameters + ---------- + grid : Grid + Collocation grid containing the nodes to evaluate at. + q : ndarray + Quantity to compute the sample variance. + weights : ndarray + Weight assigned to each sample of ``q``. + A good candidate for this parameter is the surface area Jacobian. + bias : bool + If this condition is true, then the biased estimator of the sample + variance is returned. This is desirable if you are only concerned with + computing the variance of the given set of numbers and not the + distribution the numbers are (potentially) sampled from. + surface_label : str + The surface label of rho, poloidal, or zeta to compute the variance over. + expand_out : bool + Whether to expand the output array so that the output has the same + shape as the input. Defaults to true so that the output may be + broadcast in the same way as the input. Setting to false will save + memory. + tol : float + Tolerance for considering nodes the same. + Only relevant if the grid object doesn't already have this information. + + Returns + ------- + variance : ndarray + Variance of the given weighted sample over each surface in the grid. + By default, the returned array has the same shape as the input. + + """ + surface_label = grid.get_label(surface_label) + _, _, spacing, _, has_idx = _get_grid_surface(grid, surface_label) + # If we don't have the idx attributes, we are forced to expand out. + errorif( + not has_idx and not expand_out, + msg=f"Grid lacks attributes 'num_{surface_label}' and " + f"'inverse_{surface_label}_idx', so this method " + f"can't satisfy the request expand_out={expand_out}.", + ) + integrate = surface_integrals_map( + grid, surface_label, expand_out=not has_idx, tol=tol + ) + + v1 = integrate(weights) + v2 = integrate(weights**2 * jnp.prod(spacing, axis=-1)) + # effective number of samples per surface + n_e = v1**2 / v2 + # analogous to Bessel's bias correction + correction = n_e / (n_e - (not bias)) + + q = jnp.atleast_1d(q) + # compute variance in two passes to avoid catastrophic round off error + mean = (integrate((weights * q.T).T).T / v1).T + if has_idx: # guard so that we don't try to expand when already expanded + mean = grid.expand(mean, surface_label) + variance = (correction * integrate((weights * ((q - mean) ** 2).T).T).T / v1).T + if expand_out and has_idx: + return grid.expand(variance, surface_label) + else: + return variance + + +def surface_max(grid, x, surface_label="rho"): + """Get the max of x for each surface in the grid. + + Parameters + ---------- + grid : Grid + Collocation grid containing the nodes to evaluate at. + x : ndarray + Quantity to find max. + The array should have size grid.num_nodes. + surface_label : str + The surface label of rho, poloidal, or zeta to compute max over. + + Returns + ------- + maxs : ndarray + Maximum of x over each surface in grid. + The returned array has the same shape as the input. + + """ + return -surface_min(grid, -x, surface_label) + + +def surface_min(grid, x, surface_label="rho"): + """Get the min of x for each surface in the grid. + + Parameters + ---------- + grid : Grid + Collocation grid containing the nodes to evaluate at. + x : ndarray + Quantity to find min. + The array should have size grid.num_nodes. + surface_label : str + The surface label of rho, poloidal, or zeta to compute min over. + + Returns + ------- + mins : ndarray + Minimum of x over each surface in grid. + The returned array has the same shape as the input. + + """ + surface_label = grid.get_label(surface_label) + unique_size, inverse_idx, _, _, has_idx = _get_grid_surface(grid, surface_label) + errorif( + not has_idx, + NotImplementedError, + msg=f"Grid lacks attributes 'num_{surface_label}' and " + f"'inverse_{surface_label}_idx', which are required for this function.", + ) + inverse_idx = jnp.asarray(inverse_idx) + x = jnp.asarray(x) + mins = jnp.full(unique_size, jnp.inf) + + def body(i, mins): + mins = put(mins, inverse_idx[i], jnp.minimum(x[i], mins[inverse_idx[i]])) + return mins + + mins = fori_loop(0, inverse_idx.size, body, mins) + # The above implementation was benchmarked to be more efficient than + # alternatives without explicit loops in GitHub pull request #501. + return grid.expand(mins, surface_label) diff --git a/desc/magnetic_fields/_core.py b/desc/magnetic_fields/_core.py index 8cf4a4b35c..7b32a1217a 100644 --- a/desc/magnetic_fields/_core.py +++ b/desc/magnetic_fields/_core.py @@ -20,9 +20,9 @@ from desc.derivatives import Derivative from desc.equilibrium import EquilibriaFamily, Equilibrium from desc.grid import LinearGrid, _Grid +from desc.integrals import compute_B_plasma from desc.io import IOAble from desc.optimizable import Optimizable, OptimizableCollection, optimizable_parameter -from desc.singularities import compute_B_plasma from desc.transform import Transform from desc.utils import copy_coeffs, errorif, flatten_list, setdefault, warnif from desc.vmec_utils import ptolemy_identity_fwd, ptolemy_identity_rev diff --git a/desc/objectives/_coils.py b/desc/objectives/_coils.py index 62ef664622..228c7354ea 100644 --- a/desc/objectives/_coils.py +++ b/desc/objectives/_coils.py @@ -14,7 +14,7 @@ from desc.compute.utils import _compute as compute_fun from desc.compute.utils import safenorm from desc.grid import LinearGrid, _Grid -from desc.singularities import compute_B_plasma +from desc.integrals import compute_B_plasma from desc.utils import Timer, errorif, warnif from .normalization import compute_scaling_factors diff --git a/desc/objectives/_free_boundary.py b/desc/objectives/_free_boundary.py index 3093f40f1e..61adddcf42 100644 --- a/desc/objectives/_free_boundary.py +++ b/desc/objectives/_free_boundary.py @@ -9,13 +9,9 @@ from desc.compute import get_params, get_profiles, get_transforms from desc.compute.utils import _compute as compute_fun from desc.grid import LinearGrid +from desc.integrals import DFTInterpolator, FFTInterpolator, virtual_casing_biot_savart from desc.nestor import Nestor from desc.objectives.objective_funs import _Objective -from desc.singularities import ( - DFTInterpolator, - FFTInterpolator, - virtual_casing_biot_savart, -) from desc.utils import Timer, errorif, warnif from .normalization import compute_scaling_factors diff --git a/desc/plotting.py b/desc/plotting.py index 89dddbbdee..f43f408af4 100644 --- a/desc/plotting.py +++ b/desc/plotting.py @@ -18,9 +18,10 @@ from desc.basis import fourier, zernike_radial_poly from desc.coils import CoilSet, _Coil from desc.compute import data_index, get_transforms -from desc.compute.utils import _parse_parameterization, surface_averages_map +from desc.compute.utils import _parse_parameterization from desc.equilibrium.coords import map_coordinates from desc.grid import Grid, LinearGrid +from desc.integrals import surface_averages_map from desc.magnetic_fields import field_line_integrate from desc.utils import errorif, only1, parse_argname_change, setdefault from desc.vmec_utils import ptolemy_linear_transform diff --git a/desc/vmec.py b/desc/vmec.py index a0212dbd31..fc6fc5498f 100644 --- a/desc/vmec.py +++ b/desc/vmec.py @@ -12,10 +12,10 @@ from desc.basis import DoubleFourierSeries from desc.compat import ensure_positive_jacobian -from desc.compute.utils import surface_averages from desc.equilibrium import Equilibrium from desc.geometry import FourierRZToroidalSurface from desc.grid import Grid, LinearGrid +from desc.integrals import surface_averages from desc.objectives import ( ObjectiveFunction, get_fixed_axis_constraints, diff --git a/docs/api.rst b/docs/api.rst index 3173f8b418..c5147d4077 100644 --- a/docs/api.rst +++ b/docs/api.rst @@ -289,6 +289,7 @@ Profiles desc.profiles.PowerSeriesProfile desc.profiles.TwoPowerProfile desc.profiles.SplineProfile + desc.profiles.HermiteSplineProfile desc.profiles.MTanhProfile desc.profiles.ScaledProfile desc.profiles.SumProfile diff --git a/docs/notebooks/dev_guide/grid.ipynb b/docs/notebooks/dev_guide/grid.ipynb index 070300746e..91b231f636 100644 --- a/docs/notebooks/dev_guide/grid.ipynb +++ b/docs/notebooks/dev_guide/grid.ipynb @@ -67,7 +67,7 @@ "import os\n", "\n", "sys.path.insert(0, os.path.abspath(\".\"))\n", - "sys.path.append(os.path.abspath(\"../../../\"))\n", + "sys.path.append(os.path.abspath(\"../../\"))\n", "\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", @@ -94,7 +94,7 @@ "data": { "text/plain": [ "(
,\n", - " )" + " )" ] }, "execution_count": 2, @@ -103,7 +103,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAF2CAYAAAASrTFdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAB6tUlEQVR4nO2dd3zUVdb/PzNpkzrpmfSQEFJIIyEEEpIQRGSVpqJYVkXZtYPuo7s+6jaXdVfdn+IqrnXtKwoqICKKlJACqSQE0nuf9Mkkk0y/vz/YmYeE9Mzc7yS579crL2WS+Z4z7TP3nnPuOTxCCAGDwWAw9PC5doDBYDBMDSaMDAaDMQomjAwGgzEKJowMBoMxCiaMDAaDMQomjAwGgzEKJowMBoMxCiaMDAaDMQomjAwGgzEKJowMBoMxCiaMDAaDMQqTFsZLly5hzZo14PF4CA0NxWuvvXbN3+zatQu7du3iwLux6ejowO7du5GYmIg1a9YgMTER1113Hd5880309/dPev/JHs+PP/6ImJgY8Hg8Q7rNYDCuhswBAJCPPvpozN/JZDIik8noOjQOTU1NxMfHh7z55ptEq9Xqb//222+JhYUFOX78+KTXmMrjOXPmDJnJS9fQ0ECefPJJAoA88MAD5LXXXpv2NcZDpVKRPXv2kDfeeIO88cYbJDc3d1r3b2pqIk899RQRCATkjTfeuOb3AwMDJDo6mqxcuXLWfn///ffk888/J6+//jrZuXOnUd8/paWl5MKFC5PeRpsffviBLF26lLz//vsjbrv99ts59Mp0mPPCaEps3LiRbN68eczf7dy5k5w8edIgdmYqjIQQcvr0aeLu7j5CuA3B7t279Y/vr3/9K3nkkUemfY1z586Ru+66izz++OPX/O7AgQMkJCSEnD17dlZ+SiQSwufzSXV1NSGEkE2bNpEXXnhhVteciHvuuYccOnRo0tu4IC4ujlRWVur/LZFIiFgs5tAj08Gkt9KTsW/fPgQEBGDNmjX62/79738jNDQUAQEBePPNN3H99dcjMDAQn376qf5vOjo6cMcdd2D16tVYvXo1du/ejeHhYf3v33jjDaxduxbr1q3DqlWr8Pbbb497/fXr10MgEOC1117DDz/8gM2bN4/p6wcffIDrrrtuwmuM9XgAoLq6GmvWrEF8fDw2b96M4uLiGT9nZ86c0YcnDEVLSwt++ukn/ePbtWsX/vrXv077OoWFhbjjjjtQU1Mz4vYLFy5AJBKhqakJCQkJs/JVKBQiPz8fQUFBAABCCLRa7ayuOREZGRnXvJ5j3Uab3t5edHV1YcmSJfrbhEIhPDw8OPTKdDDn2oHZ8Pjjj6O7uxvp6en623bu3AkzMzM89NBDCAkJwc8//4z9+/fj4Ycfxt133w0ej4fNmzdj5cqV+PLLL6HRaHDLLbfgmWeewRtvvAEA0Gq1+OGHHyAQCKBQKBAREYHo6GgkJiaOuL63tzdOnDiBQ4cOoaSkBFqtFr6+vpP6Pd41BAIBduzYMeLxqNVqbNq0CZs3b8Yrr7wCtVqNW2+9dcbP2ZkzZ3D33XeP+3uxWIzXX399wmukpKTgxhtv1P/7xIkT8PDwwIEDB6BSqXDx4kU8//zz0/ZNpVIhNDR0hDAqFAo0NjZCqVRi1apVsLKympWvABAbGwsAkEgkKC8vx7/+9a8Jr9He3o6vvvoKZWVluOGGGzA4OIjs7Gz885//BI/Hwx//+EeEhYVheHgYhw8fxokTJ3D8+HEcPXoUfD4f+/btw+bNm9Ha2nrNbVFRUVCr1XjllVfg7OwMAHB1dUVwcDCysrLw8ccfIywsDN3d3ViyZAmeeeYZfPXVVzh37hweeeQR1NTUoLi4GLfeeivWrl17je+/+MUvcOONN14Tt9Z9QQLA4OAgPv74Y5w6dQrvvvsuNBrNpDbG8nnbtm2Qy+VjPh8XL14c8/FM9vpxBtdL1qmACbbSf/rTn0hqauqI2z766CMiFAr1/y4vLycASFtbG8nJySEASFVVlf73X3/9NbG2ttZvL0+dOkU2bNhAkpKSSGpqKhEKheSVV14ZcX0HB4cRNnNzcwkA8tNPP424/c033ySpqakkJCSEPPXUUxNeY6zHk5WVRQDot36EXNlWzuSlk8lkxNLSklRUVEz7vhPx4osvEmdnZyKRSAghhLz33nvk17/+9bSuoVQqyVtvvUWUSiURCARErVYTQq48VqVSSR566CGyZ88eg/n83XffkQceeIB88cUXk/7tBx98QDQaDXFzcyMNDQ2EEEJ+97vfkXfffZfcdttt5KuvviKEEPLVV1+RG2+8ccT9nnzyyWuuNfq2e+65R//+bmpqIv/v//0/cvz4caJQKIiDgwOpqKggEomE9Pb2kvfee4+oVCri4OBAcnJyCCGEHD16lOzatWtM30+cOEFqamquuf2RRx4hn3zyCSGEkE8++YTI5XISGRlJKisrp2RjLJ8JIeM+H+M9HlNlTq8YJ8LR0VH//wKBAMD/rT6AK6s2Pv9KJEEul8Pd3R1dXV2QyWS48cYb8a9//QsPPPAAAGDNmjWQyWQjru/k5DTi38HBweDz+frr63j88cfx+OOPY82aNeju7p7wGmPR0tICAHB3d9ff5urqOun9xiI7OxsuLi4ICQkZcXtlZeU1t00He3t7LF68GEKhEADg5+eH559/Hu+9996Ur5Gbm4sVK1bAwsICIpEIjY2NkMvlWLJkCSwsLHDmzBl8+OGHM/ZxNJs2bcKmTZtwxx13oKqqCn/605/G/dtt27ahrKwMERER8Pf3BwA0NzfDwcEBZ8+exZdffgkAKC0tRVpamv5+GRkZuOWWW0Zca/Rt5eXlOHz4MDZs2IBPPvkE5ubmePLJJ2FmZoaMjAysWrVqxGtz++23o6ioCDExMfqwQnFxMcLCwsb0/frrrx/z9lOnTuG5554DAGzduhXV1dWwsLDAkiVL4OHhMaGN8XwuLCwc9/nYsGHDmI/HVJmzwtjU1ISmpqZp3y8gIAAAsH//fnh7e+tv7+zshLu7O77++msoFArcfPPN+t8plcpJr+vk5ISNGzfim2++wa9//etp+zUeuq15Z2cnHBwcAOAagZ0q6enpIz64AFBTU4OysjL9m3Um29OoqKgRcToejwe1Wj0t34qKivDYY48BABYvXozKykr09/fjjjvuQFtbG1pbW7FixYoR95mJrwcPHsQzzzyDmpoa8Pl8rFmzBk8//fSEwigUCrF//36kpqYCuBKXzMzMRHR0NFJTU/VfsGfPnsWrr74KiUQCR0dHZGVlYe/evZDL5VCpVLC3t7/mtsuXLyMuLg533XXXNXZPnz59TSxSKBTizJkzI17HQ4cO4ciRI+jr65vSl21zczMAwMvLCyqVCg4ODvjwww9x//33632fyMZ4Pqenp0/4fIz1eEyVOSuMdXV1I2JxU2X58uVISEjA22+/rU8QnD59Gr///e9x7tw5hISEgMfjISMjA1u2bEFDQwMuXryI9evXT3rtffv2YdWqVXjllVfw9NNP698gly9fRnNzMwIDA6ftb0JCAsLCwvDee+/hlVdegUajwSeffDLt6wBX4kq6VTBwZaX8hz/8AR9//LH+NpFIhJdeemla101KSoJKpYJUKoWDgwPKysqwffv2aV1DpVLpn6+goCC8++67+OKLL/R+JyUlwcLCYsR9ZuIrIWTEh7ehoQFxcXH63x8/fhyBgYHXrGqys7OxZcsWAMDXX3+NhIQEuLq6QiQSAQDq6+tx+fJlREVF4dNPP8XWrVshEAjg7OyMt956C/fddx96enquuS0sLEy/owGuvCZHjhzB9u3bcebMGbz88svXPIYzZ87gmWeeAQBUVVXB2toaQqEQBw4cwM6dO0f87alTp+Dr6zsiyZKdnY3U1FQcO3YM0dHR8PPzw4EDB3Dx4kV88skneOKJJya0kZCQMKbPjo6O4z4fO3fuHPfxmCRc7+Unory8nNx6660EAFm+fDm59dZb9T8pKSnExcWF+Pv7E6FQSLZt20YIIeTLL78kISEhxMrKimzfvp20t7eThIQEAoAkJCSQ6upqIhaLyZ133klWrVpF0tLSyObNm0lTU5Pe7uuvv078/PzIunXryK9//WsSFRVF/P39yZtvvjni+qmpqaSoqGiEz2KxmDz22GMkPj6epKSkkOjoaJKYmEj27dtHBgYGrvHx6mu8+eab1zweQgiprq4mqampJC4ujqxfv57s2bOHACCpqamkpaWFvPPOOyQ6Onrc5zE/P588/fTThM/nk1/96ldkz5495De/+Q0JDAwkjz76qEFeqwsXLpAnnniCvPzyy2T37t36x0oImdC/wsJCcu+995LAwEDy6aefEkIIeeONN8jPP/9MtFot2bNnD4mMjCTx8fHkP//5z6z91Gq15J133iGvvvoqeemll8idd95JWltb9b/fsGEDeeyxx66535IlS8i+ffvIv//9b/LUU0+RoaEhMjg4SH71q1+R/fv3k/3795N7772XvPrqq6S1tZWo1Wpy2223kX//+98kKyuLEELGvI0QQl5++WXy1ltvkU8++YS8//77+rrKqKgoolKprvElJiaGDA8PE0II6ejoIHfeeSd5/fXXx6zH3LRp0zV1oeXl5eTuu+8eUcO4bds28t5775FLly5NycZYPk/0fEz0eEwRHiFsSuBc5/7774ezszNeffVVrl0ZE1P3bzSff/45fvnLX+r/3dbWhs2bN6OgoIBDrxg0mbNbacYVTp8+jbKyMvz8889cuzImpu7faBobG0ckugAgMzNz1vWTjLkFWzHOcYaHh8Hn80fU95kSpu7faLKysrB69Wr9v/Py8vDoo4/CwcEBr7/+OqKiojj0jkELJowMBoMxijl9JJDBYDCMARNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGIU51w4wGACQnZ2NjIwMaDQaJCcnIzU1lWuXGAsYJowMkyAyMhJqtRoymYyJIoNz2FaaYRI0NTXB0tISxcXFXLvCYIBHCCFcO8FgSKVSODg4oK+vD05OTly7w1jgMGFkMBiMUbCtNIPBYIyCJV8YJgGPx7vmNraZYXAFWzEyTIK33noLhBA8/fTTIIQwUWRwChNGhknw6KOPorOzE/7+/ly7wmAwYWSYBoQQnD59Gvfddx/XrjAYTBgZpsHrr7+Oc+fO4Z133uHaFQaDleswGAzGaNiKkcFgMEbBhJHBYDBGwYSRwWAwRsGEkcFgMEbBhJHBYDBGwYSRwWAwRsGEkcFgMEbBhJHBYDBGwYSRwWAwRsGEkcFgMEbBhJHBYDBGwYSRwWAwRsE6eDOMAiEE/f39aG9vR3t7O9ra2vT/7e/vh1qt1v+oVCqoVCpoNBqYm5vD3NwcFhYW+v83NzeHo6MjvL294enpCU9PT3h5ecHT0xP29vZjdv9mMGYD667DmBHDw8MoKSlBRUWFXvBaWlr0QtjR0QG5XA4nJye4ubnB1dUVbm5u8PDwgFAovEb4zM3N0dHRAQ8PjzFFUyKRoLOzE11dXejq6kJ3dzckEgmsra3h4eEBLy8v/Y9OQMPCwhAZGQkrKyuuny7GHIMJI2NShoaGcPHiRRQWFqKgoAAFBQWorKyEm5sbgoKC4O7urhcnb29v+Pr6wt/fH76+vhAIBFOyodFo8P3332Pjxo0wMzOb0n3kcjkaGxvR2NiI5uZmtLa26kW5s7MTNTU16O3tRVhYGJYvX474+HjExcUhMjJyyn4xFiZMGBkjkMlkehHMOJeDS8UXUFNdDZFIhLCwMERFRSEhIQFJSUnw9vY2mN2ZCONUaG5uRmZmJvLy8lBSUoLy8nJ0d3cjNDR0hFhGRUXB2traYHYZcxsmjAscjUaD8+fP48iRIzh27Bgqq6rg4OwGd//FsBQFISVpJf6wYytEIpHR/TCGMI5FS0sLsrOzkZubi5KSEpSVlaGrqwthYWHYuHEjtmzZgvj4ePD5LDe5UGHCuAAZGBjAiRMncPjwYRw7dgxWVlZYs2YNNm3aBOfQ5bhpfxV4PB4IIch+PAkr/Z2M7hNNYRyL1tZWnD59GkePHkV6ejoAYOPGjdi6dSvWrVsHGxsb6j4xuIMJ4wKhqakJR48exeHDh5GRkYHg4GCsW7cO27ZtQ2Ji4ojVUU5jH9Jre7AmyIWKKALcC+NoX86ePYtvvvkGp06dQmNjI9LS0nDzzTdj48aN8PT05NQ/hvFhwjhPIYSgsLAQ3333HQ4fPoyqqiokJCTghhtuwPbt2xEUFMS1iyMwJWEcTWVlJb766iv89NNPKCgoQEREBLZs2YItW7YgKiqKlQvNQ5gwzjM6Ojrw8ccf47333oNEIkFqaio2bdqEW265BUKhkGv3xsWUhfFqent78c033+Do0aPIzMyEh4cHHnroIdx7771wcXHh2j2GgWDCOA/QarX4+eef8e677+L48eNYuXIldu7ciTvuuAPm5nOjhn+uCOPVKBQKfP755/joo49QWFiIrVu34qGHHkJqaipbRc5xWNptDtPT04O///3vCAgIwM6dOxEQEIDLly/jzJkz+OUvfzlnRHGuYmVlhZ07dyIrKwtFRUVwdnbGHXfcgcWLF+O1115Df38/1y4yZggTxjnI5cuXsXPnTvj5+eHHH3/Eq6++isbGRrz22msmFztcKISGhuKtt95CS0sL/vznP+PgwYPw8fHB448/jqqqKq7dY0wTJoxzBK1Wi++++w5r1qzBqlWroFQqkZOTg7Nnz+K2226bM9vP+Y65uTnuuecenD9/HmfOnEFnZydiYmKwYcMG/PTTT2CRq7kBE0YThxCCH374AdHR0XjssceQkpKChoYGfPbZZ4iMjOTaPcYELF++HAcOHEB9fT2io6OxY8cOrFixAmfOnOHaNcYkMGE0Yc6fP4+UlBTcf//9uOeee1BbW4u//OUvLPs5x/Dw8MDLL7+M+vp63HTTTdi2bRvWr1+PoqIirl1jjAMTRhOkrKwMmzdvxoYNG5CYmIja2lr87ne/g6WlJdeuMWaBQCDAn//8Z1RXVyM0NBQpKSnYvn07amtruXaNMQomjCZEc3MzduzYgfj4eHh4eKCmpgYvv/wy7OzsuHaNYUCcnZ3xxhtvoLy8HJaWloiKisKjjz4KsVjMtWuM/8KE0QTo6enBU089hdDQUMhkMpSUlOD999+Hm5sb164xjIiPjw8+++wzFBQUoLm5GcHBwfj9738PqVTKtWsLHiaMHCKTyfDiiy8iMDAQly5dQmZmJg4ePMhKbhYYYWFhOHr0KH788UdkZGQgICAAr732GuRyOdeuLVjmrTAWFBTg9OnT2Lt3L9eujMmJEycQEhKCI0eO4Ntvv8WJEycQGxvLtVsMDklKSkJGRgY+/fRTfPLJJ1i6dCkyMzO5dmtBMm+FsaKiAomJiairq+PalRFIpVLs3LkT27dvx//+7/8iJycH1113HdduMUyIjRs3oqioCA8++CBuuukmPPHEExgaGuLaLQBAdnY2/v73v+Ovf/0rzp49y7U7RmNen5X+/vvvIRAIYG1tjYyMDGg0GiQnJyM1NZUTf37++Wfcf//9WLJkCT788EMEBARw4ocpMhfPStOgsrIS9913H7q7u/HJJ58gKSmJU3+kUimKioogk8lw4403cuqLMZm3K8YXX3wRGzduxD//+U9ERkYiMTERsbGxnIiiVCrFr3/9a9x222145plncPLkSSaKjCkREhKCc+fOYefOnfjFL36BJ598ktPVY1NTEywtLVFcXMyZDzSYt8IYFxeH7OxsxMbGcvpinjx5EkuXLkVNTQ2Ki4uxa9cu1jKfMS34fD6effZZ5Ofn4/z584iKisK5c+c48cXPzw+rVq3CI488wol9apAFQH9/PyGEkN7eXmo2pVIpefDBB4lQKCT//Oc/iUajoWbbGJxv6CV/O1lNzjcY5zlUq9Xk8OHDRK1WG+X68wWNRkNefPFFYm9vT5588kkyNDTEtUvzkgWxdHFwcAAAODnRadN/6tQpLF26FJWVlSgqKsLu3bvn9Coxp7EPSfuy8YefKpG0Lxs5jX1cu7Rg4fP5eO6555CXl4dz584hKioK58+f59qtece8bdg3WaNQYoSck0ajwTPPPIMPPvgAL7zwwrzZNp+p6QGPx4NGS2DG5yG9tmdGs2DUajUUCgXkcjmUSiW0Wi0IISCEQK1WA7hy+sfMzAw8Hg88Hg98Ph+WlpYQCAQQCAQsMfNfQkNDcf78ebz00ku44YYb8NRTT+EPf/iD0d9vY32ujPFZ4pp5K4xXv1hff/01BgcHsWPHDqPZk0gk2L59O5qbm5Gfn4/g4GCj2aJN2mIXkB+viCIhBGuCrm1iodFoIJVKIZPJIJfLIZfL9SKo+1Gr1TA3N4dAIIClpSX4fD74fP6ID5vuWJxONLVaLZRKpf7+FhYWsLKy0gul7sfKygp2dnZwcHCYF19GU0G3erzppptwyy23oKSkBJ9++ilsbW2NZpMQQuXzxDXzulwHAIqKimBra4tz584Z7YWsrKzExo0bERQUhAMHDui37vOJqycHxvs4oL+/H/39/ZBIJOjv74dUKoVAIICdnd0IsRotXuN1FZ9KuY5arR5TcHU/g4ODUCqVsLe3h6Ojo/7H3t5+3q80e3p6cPPNN6O3rw/Hvv8e/v7+RrFD4/NkCszbFaOOrq4u1NbWGq2DyU8//YTt27dj586d+Mc//jHvViuEEEilUrhr+nCD0wAkdc04dnEAAoEAjo6OEAqF8PLygqOjI6ysrIzqi7m5Oezs7CZsqiGXy/Vi3dHRgcrKSigUCjg4OOj9dXFxgb29/byay+Li4oK/ffQNHn7kUUTExOL40SNYvXq1we0Y+/NkKsx7YVy/fj3279+PwcFBg16XEILXXnsNL7zwAt5444159e2p0WjQ3d0NsViMjo4OaDQauLi4wNHREd7e3hAKhUYXwZkiEAggEokgEon0t8nlcv3qtrOzE+Xl5bCwsND/nYuLy7z4Qsts6EdFzA4sdvHHuvU34I3X9+LBBx80qA1jfZ5MjXm/lTYGcrkcDz74IE6fPo1vvvkGCQkJXLs0axQKBTo6OiAWi9HZ2Qlra2u9cDg7Oxt9dUXz5ItWq0Vvby/EYjHEYjEUCgU8PDwgEong7u4+Z/te6qoHeDwevCWVGDr0Eu64Yzv27t3LBqNNEyaM06S9vR1bt27Vz2Dx9PTk2qUZI5PJ0NbWBrFYDIlEAmdnZ71A0O4BydWRQEIIBgcH9SKpex5EIhG8vLxgbW1NzRdDcHUs2EMrwebNm+Hm5oaDBw+yzu/TgAnjNCgoKMDmzZuRlpaGDz/80GS3kxOh0WggFovR0NCAvr4+vRB6eHhwulIylbPSo1fOrq6u8Pf3h4eHx5zcbstkMtxxxx0oLS3F0aNHsXTpUq5dmhMwYZwi3377Le677z48++yzeO6557h2Z9rIZDI0NDSgqakJAoEA/v7+8PX1hYWFBdeuATAdYbwahUKB5uZmNDY2QqVSwc/PDwEBAbCxseHatWmh1Wrx/PPP41//+hcOHjyI9evXc+2SycOEcQp88cUXePjhh/Hxxx/jlltu4dqdKUMIQVdXF+rq6tDd3Q1vb28EBATA0dHR5DKypiiMOggh6O3tRUNDA9rb2+Hu7o6goCAqsVdD8vHHH2PXrl344osvsGnTJq7dMWlYRHYSPvzwQzz55JM4cOAANmzYwLU7U0Kj0aC5uRl1dXVQqVQIDAxEbGzsnE0qcA2Px4OLiwtcXFwgl8vR0NCA/Px8CAQCBAYGwsfHZ05ss3fs2AEbGxvcdddd+Pjjj3Hrrbdy7ZLJwoRxAt5++208++yzOHTo0JxoJksIQUtLCyoqKmBpaYmQkBB4enrOiQ/tXEEgECA0NBTBwcFoa2tDTU0NqqurERYWBk9PT5NfQd5+++2wsrLCPffcA4VCgbvuuotrl0wSJozjsHfvXuzZswdHjx5FcnIy1+5MCCEEHR0dKC8vh1arxdKlS+fEh3QuY2ZmBl9fX/j4+KClpQWlpaWorq5GeHi4yQ8x27JlCw4cOIDbb78dQ0ND+NWvfsW1SyYHE8YxeP3117Fnzx589tlnJi+Kvb29KCsrg0wmQ2hoKHx9fdkKkSI8Hg++vr7w9vZGQ0MDCgsL4eDggPDwcDg6OnLt3rhs2LAB7733Hh566CHweDzs3LmTa5dMCiaMo3j77bfxl7/8BQcOHIBSqURzczN8fX25dusapFIpysvL0dPTg+DgYAQGBppc0mIhwefzERgYCF9fX9TV1SE7OxseHh4IDQ01ybng9fX1EAqF+Pzzz3H33XfD2tqabauvggnjVXz44Yd49tln9dvn3t5e5OTkAIDJiKNcLkd5eTlaW1v1SRVTKblhABYWFggJCUFAQACqqqqQnp4OX19fhIWFmUzyq76+Xj8sTigU4ssvv8Qdd9wBKysrlpD5L2zP9V+++OILPPnkk/jmm2/022dnZ2esXLkSly5dQnNzM6f+EULQ2tqKM2fOgBCC6667DuHh4UwUTRQrKytERkZi7dq1UCqVOH36tL6lGpeMFkUAuPHGG/HJJ59gx44d+P777zn20DRgwgjg8OHDePjhh/Hll19ek302BXFUKBTIz8/H5cuXERsbi9jY2Dl3VG2hYmNjg/j4eERFRaGoqAgXLlyAUqnkxJexRFHHzTffjA8++AB33nknTp48yYl/psSC30oXFRXhnnvuwYcffjjuOEidOHKxrW5tbUVJSQlEIhHWrl3LVohzFC8vL7i4uKCkpARnzpxBdHT0iA5AxmYiUdSxfft2DA4OYtu2bcjLy8OSJUuo+WdqLGhh7OjowKZNm/Db3/4Wt91224R/S1scFQoFSkpK0Nvbi9jYWHh4eBjV3kzIaezDmZoepC12mdGog4WGlZUV4uPj0dbWhqKiInh4eCAyMnLcLztDPb9TEUUdO3fuxOXLl7Fx40bk5eWZdGbdmCzYI4EKhQJr1qyBr68vvvzyyymXuOgSMpGRkUYTR90qcbIPDpdc3eKKEILsx5Nm9eE15SOBxuDqL76YmJhrvvgM9fxORxR1aLVa/OIXvwAA/PDDDwvi9RjNgowxEkLw8MMPQ6lU4tNPP51W3Z8xY45qtRoFBQUjYommKIrAyAFZPN6VAVmMqaNbPUZERODChQsoLi6GRqPR/94Qz+9MRBG4Unp08OBBNDU14Zlnnpm23fnAghTGN954AydOnMCRI0cgEAimfX9jiOPQ0BAyMzOhVquRlpZmklvnq0lb7AJCJh6QxZgcb29vrF27FjKZDNnZ2ZDL5QBm//zOVBR1ODg44LvvvsPHH3+MTz75ZNr3n/MYc2i1KXLixAlib29PsrKyZn2tnp4ecuzYMdLU1DSr63R3d5Pjx4+Ty5cvE61WO2u/aHG+oZf8/VQ1Od/QO+trqdVqcvjwYaJWqw3g2dxDo9GQ4uJi8uOPP5K+vj5CyMyf37q6OvLDDz8QiUQya79+/PFHYmdnR86fPz/ra80lFpQwVlVVEUdHR/LBBx8Y7JqzFceGhgby/fffz1pc5zoLXRh11NXVke+//560tLTM+P6GEkUdr7zyCnF3d5+xT3ORBZOV7u/vx6ZNm3Dvvfca9FzoTLPVWq0Wly9fRnt7OxITE+HkxLK6DGDRokWwt7dHfn4+pFIpQkNDp9wMZLbb5/H47W9/i8uXL2Pz5s3IyspaEDW0CyIrrdFosGnTJqjVavz4449GabIwnWy1UqlEfn4+1Go1VqxYsSDeaGOh1WpBCIFWq4VarcaJEyewfv16mJubg8/ng8/nL9gOQTKZDLm5ubC1tZ1SEs5YoqhDqVQiNTUV/v7+2L9//7x/XRaEMD777LP49ttvkZeXZ5Q3jY6piKNUKkVeXh6cnJwQExMzb0shNBoNBgYGMDQ0BLlcPuJHoVBALpdP6QSIpaUlBAKB/sfKykr//7a2trC3t5+33YRUKhUuXLgAmUyGhIQE2Nrajvl3xhZFHR0dHVixYgUeffTReZ+tnvfCmJmZiZtuugm5ubkICwszur2JxLGvrw/nz59HcHAwFi9ePG++dTUaDaRSqX52s0QigVQqhZWVFWxtbccVNisrK5iZmYHH40Gr1eLYsWO46aabwOfzQQiBRqMZIaSjhXVwcBAqlQoODg5wdHSEo6MjhEIhHBwc5o1YEkJQUVGBxsZGJCYmwsHBYcTvaYmijry8PKxduxZZWVmIiYkxuj2umNcxxqGhIezYsQPPP/88FVEExo859vT0IDc3F0uXLoW/vz8VX4wF+e8MFLFYjK6uLr0I6sRJJBLB0dFxWqVQuu9nHo+nFzUzM7MJO9IQQiCXyyGRSNDf34/29naUl5frxdLNzQ0ikQhOTk5z9kuIx+PpO/NkZ2dj1apV+tMotEURAFasWIHHHnsM9957LwoKCkymY5ChmdcrxieeeAL5+fnIysqivoK4euUoEAiQl5eH6Oho+Pj4UPXDUKhUKnR1dUEsFqOjowNmZmb6AfVOTk6zHiVryJMvcrkcfX19+jGoAPRjYt3c3Obs8Pn6+nqUl5dj1apVkEgk1EVRh1qtRmxsLG6++Wa88MILVG3TYt4Ko24LXVhYiODgYE586O3txblz50AIQVxcHLy8vDjxY6aoVCq0traivb0d3d3dcHBwgEgkgkgkgoODg0FXYcY6EkgIgUQi0Qv64OAgXF1d4eXlBS8vrzknkk1NTSgpKQGPx8Pq1aupi6KOCxcuICUlZd5uqefWu2KKyGQy3Hffffj973/PmSgC0B/x4vF4I457mTKEEPT19aGxsRGtra1wdHSEj48PYmJi5mT2nMfjwcnJCU5OTggLC8PQ0BDEYjEaGhpw6dIl+Pj4ICAggDOBmS5Xv4+0Wi1nfsTGxmLXrl245557UFhYOO+21PNyxbh7924UFhYiMzOTsyB8T08PcnJysGzZMggEAqM3npgtGo0GbW1tqK2txfDwMPz8/ODn5wd7e3tq9mk3kZBKpWhoaEBLSwvs7e0RGBho0lMVr44pSiQSlJaWIikpiTNRV6vViIuLw5YtW/CXv/yFEx+MxbwTxrNnz2LTpk2cbqF12eeoqCh9TJFGV56ZoFKpUFdXh/r6ev2cZG9vb+plRFx211Gr1WhpadHP4Q4KCkJAQIBJbbPHSrTobktKSromW02LoqIiJCcnIzMzE8uWLePEB2Mwr4RRJpMhIiICjz76KH77299y4sPAwACysrIQHh5+TfbZlMRRo9GgoaEBVVVVcHR0xJIlS+Ds7MxZ9tYU2o4RQtDV1YWqqirIZDKEhITAz8+P8xXkRNnn2tpaVFdXIyUlBTY2Npz499xzz+Ho0aPzaks9r4Tx8ccfR3FxMTIyMjh5MyuVSmRkZMDPz2/c7sdciyMhBC0tLaioqICVlRXCw8Ph6upK3Y/RmIIw6iCEoLOzE2VlZdBqtQgLC5vVnO7ZNJydSklOaWkpurq6sHr1ak5WuWq1GsuXL8emTZuwZ88e6vaNwbwRxvT0dGzevJmzLbRWq0Vubi4sLCwQFxc34YeIC3E09Ifd0JiSMOog/x1AVl5eDktLS4SHh8PNzW1a15hNw9mp1ikSQpCbmwszMzMsX76ck9dUt6XOyMhAbGwsdfuGxjSjzNNEoVDg/vvvxx/+8AfO4oplZWVQKBRYtmzZpG9M2gO2hoaGcP78eRQXFyMwMBBpaWnw8vIyGVE0VXg8Hnx8fHDdddfB19cXhYWFyM3NxfDw8JSvMdOGs9Mp3ubxeIiLi4NUKkVVVdWUfTMky5Ytw5NPPokdO3bMmQqMiZgXwvivf/0LDg4OeOqppzix39TUhJaWFiQkJEx5tUNDHAkhqK+vx5kzZyAUCrFu3Tr4+/tzHjOba/D5fAQGBuK6666DQCDAmTNn0NzcjKlstmbScHYmJ1osLCyQkJCA2tpatLW1Tek+hubPf/4zZDIZPv/8c07sG5I5v5WWSqVYtGgRPvroI2zevJm6/d7eXpw/fx6rVq2Cs7PzjO5vjG310NAQioqKMDw8jNjY2Bn5NhNmGk8zxa30eHR1daGoqAhCoRDR0dGTHn3MaexDem0P1gRN/pzM9phfZ2cn8vPzkZyczEmm+uOPP8Yf/vAHVFdXz6g7vqkw54XxD3/4A9LT05GZmUnd9vDwMM6ePYvw8HD4+fnN+DqGFEdCCBobG1FaWgp/f3+EhYVRE5rZxNPmkjACV8qcysrK0NraisjISPj4+Mw6NGGos8+1tbWoq6tDSkrKrI9qThetVovY2Fjce++9+J//+R+qtg3JnN5TdXR04PXXX8dLL71E3bZarUZubi58fHxmJYqA4bbVcrkc58+fR01NDVatWoWIiAiqIrOQBmRZWFggOjoa8fHxKC8vR15e3pTaqI2HIRtCBAYGwtXVFfn5+dRPx/D5fLz44ov461//CqlUStW2IZnTwrhnzx6kpqYiKSmJuu2SkhJYWVlh6dKlBrnebMVRIpEgIyMDNjY2SEtLo7Z1vpqFOCDLzc0NaWlpMDc3R0ZGBgYGBqZ9DUN3yeHxeIiKigIhBKWlpbO+3nS56aabsHTpUvzjH/+gbttQzNmtdF1dHSIjI5GXl2cwcZoqYrEYxcXFSEtLM/hWZSbb6tbWVhQXFyM8PByLFi0yqD/TZTrxtKuZa1vp0RBCUFNTg+rqasTFxU15yqMxW4cNDw/jzJkzWLFiBfVa1fPnz2P9+vWoqakx+YmXYzFnhfHOO++EmZkZ9QyYUqnE6dOnERUVZbRuOVMVR10T04aGBixfvnzaNXamxFwXRh1isRgXLlyYUjNiGv0UGxsbUVVVpV/V0mTTpk3w8/PDW2+9RdWuIZiTwlhcXIzk5GSUlZVRPz1SWFgIQgiWL19uVDuTieNU297PFeaLMAJTG19Bq8ksIQQ5OTmwtbVFVFSU0eyMRXl5OZYvX46SkhIEBQVRtT1b5mSM8amnf4ebt99NXRTb29vR1dVF5Q02UcxxeHhYn4VPTk6e86I433BwcEBKSgoUCgWysrKgUChG/J5m520ej4eYmBi0tLSgu7vbqLZGExYWhltuuQXPP/88VbuGYM4JY3p6OnLy8vC1fRpyGvuo2VUqlbh48SKio6OpHZQfSxyHhoaQlZUFNzc3rFixYtLpcQxusLS0xMqVK+Hg4IDs7GzI5XIA3IwjsLa2xtKlS1FUVAS1Wk3Fpo6//e1vOHbsGIqKiqjanS1zShgJIXho928QcN1tUFrYUS0HuXTpEtzc3ODp6UnNJjBSHGtqapCVlQVvb29ERESwI30mDp/PR0xMDFxcXJCdnY2qqirOxhHoemuWlZVRtevr64sdO3bMuamCc0oY09PT0d7SjJrAG6mWg+i20JGRkVTsjcbZ2RnR0dEoLS2Fo6MjwsLCmCjOEXSlMwKBAOXl5YiLi+OksSyPx0N0dDQnW+oXXngBOTk5KC4upmp3NswpYdy7dy9uu+NOvHBT5LROVcwGLrbQoxkaGkJpaSn8/PzQ3d2NlpYWTvxgzIyGhgb09/fDx8cHly5d0m+raWNtbY2IiAjqW2pnZ2ds27YNe/fupWZztsyZrHRdXR0iIiJQXV0Nb29vanZLSkqgVCqNnoUej+HhYWRnZ8PLywthYWHo6+szmWa3hmQ+ZaWv5uqYooODA0pKStDT04OkpCTqx/WA/8tS63YetKioqEBsbCwaGhrg7u5Oze5MmTPC+Jvf/AaNjY349ttvqdmUyWQ4c+YM0tLSOMn8qtVqZGZmwtXVdURMketmtzNBq9ViYGAAw8PDkMvlI340Gg20Wi16e3vh7OwMPp8Pc3NzCAQCWFlZQSAQQCAQwMbGBnZ2dpx1B5pug4yxEi2EEBQVFUEmkyExMZGTLwGpVIrMzEx9tyBaXHfddUhNTcUf//hHajZnypwQxoGBAXh7e+Onn37CqlWrqNnVtWrnIrZICNGfdU1ISLgmpmjK4kgIwcDAAHp7e9Hf3w+JRAKpVAoLCwvY2NjohU4nfBYWFiCEoKCgQN9oVaVSQS6XQ6FQ6AVUJpNBo9HAwcEBjo6OEAqFcHZ2hp2dndFjrtNtkDFR9lmr1eLcuXOwtbVFTEwMJ/HiwsJCWFhYUK1t/O677/DrX/8azc3NJj8CwXSm/UzAp59+ipCQEKqi2N/fD7FYjHXr1lGzeTVVVVUYGBhASkrKmB8cXbY6JycHADgXR41Gg56eHrS3t6OjowMajQZOTk5wdHRESEgIhELhhONXdc1NRSLRuKsoQgjkcjkkEgkkEgna2tpQWloKCwsL/bxrFxcXo6wor26QYca/0iBjPGGcrCSHz+cjPj4eZ8+eRX19PQIDAw3u72SEhobizJkzCAoKorYb2rhxI5ycnHDgwAH88pe/pGJzppi8MBJCsG/fPupNaMvKyhAUFMRJHKitrQ11dXVITk6esE6Ra3HUDY9qamqCWCyGtbU1RCIR4uLijDJYi8fjwdraGtbW1vqyKa1Wi56eHnR0dODixYtQKBQQiUTw9/eHi4uLwXxIW+wC8uPkDTKmWqdoZWWFhIQEZGVlwc7OjnrczdbWFv7+/vrTKTTg8/l44IEH8NZbb5m8MJr8Vvr8+fPYtGkTWltbjSJSY8WNuru7kZ+fj3Xr1lEvoO7v70dWVhZWrFgx5bPPtLfVSqUSjY2NaGhoACEE/v7+8Pb2hp2d3YyvaYjkCyEEg4ODaGlpQVNTE8zMzLBo0SL4+fkZ5HWcrEHGTIq329raUFxcjJSUlFk9fzNBoVDg5MmTSEpKgqOjIxWbEokEPj4+yMvLQ3h4OBWbM8HkhXHHjh2wsLDA+++/b/BrjxU3SvBzREZGBnx8fKif71QoFDh79iwWL1487e0VDXFUKBSoqqpCY2MjXF1dsWjRIri7uxtkVWborLRWq0VHRwfq6uogkUgQEBCA4OBgo8W2ZnOipbKyEi0tLUhJSaH+RVxRUYG+vj6qYarbbrsNPj4+Jl2+Y9J1jP39/Th48CAef/xxo1x/rMaq7e3tUCqVCAgIMIrN8dBlK93c3GbUOsyYM2RUKhUqKipw8uRJKJVKpKamYuXKlfDw8DDZQnM+nw9PT08kJSUhOTkZMpkMJ0+eRHV1tcFr+GZ7zG/JkiWwt7dHSUmJQf2aCkFBQZBIJOjq6qJm85FHHsEnn3xyzRlyU8KkhfGLL75AeHg4oqOjjXL90Y1VUwOdUV5ejtDQUOplFM3NzRgYGEBkZOSMxcbQ4qjValFXV4eTJ0+ir68Pq1evRlxcHOzt7Wd9bZo4ODhgxYoVWLlyJTo6OnDq1Ck0NjZOaZjVZBji7LOu0UNXVxfa29tn7dN0sLCwQEhICMrKygzyfEyFNWvWwN3dHYcOHaJibyaYtDC+8847uO+++4x2/ZX+Tsh+PAl/3RCC7MeT4Gs+pB+ZSZPh4WFcvnwZy5Ytm3XPPEOJo67WrampCfHx8Vi1ahUnR9kMibOzM5KSkhATE4Pa2lpkZ2djcHBwxtczZEMIS0tLREdH4+LFi7MakTATAgICoFAo0NnZScUen8/HXXfdhXfeeYeKvZlgsjHG6upqxMTEoLOzk1o5QUZGBvz9/eHv70/FHvB/w9JtbGwMWlM205ijVqvVd6LWNVudbfnLVAqjaZ980Wg0qKysRH19PUJDQxEYGDitlbqxuuQUFhYCAOLi4gx2zalQU1ODrq4uarHGrq4ueHt7o6WlxSRPwpjsivHo0aNITEykJoq9vb2QyWTUV4u6LbShM3QzWTkODAwgMzMTbW1tSE5OxpIlSwwiikn7svGHnyqRtC+baqu4iTAzM0N4eDgSExPR2NiI7OxsDA0NTem+xmwdFhkZycmW2t/fHz09PTOaWTMT3NzcEBMTg2PHjlGxN11MVhgPHTqEG2+8kZq9uro6BAQEUI0tGnILPRbTEceOjg5kZmbCw8MDKSkpBptJbOqTA52cnJCamgonJyecPXsWPT0T+2fsfopXb6lpJicsLCzg6+uLuro6ajZvuOEGHD58mJq96WCSwtjb24vc3FzcfvvtVOwNDw9DLBZTz0SXlJTAx8fHqIOKJhNH3RCnwsJCxMbGIjQ01KAnR+bC5EAzMzMsXboUkZGRyMnJQUNDw5h/R6vJrKenJ9zc3HD58mWj2RiLwMBANDc3U4txbt++HSdPnuSs29BEmKQwHj9+HEuXLqXWRaepqQkeHh4THlmbCjmNffj7qZopbRe7u7vR29tLpcPJeOKo0WhQVFSE+vp6rF69GiKRyOC2Rye4aLSKmyk+Pj5ITExEZWUlSkpKRsxkpt15OyIiAmKxGBKJxOi2dNjb28PZ2dng5V7jERERAU9PT5w+fZqKvelgksJ4+PBhrF+/nootQggaGxtnvVqcTiyNEIKysjIsWbKEWkHvaHFUq9XIycnB8PAwUlNTDbZ1HouV/k7437WLTVoUdei21n19fcjPz4dGo+FkHIGVlRWCgoJQXl5OxZ6OgIAAg5UyTYW1a9fiyJEjVGxNB5MTRqVSiZ9++gnbt2+nYq+zsxM8Hm/W29npxNLa29uhUCiob9114lhSUoL09HSYm5tj5cqVJt/phDYCgQBJSUlQq9U4e/YsysvLORlHwEXxtUgkglKpRF8fnSTZrbfeiu+++46aEE8VkxPGjIwMODk5ITY2loq9xsZG+Pv7z/oEx1RjaVqtlrMicuBKsbONjQ2GhoYm7GSz0DE3N4dIJMLg4CDs7e2pn2MGuCm+5vP58PX1RWNjIxV769atg1KpxIULF6jYmyomJ4xHjhxBWloaFVtyuRwdHR3w8/Ob9bWmGktrbm4Gn8+nXhYEXIkp6momExMTUVpaSi2eZGpMFg+ur69HVVUVVq9eDT6fj4KCghExR1oEBARAqVRSLd/x9/dHa2srVCqV0W2ZmZkhJSXF5LbTJiWMhBAcOXIEt9xyCxV7YrEYLi4uButiPFksTaPRoKKiAuHh4dTPGBNCUFJSAkIIli9fDldXV6OdrTZ1JosHXx1TdHZ2RkJCAoaHh6lP2AOurOBCQ0NRXl5OTZjt7Ozg4OBA7STM5s2bmTBOxOXLl9Hf348NGzZQsScWi6mOQ21oaICtrS0nlf51dXXo7u5GfHy8fvtszMYTpsxE8eCxEi3m5uZISEjQtzOjjY+PD/h8PtUhaCKRCGKxmIqtW265BZWVlSb1HjQpYTxy5AiSk5OpJAPUajW6urqMUqIyFoQQ1NXVITg4mPpqsbOzExUVFUhISLimp+VCFMfx4sETZZ+tra2xYsUKXLp0Cb29vVT95fF4CA4ORm1tLbVYo0gkQkdHB5VVqlAoxIoVK3D06FGj25oqJiWMx48fp7Za7Orqgr29/axrF6eKWCwGj8ejvlqUyWQoKChAbGzsuCU5C00cx4oHT6Ukx9nZGZGRkcjLy8Pw8DBVn728vKBQKCY9mWMo7O3tYWFhQe1L4Prrr8fx48ep2JoKJiOMGo0GxcXF1BIvYrGY2moRuLKVnW6jgtlCCMGFCxcQEBAwachgIYqjLh48nTpFPz8/eHp6ori4mGqJCZ/Px6JFi1BbW0vFHo/Hg4eHB7XtdEpKCgoKCqjYmgomI4xVVVUwNzenchKEEIKOjg5qwiiVSiGRSKbdWXs6J2nGora2Fmq1GqGhoVP6+4UmjsDMTrQsXboUg4OD1OONAQEB6OrqorZa1cUZaXwBxMfHo7u7m5oQT4bJCOOFCxcMfk53PPr6+sDj8agV7DY1NcHb23tap1xm25VmYGAAlZWVWLZs2bSe04UkjjM90WJubo5ly5ahtLSU6pbaysoKHh4e1ATZ1dUVCoViVj0rp4qNjQ2Cg4P1bde4xmSEsaCgABEREVRs6bbRNLa1Go0Gzc3N0z7lMpuuNLoxCUFBQTMacrQQxHG2x/xcXV3h6+tLfUvt7+9P7cgen8+Hu7s7tVVceHi4yWynTUYY8/PzER8fT8UWzfiibqzodAVqNl1pmpqaoFarsWTJkml6+38YWxwJIRgaGkJ7ezsaGhr07a7q6+vR0NAAsVhstNWYoc4+h4WFYXBwkGrxtZubG3g8HrVjgjTLdmJjY01GGE1irrRWq8XFixfx9ttvG93W0NAQhoaGjNrq62ra2tpm1CVIlzmdaFznWOiKyGNiYmYdljDk3GqtVovu7m50d3ejv78fEokEGo0GDg4OsLa21q/eJRIJtFothoeHIZVKYWFhAUdHRwiFQri6usLV1XVWK31DNoTQxcTLy8shEomohIF4PB68vb3R3t5OpcLBw8MDxcXFUCqVRi+jW7lyJfbt22dUG1PFJISxuroaPB4PS5cuNbqt3t5eODk5UTkjrNVq0dnZOeXkx2hW+jtNuyNNXV2dQYvIZyuOQ0NDqK+vR3NzM8zNzeHu7g5vb28sXboUdnZ2ejHRaDRobW3FsmXL9K+NVqvFwMAAJBIJJBIJioqK9D4EBARMu9TKGF1yvL29UV1djebmZmojMUQiEfLz8xEVFWX0cJClpSXs7e3R19cHDw8Po9pauXIlurq60NHRYXRbk2ESwlhYWIiwsDAq37gSiYTacPHu7m5YWVlRm6qnUqlQXV2NlStXGvQDMxNxlEqlqKqqglgshpeXF+Lj4+Hs7Dwtv/h8PoRCIYRCIfz9/UEIQXd3NxobG3Hq1Cl4eXkhJCRkSuMvjNU6jMfjITw8HMXFxfDx8aHyhevk5ARCCPr7+6m8l4VCISQSidHFysbGBosXL0ZhYSHV7v1jYRIxxoKCAiqrReDKrGpa2WiaJUHAlZW3i4sLnJ2dDX7tqcYctVotqqqqkJGRAWtra6xbtw6xsbFwcXEZIYozKUXi8Xhwc3PD8uXLsXbtWlhYWCA9PX3SEyHG7qfo7u4OW1tbamMBaNcYOjo6or+/n4qt8PBwk+i0YxLCSCvxQgihtmIkhFBN8qjVajQ0NCAkJMRoNiYTR93I1ba2NqSkpGDp0qVjNugwxIAsGxsbREZGjhhmJZPJrvk7Gk1meTweQkJCUFdXR63RA82kiKOjI7VO4suWLUNeXh4VWxPBuTDqEi+JiYlGt6X74NCYPDgwMACVSmWU1dtYNDc3w8HBYULRn23BODC2OBJCUFtbi8zMTIhEokmHaRlyQJau47azszPS09NHzGuh2Xnb1dUVlpaWaGtrM6odHW5ubhgYGKBSR+ng4AC5XE5lONeqVatMopaR8xijbhtEo4ZRIpFAKBRSqV8Ui8Xw8PCgEjclhKC+vn7C1aJulcbj8UB+JLOav3J1zJEQAqlUira2NqxevXpKApS22AXkR8MNyNKNQhWJRMjLy4NCoYCFhQUqKyupdd7m8XhYtGgRGhoaqPTaNDc3h5ubG8RiMRYtWmRUW2ZmZrC3t0d/f7/RM+ErV65EZ2cnOjs7OZ03zfmKsaqqitrYUlrBauBKkwpaL2xfXx+USuWE56ENPcZU16fw4sWLaG1tRXJy8pQFyJADsq5eBTs7O2P16tWora1FaWkpVq1aRXUcgY+PD/r7+6nNZnZ3d6dWz0hrO21ra6vP9HMJ5yvG9vZ2uLm5UbElkUiolFTQzBgCVwq6fX19J1ydGnqVpouhWllZQaVSobu7e1qlPDMpRRrNWKtgD60EwJWxAJ2dndReA+DKKs7b2xtNTU1UkomOjo7UmkoIhUJ0d3dTseXq6kq1aH4sTEIYaaysdImXqKgoo9saGhqCVqulMidEJ1AJCQkT/t1MC8bHo76+Xr9SHB4eNkgR+HS5ehVsxuehuLwa/qQHSUlJMDMzQ1ZWFqytran65OXlhZKSEirC6ODggOHhYSrF146OjqipqTGqDR3u7u6cCyPnW+nW1lYqmduhoSEAoCJWusw3jVimriHGVFZGhhpjOjg4iPLycqxYsQLW1tacna2++tjkeg8NvNRd+piinZ0dli9fjkuXLlFt9KBrvEBjO21ubg47OzsqW1yhUAi5XA6lUml0W+7u7mhtbTW6nYkwCWH08vIyuh2ZTAZbW1sqYqVL8tCAZkMM4P8aVAQGBo4QYy7EUbcK3rfWDQ+HmCE1eWTyx9XVFT4+Prh48SLVKXs0Gy/QqjE0MzODtbX1mCVRhkYkElHL7o8H58LY3t4+o7PE00Uulxts6NVk0Iwv6rLftKirq4NKpRqzQQUX4uihlcCf9FwjijrCw8MxMDBAdSWrGwtAA5o1hgKBAHK53Oh2vLy8mDC2tbUZZHzpZNASRl0sk8aKcXh4GENDQ9SSVzKZDBUVFYiNjR23ioCmOE6lTlHXO/Hy5ctUPtTAlcYLvb29VMaP0hRGKysrKrWMvr6+CzvGqNVq0dXVRUUYFQrFNYOgjMHw8DC0Wi2V89F9fX0QCoVUSp2AK0cOfX19J10N0xDH6RRvu7q6wsPDg1oG19LSEra2tlQES5eAoSHCtFaMfn5+nHfy5lQYe3p6QAihUhBLa8U4NDQEGxubeRfLlMvlaGlpQVBQkP62iU7SGFMcZ3KiZfHixWhoaKAiIAC9lZy5uTmsrKz0yUVjQksY/f390dvbSyXRMx6cCmN7ezucnZ2prHhoCSPNWCbNTkGNjY36ZgnA1M47G0McZ3rMTygUwtHRkVqskWbjBVqCRcuOs7MzBAIBp6tGToWxra2NWnxsvgkjzSJyQsg1/QanepLGkOI427PP/v7+VIVxviVFaNnh8/lwc3PjNM7I+YqRhjASQqBQKKgJI41Yplwuh1qtplKX2dfXB7VaPaIQfzqjFwwhjoZoCOHp6YnBwUEqNYZCoRAymWxexf5oJV8A7k+/cHryhZYwqtVqaDQaKoKlUCiorOKGh4dhbW1NpUlFb2+vftaIjumepJlNJ3BDdckxMzODi4sLent7jZ4cMzc3h6WlJYaHh6c1HXIm0BIsnQATQoweQ1/Qwjg4OEhlxSOXy2FpaUlFRObblh24Est0crpW+KZ73nkm4mjo1mG6btQ0zswLBAJqgiWVSo1ux9LSEjwej8ruy87OjsrY1vHgdCutUqlgbm58baZxllTHfBVGQ2W/p7OtNkY/RZYUmTk8Hg+WlpZUssXm5ubUKgjGglNhVKvVVISREEJltQjQq5ekJYwqlQpDQ0MGLQuaijgaq8msThhpdNqej7E/Ho9H5XilmZkZ1Gq10e2Mx4JYMdKIiejQarVURJiWAEulUtjY2Bg8TjaROBqz87ZAIICFhQWVbRotweLz+dRGKvD5fCrCaG5uvnCFUa1WGz0wDVwRK5pNFmgII63VtjHjSVeL444PTgEAHvr3zwYVxdFF6DweD1ZWVrPeDk5lTIS5uTk0Go3BrzuaqaziDDHWQmfrahE21HVHI9fwDCKMUqkUf/7zn3H8+PFpza2f1iertbUV//znP9HTc6VmzdnZGbt3755xvzuVSgUzM7Npv3mmi0ajuVJzZ2Q7wBVh1Gq1Rrel1WpBCDG6HbVaDT6fbzQ7QqEQb9dZ4A7PKyc3Up0V+Ge1Ldavt5u1zbymPqx95zx4PB7+coLg9MOrsMLvyuhRpVI54+uPd93RaLVaqFSqKduZ6nVHQwiZ0M5MrzsWGo1G/2PI647291KTGNYG+N7/+OOPERcXh1/84hfYtm0b7r777gnnEengkWmsiy9duoTAwEBkZWWhu7sbd99996yc3rFjB8zMzLB58+ZZXYcxPyAEoLSwZ5g4t956KzQazay37bt27cKOHTsQFxeHxx57DDt27JjSRNJpaXJkZCQ++ugjbN26Fe+8886MndUbNzeHo6MjNm7cOOtrTURHRwdqamqQlJRkVDsAcOzYMaxbt87o8b+CggK4ubkZveykra0NTU1NWLlypdFsPPzhSaQ4yeFgAcjUwPFua3z8q+tmfd2rVzSE/N+KJjMzE6GhoTOuoR3vuqOpqamBTCZDdHS0Qa87msHBQZw7dw7r16836HXHIj09HVFRUXB2djbodUf7G752C9ZHzX7Il1ar1R851mg0Uz5+PO3FanZ2Nu6//34UFRVN967XYGFhMS1nZ4q5ufmVUxoUzmTzeDzweDyj29Jdn8Zzd/Wby9DU19fjFh8t/llji0f8ZNjfboNHAlVoa2ub9UiCVYtccebR1dcUoWu1Wpibm8/4MY133bEwMzObsp3pXPdqJnvPzfS6Y0EI0T93hrzuaH9DXG0MsrhYunQp2tvbERMTg+bmZgQGBk7pftMWxhdeeAEA8P/+3/+b7l2vNU6pVolWiQFNW7SydtbW1kbr3HJ19nn9ejt8//33OPzIWvT39xtshszoInRCCIaGhmBtbW3Q647FTBJkMxkSNpWEnyGGjwHXJjINdd3RCMxgkOTiL3/5S7z++uvQarVYs2bNlE+lTduyrtu2IXooWlhYUGmXNDqTZkxo1V/RqpGzt7eHQqEweN3k6JKcqxMHszk+OBmDg4Pg8/mwsbEx2DXHQy6XUzkeqtFoqNXp0qq6MFQpn4ODA/74xz8CAG666aYp34/Tch1aqx6adV40j4HREEYzMzM4ODgY9LTIVOoUjdXPUXeKh0b51nw8BUWr9E2j0VApRxsPToXRwsKCijDSPBkw346BAYZtoTWd4m1jiCPNeTzzTRi1Wi2USiWVgwW0Dn+MB6fC6OTkhL4+wxaGjoWVlRXUavW8EmGaYm8oYZzJiRZDiyPN5r40W9DREEaFQgE+n0/lUEZ/fz+cnZ2Nbmc8OBVGT09PdHd3G92Oubk5zM3N59UW19bWFsPDw1SK1l1dXdHV1XXNF8t0Tj3M5pifocRRoVCgr68PLi7j9440FAqFAhqNZtZJnqnaoinANLbS3d3d8PT0NLqd8VgQwgjMvy2upaUlBAIBlU4xdnZ2EAqFI0ZaTmW0gQ5DnH02hDi2tLTAzc2NyupKIpHAwcFhXo3toCXAABNGdHV1UbE134QRoNs+38/PD42Njfp/T3W0gSEbQsxGHAkhaGxspDKREqA/qGw+xTI1Gs3CFkYvLy/09fXNK8GiLYy0egt6e3tjcHAQvb29AKY22sAYXXJmKo6dnZ1Qq9UQiUQG8WMyaMcy55Mwtre3Q6vVUpsHNRacCqODgwMEAgGVAUU0Y39DQ0NUYn80V4zm5uZYtGgRqqqqAPzfaIO/bghB9uNJ1xT5GrN12HTFkRCC6upqBAUFUav3o5X9ViqVUKlU1OoyaQijbiIlrXnpY8GpMPJ4PHh4eIzYohkLmtliWq3mHR0dMTg4SG3+blBQEPr7+9Ha2grgijj+79rFVEVRx3TEsbGxEXK5nMo4AwCQyWRQKpVT6uIyWyQSCezt7amICK0YY0tLC7WV/XhwKozAle10U1OT0e3Q3OLq5ooYG0tLSzg5OaGjo8PotoArdacxMTEoKSkZ90uGhijqmIo4Dg0NobS0FMuWLaNWFycWi+Hm5kZFrOZjLLOpqYnT+CJgIsKoW4EYk/ka+xOJRFQHk3t4eEAkEuHixYvXnAmnKYo6JhJHQgiKi4vh7+9PpURHh1gsZrHMWdDe3q4/eswVJiGMNMYk6qaOzbfYn0gkQmdnJ5XHpSMiIgJ9fX0jvtC4EEXgStnQu0W9sAsIv0YcGxoaMDQ0hLCwMGr+qFQq9Pb2wsPDg4o9mrFMhUIBW1tbo9sSi8Xw8vIyup2J4HR8KnBFGPPz841uRyAQwMrKCgMDA0Z/IwmFQkilUiot1ezs7CAQCNDT0wN3d/cJ/zansQ9nanqQtnh2LaIsLCwQGxuLvLw8CAQCDAwMcCaKSfuy9R2NztwfgUuXLgG4EmYoKytDYmIi1SB+Z2cnhEIhlZWVUqnE8PAwtVimnZ0dlXBEV1cXUlNTjW5nIkxCGGnVMupWcsYWRpoiDFypB21paZlQGEeIyI9kzEzydHBzc0NMTAxycnLA4/GwevVqqqIIjKylNOPzcE6sxoMrV+LcuXMghGDFihVjzsM2Ji0tLdRWOzTFiuYZ866uLhZj9PLyopY8EAqF1GJ/jo6O+po/Y+Pv74+2trYJe1tOtSB7OlydDediBvBYtZQ6n3g8HrVsvY7h4WF0dnYatE3aRPT19VETK5pJns7OTiaMS5cuRX19PZVSGpqxP3d3d3R2dlKxZWtrC2dn5wmz+1MpyJ4OuphicnIyli1bhtzcXDQ2Nk65Sa8hpstdXUuZ9Vgi3NS9KCwsxIoVK5CYmGjwlmWT0dTUBJFIRO3YXEdHx7yLZXZ1daGzs5NqXHgsON9Ke3p6wsnJCXl5eUhOTjaqLUdHR0ilUiqzn0UiES5fvkxtzOmiRYtQWlqKwMDAMQ/560TEEG3oRydahEIhrKysUFRUhLa2NsTExEzYPGGsbX28z8ziZCv9nRDpaomioiI0KpVISkrSf4CN1ex2LLRaLerr67F8+XKj2tEhl8vR398/aVzZEKhUKgwNDVFZMWZlZSEoKAh2dnZGtzURnK8YASA2Nhbnz583uh3dsHUaxdfW1tawt7entmoUiUQghEwYlhivIHs6jJd9dnFxwZo1a2BnZ4czZ85MuHo01LaeEIK6ujqkp6fD2dkZqampI1Y1xmp2Oxatra0QCATUyoI6Ojrg7OxMpQUYzVhmbm4utS+XiTAJYYyPj0dhYSEVW7RrDGnFT3k8HoKDg1FRUWG0mTOTleSYm5sjMjISK1asQFVVFbKystDe3n6NP7Pd1mu1WrS2tiIjIwMNDQ1ITExEeHj4mNlnGuKo1WpRWVmJ4OBgKi25APq1krTiixcvXmTCqGP58uUoKyujYot2jaFYLKY2iMvPzw9qtdooBfPTqVN0dXVFWloafHx8UFpailOnTqG6uhrDw8MAJj9nPR5DQ0OorKzEqVOnUFFRgYCAAKSmpk6aeTa2ODY2NsLc3JxaNlqj0aCrq4uaMNLMSJeVlSEuLo6KrYngPMYIAHFxcaiqqqJyFlMoFOobIRgboVAIPp+Pvr4+Kt2I+Xw+wsLCUF5eDi8vL4PFUWdSvK1rOhEQEICOjg40NTWhsrJS39vRw9ERDy1zGbcGT61WQyqVQiKRQCKRoL+/HzKZDCKRCNHR0XBzc5vW6sxYA7bUajUqKysRGxtLbbXY1dUFGxsbKsXWwJUV46JFs5/xPBnd3d1oaWnBsmXLjG5rMkxCGL28vCAUCpGfn4/Vq1cb1ZaLiwukUimUSiUsLS2NaovH40EkEqG9vZ1am3YvLy9UV1ejsbHRIG/m2Z5o0T0HIpEISqUSfX19kEgk6OrqQnV1NeRyOSwtLfUifurUKf1sEWtrazg6OkIoFMLHxwdOTk6ziqkZQxzr6upgb29PJQmig+Y2emhoCHK5nMpWOjs7G4GBgbC3tze6rckwCWHk8Xj6BIyxhfHqxgs06s28vb1RWFiI8PDwaa8oZnJShcfjYenSpSgoKICXl9esVuCGPuZnaWkJDw+PESUmCoVC3zorMzMTy5cvh4WFBaysrIzyxWVIcRwaGkJ1dTUSExMN5d6kaDQatLW1ISkpiYo9XUMMGomXnJwck4gvAiYSYwToJmBoNl5wcXGBmZnZtJMw0xkdMBo3Nzd4eHigpKRkuu7qoXX22crKCvb29nobQqEQ9vb2Rl3NGyLmqGtQ4efnR/V0TVtbG2xtbaklQ2iuTouLixEfH0/F1mSYjDDGxcWhvLycii2ajRd4PB78/f2n3XNytiUtkZGR6O3tHTGnZapw1RCCJrMVx8bGRuoNKnR2afWVVKlU6OnpoVZEXlFRYRKJF8DEhLGqqorKMa6rGy/QwNfXF11dXfqs7FSYbUmLrnfixYsXp3WqaCGIoo6ZiiMXPR4BYGBgABKJhFpLLpoNMXp7e9Hc3GwSiRfAhITRx8cHtra283I7LRAI4Onpifr6+infZ6YlLVeji+cVFxdPqWRoIYmijumKo1arRVFREfUej8CVRI+fnx+Vom6A7jY6KysLAQEBVDoFTQWTEUYej4cVK1bg1KlTVOzRrjEMDAxEY2PjtLbvhjipEhkZCZlMhsrKygn/biGKoo7piGNpaSnUajX1LbRSqURzczOVshngyhdAR0cHNWE8e/YsEhISqNiaCiYjjACwadMm/PTTT1RsOTk56WvlaNmztbVFS0sLFXs6LCwskJCQgPr6+nHjjQtRFEc3sZiKODY2NqK1tRUrVqygPqipqakJLi4u1EpZent7YWFhQc3eyZMnsWnTJiq2poLJCWN+fj6VI3t8Ph8eHh5UxwIsXrwY1dXV0Gq11GwCV7rvLF++HEVFRdc8twtVFMfK+E8kjj09Pbh8+TJWrFgxYYMMY6BWq1FTU4PFixdTs6nbRtMoWm9ubkZ5eTk2bNhgdFtTxaSE0cfHB6Ghofjmm2+o2NMVX9PC09MT5ubmVKYijsbNzQ1hYWHIzc3VJ4EWoigCE2f8xxLHwcFB5OfnIyoqilqh/tXU1tbC3t6e2pxlQgjEYjG1bPSXX345oiuSKWBSwggAW7ZswXfffUfFloeHB2QymcG205P1GOTxeAgPD0dlZSXUarVBbE6HRYsWwdvbG9nZ2aiqqlqQoghMnvG/Whxramr0JzJoNaC9GqVSiZqaGoSHh1Oz2dvbC7VaDVdXVyr2jh8/jq1bt1KxNVVMUhgzMjKoCIe5uTl8fHwMsoKbakG2u7s7HBwcUFtbO2ub00UnzAKBAOXl5YiLi1twoghMLePv7OyMmJgYlJaWwtHREUuWLOHAU6Cqqgru7u5Ui8gbGxvh5+dn9J6lwJUZ3Dk5OSYVXwRMUBiXLVsGgUBALTvt7++P5ubmWRd7T6cgOzw8HDU1NVS6lo+moaEBUqkU3t7eKCkpmVZt5Xxisoz/4OAgLl26BD8/P3R3d1PtBK5jaGgIDQ0N1KcctrW1USsiP3z4MAICAhAYGEjF3lQxOWHk8XjYvHkzvv76ayr2HB0dYWNjM6MTIlcznYJsR0dHuLu7o7q6elY2p4suppiUlIS4uDh4enoiIyMDfX0zHy8wH+nu7kZmZiYWLVqEZcuWYdWqVdTHJABAZWUlfH19qXazbm5u1ldQ0ODIkSPYsmULFVvTweSEEbiynT59+jQ1ewEBAbPeTk+3IDssLEw/95gGoxMtumYTISEhOHfuHPUyIlOloaEBubm5iIyM1G+faXYC1yGVStHa2kp1C08IQWNjIwICAqjY02q1SE9PZ8I4VdLS0iAWi/Uzgo2Nj48PpFLprMuEplOQbWdnh4CAgCmfSpkNE2WfAwICkJCQgEuXLqGsrMwovhhi8JWx0Wq1KCkpQWVlJRITE+Hj4zPi9zTFUdegIjg4mGppUE9PDxQKBbUJfRkZGfoxt6aGSQqjQCDA9ddfj6+++oqKPXNzc/j5+aGuro6KPR2hoaEYGhoyavnOVEpyXF1dkZqaio6ODpw/f96gccfZdAmihUwmQ3Z2NiQSyYQdwWmJY01NDbRaLYKDg41mYyxqa2uxaNEiKkkXADh48CA2btxIzd50MD2P/svWrVupnYIBrhzZa21tpZoQMTc3x7Jly1BaWmqULfV06hRtbGyQnJw8pWFW08EY86wNxdXDtFxcXJCUlDRpwwRji+PAwACqqqqwbNkyqoIhk8nQ1dVFbRsNXGlKbGplOjpMVhhvuukmXLx4kVoBto2NDdzc3NDQ0EDFng4XFxf4+/sbfEs903EEUVFR+mFWVxeDzxRDz7M2FLpVYn19/YTDtMbCWOKo1Wpx4cIFLF68mHoZVX19Pby9vanNxC4vL0dDQwPWrVtHxd50MVlhdHNzQ1paGt566y1qNoOCglBfX0+9+NrQW+rZnmjRDbOysbHB6dOnZ1WQboguQYZEpVKhrKwM6enpcHJywpo1a2ZUI2gMcaypqQEhhPoWWqlUorGxkWrJzL59+7B161Zq2e/pYrLCCAAPP/ww9u/fb9SzxVcnBlxdXTkpvjbkltpQx/x0q8ekpCT09PTg5MmTqK+vn9FrYYguQbNFo9GgpqYGP//8MwYGBpCcnIylS5fOqhmEIcVRKpWiuroasbGx1GNuuiJyWqtUtVqNb775Bg899BAVezPBpIVx48aNGBgYwIkTJ4xy/bESA1wVX7u4uCAgIAAFBQUzLjY3xtlnR0dHJCYmIi4uDk1NTTh16tS026dxiVqtRn19PU6ePIn29nYkJCQgISHBYH3/DCGOarUahYWFWLx4MfV+hFwUkX/55ZewsbHBmjVrqNmcLiYtjBYWFnjggQfw9ttvG+X6YyUGuCq+Bq7UNpqZmeHixYvTjjcauyGEm5sbUlJSsHTpUjQ0NODEiRMoLy+nVoc5XQYHB1FaWooTJ06gtbUV0dHRWL16tVGay85GHAkhuHDhAmxsbDg5dlhRUUG9iPzf//43HnroIWrjZmeCSQsjAPz617/Gzz//jO7uboNfe7zEAO3iax18Ph/Lly9HT0/PtEqHaHXJ4fF48PLyQmpqKhISEjA0NITTp0/j/PnzaGxs5OSI49UMDw+joaEB2dnZSE9Ph1KpRGJiIlavXm30FlozFcfKykoMDg5SnUutQyqVoq2tjaog19bWIicnBzt27KBmcybwCK0W1rMgLS0Na9aswZ/+9CeDXzunsQ/ptT1YEzRyROnFixeh0WgQGxtrcJuTIZVKkZmZifj4+EnnFXPdOkypVKKlpQXt7e3o7e2FUCjUz5G2t7ef8oddo9Hg+++/x8aNG6cc9yOEQCqVQiwWQywWQyqVwtXVFZ6envD29jb4CICpjLPt7e1FTk4OIiMjJ+3G09raipKSEqSkpHCShMjNzYW9vT3Vzj1PPvkkmpqa8O2331KzORPmhDB+++23eOqpp1BTU0Otc7JcLsfJkyeRkpLCyRyK9vZ2FBUVISUlZdxtDteiOBqVSoWOjg6IxWJ0dHSAx+NBKBTC0dERjo6OEAqFsLGxGTO5MJkwarVayGQy9Pf3QyKRQCKRoL+/X99wWCQSwc3NzWjzUHTxaB7vyu5iogz7VMRRIpEgOzsbK1asoNZn8Wp6enqQm5uL66+/ntoMGYVCAT8/P+zfvx9r166lYnOm0BtxNgu2bNmCJ598El9//TW2b99OxaZAIEBgYCDKy8s5mUXh6ekJqVSK3NxcpKSkXPPmNTVRBK7EhH18fODj4wNCCAYHB/UCVl9fj/7+fqjValhZWcHKygoCgQACgWDEpL2ysjIAV0RWoVBALpdDLpdDqVTC3NxcL7IBAQFwdHSEra0tlS3o1fFoM/6VePR4wqjbVufk5ADANeIol8uRl5eH8PBwTkSREIKysjIsWbKEmigCwAcffAAXFxekpaVRszlT5oQwmpmZYdeuXXjzzTepCSMABAcH4+eff0ZPTw/1iXAAsGTJEgwMDCA3NxcrV67UC4gpiuJoeDwe7O3tYW9vrxcGQghUKpVe7HTCp9Fo9FluPp8PMzMzCAQCuLm56cVTJ6BcBezTFruA/Dj1QvXxxFGlUiEnJwceHh5UT5lcTUdHB4aGhqgN1tLx7rvv4qmnnjLppIuOObGVBoC+vj74+voiIyODatyvpqYGra2tSE5O5uRMp0ajQV5eHgghSEhIQFNTk8mL4kyYSYyRNuPFoyfi6m21SCTC+fPnYWNjg7i4OE4EQqPRID09HYsXL6bWcxG4Muzq9ttvR2trK/WZOTNhzggjADzyyCNo6+rBykf+NmEA3JBotVpkZGTA29ub+okEHRqNBjk5OfoVVlJS0rwSRWBuCONM6e3txfnz5yEQCGBnZ4f4+HjOGieUlpZCIpEgMTGRqjDfeOONiImJwd/+9jdqNmeDyZfrXM0TTzyBH499j5eO5lLr1MLn8xEbG4uqqipqo1ZHY2ZmBpFIhMHBQdjb21OtOWPMHnt7e9jY2EAmk0EkEnEmir29vWhoaEBMTAxVUaysrER6ejoee+wxajZny5wSxtDQUKRdfwN8Lx2k2qnFwcEBixcvRlFREfXRp8CVmGJVVRVWr14NMzMz5ObmcjJMizF9VCoVzp8/D1tbWyQmJqK0tJSTMQkajQZFRUUICwujXhr0u9/9Dvfccw+8vb2p2p0Nc0oYAeDNV19BVfZPcBoWU+3UEhwcDEIIampqqNkERiZanJ2dkZCQAD6fj5ycHCiVSqq+MKaHXC5HdnY2bGxssHz5cri6ulLvBK6joqICAoGAesIlNzcXp06dMkoNsjGZc8IYHByM++69B8tqD1FtSqDbUldXV1PbUo+VfTYzM9MPfc/IyOBse8+YmL6+Ppw9exZOTk6Ii4vTb5+5GJPA1RYaAP73f/8Xu3btgpeXF1W7s2XOCSMA/OWFF3AuI11fCkELmlvqiUpydCIdEBCArKwsiMVio/rCmB4tLS04d+4cQkJCEB0dfY0Y0RRH3RY6PDyc+hb6xx9/RHFxMZ555hmqdg3BnBRGT09P7N69m5MnnMaWeip1ijweD4sXL0ZcXBwuXLiA6upqo8+OYUyMrnD60qVLSEhImLBOkZY46rbQtGsmtVotnnvuOTz33HNwdHSkatsQzElhBIBnnnkGJSUl+OGHH6jaNfaWerrF2x4eHkhOTkZjYyMuXLgwZ9qBzTdUKhXy8vLQ0dGB1NRUuLq6TnofY4sjl1voL774Ah0dHdi1axdVu4ZizgqjUCjE888/j+eff556ptjBwQEhISHIy8szaAJkpida7O3tkZKSAoVCgczMTAwMDBjMp+kyFyYCGpr+/n5kZmaCx+MhOTkZNjY2U76vscRRLpcjPz8fERER1LfQarUaL7zwAvbs2TPpDB1TZc4KIwA8/vjj6OzsxH/+8x/qtoOCguDk5ISCggKDCPNsj/lZWlpi5cqVEIlEyMjI0LfJp8lcmAhoSLRaLSoqKpCVlQU/Pz/Ex8ePOPc9VQwtjrrTUp6enlRPt+jYt28f+Hw+7r33Xuq2DcWcFkaBQIA9e/bghRdeoF7Xx+PxEBMTA5VKhdLS0lldy1Bnn/l8PkJDQ7F69Wo0NzdTXz2a8kRAQ9Pf34+MjAx0dnYiJSUFixcvntV21VDiSAjBxYsXYWZmhoiIiBlfZ6YMDQ3hH//4B1566aUZfUmYCnNaGAHg3nvvhbm5Od58803qtnWlM62trTMeZGWMhhBCoRCpqalwd3enuno01YmAhkSr1aKyshJZWVnw9vZGcnIy7O3tDXJtQ4hjbW0tenp6ODt2+NJLL8Hb29tkx6JOlTl1Vno8Dh8+jEceeQQ1NTWcNPzUnYVduXLltLrw0OiSI5FIUFRUBHNzc0RHRxu9t+RMGi0Ac+OstEQiQXFxMXg8HmJjY6csiFNpcHs102l2ezUdHR0oKChAcnIyJz1Ee3p6EBwcjEOHDiE1NZW6fUMyL4SREIK0tDQsXrwYH3zwASc+NDc3o7S0FCkpKVMKvtNsHabValFVVYWamhp4eXkhNDR0WgkCGpiyMA4ODqK8vBydnZ1YsmQJgoKCprwam06D26uZrjgODAwgMzMTsbGxEIlEU/LN0Nx2221QqVQ4fPgwJ/YNyZzfSgNX4n0ffvghvvrqK/z000+c+ODr6wtfX1/k5eVNGu+k3U9RF3tct24dzMzMcPr0aVy+fJnzGS2mjlwux8WLF5Geng5ra2usW7cOwcHB09qizjTuOp1ttVKpRG5uLhYvXsyZKB48eBCnTp3CO++8w4l9QzMvhBEAAgMD8fe//x0PP/wwZDIZJz6Eh4fDysoKRUVF48b0uGwyKxAIEB0djTVr1uhHN1RWVrKGFKNQqVQoKyvDqVOnoNFosHbtWkRERMDKymra15pN3HUq4qjValFYWAhHR0fO2uL19PRg165d2LdvH2fCbGjmxVZah1arRVpaGoKDgznbUqtUKmRlZcHJyema42Cm1nlbIpGgrKwMUqkUgYGB8Pf3n9GH3xCYwlZaLpejoaEBdXV1cHFxQVhYmEFidTONu+oYb1tNCEFhYSGGhoaQmJjIWRZ427Zt+i30XOjOPRXmlTACV8QnOjoaBw8exA033MCJDwqFAllZWXB3d0dERAR4PJ7JieLVdHd3o7a2Fl1dXfD29kZgYCB1H7kUxr6+PtTV1aG9vR0eHh4ICgqCs7MzVR8mY7Q4EkJQVFQEqVSKpKQkqrNbrubAgQN4+OGHUVZWNm9Wi8A8FEYA+Ne//oV//OMfuHz5MidZauDKjOPs7Gx4enrC2toalZWVJimKVyOTyVBXV4empibY29vD398f3t7eVFYitIVRpVKhpaUFjY2NGBoagr+/PwIDA0267b5OHCMiItDX14fe3l4kJSXB0tKSE3+6u7sRERGBvXv34s477+TEB2MxL4VRq9Xiuuuuw6JFi/Dhhx9y5sfQ0BDS09Oh0WiQnJw8Zw7Tq9VqtLW1obGxEVKpVD8n2t3d3WgrExrCqFQq0dnZqZ9D7eTkBH9/f3h6eppcJnw8enp6cO7cOVhaWmLNmjWchT4A4NZbb4VGo8GhQ4fmzRZax9wtTZ8APp+Pjz76CFFRUdi+fTtnW+qOjg4AV47rtba2QigUzok3kLm5Ofz8/ODn54eBgQG0tbWhtrYWFy5cgIuLi14oTa3kZywGBwf1s657e3vh6OgIkUiE0NDQOTcighCC5uZmWFlZQaVSobOzc1p1jobkq6++wpkzZ1BeXj4n3tPTZV4KIwAEBATg5ZdfxkMPPYTLly9T/xDoYoq6rU52djY0Gg0iIyPn1BvJ3t4eISEhCAkJgVwu14tMWVkZbG1t4e7uDicnJzg6OsLa2prTx0YIwdDQECQSCfr6+tDR0YHh4WG4u7vD19cXy5cv53SFNRu0Wi2Ki4vR39+P1NRUyGSycedWG5vu7m488cQT+Ne//gUPDw+qtmkxL7fSOgghuO666xAQEEB1Sz1WokXX5t7FxWXM5qVzDbVaje7ubnR1dUEikaC/vx9mZmYQCoVwdHSEo6MjhEIhbGxspvRYp7uVJoRAJpOhv78fEolE7wMhRO+Dm5sbXF1d58w2eTy0Wi0uXLiAwcFBJCYm6mOKMz0hM1tuueUWEELw7bffzvn38XjMa2EEgMbGRkRGRuKzzz7Dli1bjG5vouyzQqHA+fPnYW1tjdjYWM4yicaAEIKBgYFrhEqr1cLKygoCgWDEj+42Pp+vPxVy/vx5rFq1Sv9vjUajHxkrl8uv+f+xhNjOzm5efViVSiUKCgqg0WiwcuXKa94ztMXx448/xlNPPYWysrJ5u1oEFoAwAlfiIY888giys7MRFhZmNDtTKclRqVS4cOECZDIZEhISOMua04AQAoVCMULQRoucVqsFIQRarVY/HpbH44HH48HMzGyEqI4WWEtLy3klgqORSqXIy8uDk5MTYmJixl350hLHvLw8rFu3Dl9++SVuvPFGo9kxBRaEMALA888/j4MHDyIvL88o2eHp1CkSQlBRUYGGhgbEx8dPqdvzfMcUCrxNCbFYjAsXLiA4OHhKLc2MLY5isRjx8fHYvXs3fvvb3xr8+qbGghFGrVaLrVu3YnBwED///LNBP3wzLd5ubW1FcXExwsPDqY+1NDWYMF5BN0+ouroacXFx09quGksclUolkpOTERwcjM8++2xer9J1zJuz0pPB5/Pxn//8B2KxGE888YTBrjubEy3e3t5ISkpCVVUVLl68SH1EA8O00Gg0uHDhAhobG5GcnDztGJ6xxiQ88MAD0Gq1+OCDDxaEKAILSBiBK6Un33//Pb744gu89957s76eIY75OTo6IjU1FVKpFOfOnWMdbxYow8PDyMrKgkKhQEpKyoyb3xpaHF9++WWcOnUKR44cmbPzW2bCghJG4EoXnm+++QZPP/00MjMzZ3wdQ559FggESExMhK2tLTIyMtDXNzdmpSzEwVfGoLu7G2fPntWLmq4cZ6bPr6HE8dixY/jrX/+K7777Dl5eXjO+zlxk3hZ4T0RaWhr+/ve/4/bbb0deXt604zHGaAhhZmaGmJgYNDQ04Ny5c1i0aBFCQkJMNt42ogHrj1NvwMr4P9RqNcrKytDS0oKIiAj4+fnpfzfb51cnjjMtAq+oqMC9996Ld955B/Hx8dO673xgwa0YdTz66KPYvHkzNm3aBLlcPuX7GbNLDo/Hw6JFi7BmzRr09vbi7NmzJrt6XEiDr4xBd3c30tPTIZPJkJaWNkIUAcM8vzNdOfb392Pz5s341a9+hbvvvnvaducDC1YYeTwe3nzzTdjb2+Ouu+6aUuKDVuswW1tbJCUlwd/fH+fOnUNZWRk0Go3R7M2EhTD4yhio1WpcunQJeXl5CA4OxsqVK8fs6GOo53e64qjRaHDrrbdi8eLF+Nvf/jYjm/OBBVOuMx5dXV2Ii4vDnXfeiZdffnncv+Oqn+Lg4CCKi4uhVCqxbNkyODmZznZ1tg1Yr2YhlOv09PSgqKgItra2iImJmbTFmSGf36mW8jz88MNIT09HXl4eJwO1TIUFL4wAUFZWhpSUFOzevRt//OMfr/k9101mCSGoq6tDRUWFycceZ8p8Fka1Wo3y8nI0NTXpY4lclL1MJo7/8z//g6+++gpZWVkLvq52QSZfRhMeHo5Tp04hLS0N1tbWIyr7uRZF4Mq2PygoCB4eHigqKkJ6ejqWLl0KDw+PBVNXNhchhKCtrU3fiSgtLY3TVm0TJWSee+45/Oc//2Gi+F+YMP6X6OhonDhxAuvWrYOVlRV2795tEqJ4NXZ2dli9ejWamppQUlICa2trhIeHT2uWNYMOnZ2dKCsrg1qtRlhYGLy9vU3iS2wscXzhhRfw3nvvISMjg7OBWqYGE8arWL58OX744Qds2LABcrkckZGRJiOKOng8Hvz9/eHj44P6+nrk5uYadHATY3ZcPWAsJCQE/v7+0xq3SoOrxfGDDz7AG2+8gfT0dISHh3PtmslgWq+YCZCYmIijR4/iL3/5C6qqqkxKFK/GzMwMixcvxvXXXw8HBwdkZmbiwoULGBoa4tq1Bcng4CDy8/P1PTfXrVuHRYsWmZwo6nB2dkZBQQH27t2LEydOIDo6mmuXTAq2YhyD1NRUHDt2DJs2bQIAg56tNjQWFhYICwvDokWLUFlZidOnT8Pf3x9LliyZs92q5xJyuRyVlZVobm5GQECAPhRj6rzwwgt4/fXXcfr0aSxfvpxrd0wOJozjkJqaip9++gm/+MUvIJfL8cwzz3Dt0oQIBAJER0cjKCgIFRUVOHnyJHx9fREYGDjnZpvMBaRSKerq6tDS0gIvLy+sXbt2TszAAYBnn30W77//PtLT09lKcRyYME7AqlWrcOrUKVx//fWQy+X405/+xLVLk2JnZ4fly5dDKpWivr4e6enpcHV1RWBgINzc3EwiATBXIYSgo6MDtbW1kEgk8PPzw5o1a+bUF89vfvMb7N+/HxkZGSymOAFMGCchLi4O6enpuO666zAwMIBXXnnFZONGV+Pg4IDo6GiEhYWhsbERxcXFMDMzg7+/P3x9fefEds9UkMvlaGpqQmNjI4ArjUhWrFgxp0ZTaDQaPPzwwzh+/DgyMzNZ9nkSWIH3FKmoqMCNN96IpUuX4ssvv5xzIwm0Wi06OjrQ2NiI7u5uiEQi+Pv7w9XV1SRWkaZW4E0IQWdnJxobG9HZ2Ql3d3f4+/vD3d3dJJ6v6SCRSHDLLbdALBbjhx9+QEBAANcumTzzdsV46NAhpKen484778TKlStnfb3Q0FAUFBRg27ZtSEhIwJEjRxAUFGQAT+nA5/Ph6ekJT09PDA8Po7GxEUVFRSCE6OdEz4eJerNBrVajq6sLYrEYHR0d+hV2VFTUnO1FWFpaiq1btyI0NBS5ubkz7vO40Ji3K8asrCysXr3a4NdVqVT6o1P79+/HddddZ3AbtCCEoK+vD2KxGGKxGENDQ3B3d4dIJIKHhwfV7TZXK8bh4WH9rOzu7m7Y2trqvygcHR3n3Orwao4cOYL7778fjzzyCPbs2TOrEND777+PiooKDA8P49VXX530nPdcZ94KY1lZGbRaLSorKyESiZCRkQGNRoPk5GSkpqbO+vrvvfcennrqKbz44ovYvXu3ATzmHplMphfJ3t5eODo6wsPDAyKRSD+9z1jQEkZCCKRSqf5xSqVSuLq66h/nXMksj0dOYx/O1PSg8+Sn+GDfXnzwwQfYvn37rK/b2dkJFxcXfbx9vjNvt9L5+fm477778Pnnn+O5556DWq2GTCYziCgCwIMPPoiwsDDcfPPNuHTpEt5++22Ym8/tp9PW1hZBQUEICgqCUqlEZ2cnxGIxqqurwefzR8xvdnR0hLW1tUmvqAghGBoaumbWtS58EBwcDDc3tzmVRJmInMY+JL+RjuD899FReeVMfVxcnEGu7e7ujq+//hobNmxAdna2wRcapsbc/iRPwNKlS1FQUIDY2Fg0NTXB0tIS2dnZBp2Hm5ycjMLCQmzatAlpaWk4fPjwvDm3bGlpCR8fH/j4+ECr1WJgYEAvLDU1Nejv74e5ufkIoeRSLHUieLUASiQSaLVavX8+Pj6IiIgw+uqXK44XVMDz2J9gYWuF0otFEIlEBr1+SUkJtm3bhsjISIMvNEyNeSuMump+XU2fg4MDQkNDDW7H398f58+fxz333IP4+HgcOnRo3hXN8vl8CIXCEccjtVotBgcH9UJUW1uL/v5+AICVlRUEAgEEAsGI/7/6NktLyymJEyEESqUScrlc/6NQKMb8N4/H0wu1r68vIiMjYWdnNy9FcDQ5OTl4f9c2JK9Zi08/+sAo8WGZTAYARltomBLzNsZIG61Wiz179mDv3r14++23ceedd3LtkkHRxa7SFo/fNJUQMkKwxhIx3W3AlYYYfD4fPB4PPB4PKpUKFhYWIISAEAKtVgtCrrT2t7KygpWVFaytra8R26v/vRBEcDTvv/8+nnrqKbzwwgt48sknjf4c6BYafX19JtU42ZAwYTQwhw4dwgMPPIB169bhnXfemRdb6xGDmcjsB1/pVoE6ASSEQKVSIT09HWlpaTA3N9eLJZ/Ph4WFxYIUvMkQi8XYuXMn8vPz8fnnn2P9+vVcuzRvMP0jHDNE98Ea78dY3HzzzSgvL4dCoUBERAQOHjxoNFu0MPTgK90KUCAQwNraGjY2Nvpjdba2trCxsYG1tTUEAsGUt9wLjY8//hiRkZFwcHBAeXm50UWRq88TV8xbYbx6NXLw4EF89NFHI24zJiKRCEeOHME//vEPPPjgg7j99tvR29trVJvGhA2+Mh3EYjE2btyI3/3ud3j//fexf/9+KrsSLj9PXDBvhVFHUVERoqKiqNvl8Xj45S9/ibKyMgwNDSEiIgLffvstdT8MwUp/J2Q/noS/bghh86M55NNPP9UnlMrLy7F161bqPnD1eaLNvM1K6+jq6kJtbS1qa2s5se/p6YmjR4/i888/x86dO3HgwAG88847cHR05MSfmbLS34kJIkd0dHTgV7/6FXJycvDuu+/illtu4cwXrj9PtJj3K8b169dDpVJhcHCQMx94PB7uuecelJWVYXBwEEuXLsWhQ4c484cxd/j8888RGRkJGxsblJeXcyqKgGl8nmjAstKUIYTgs88+w+7du7Fhwwa89dZb8yJzPVtMrbsO14jFYjz00EM4d+4c56vEhci8XzGaGjweD/fee68+9hgcHIzf//73bFYLA8CVGsGnnnoKS5YsgbW1tUmsEhciTBg5wsvLC9999x0OHz6MkydPYvHixdi7dy/UajXXrjE4QKFQ4G9/+xuCgoJw4cIFnDp1Cl9++SVcXV25dm1BwoSRY1JSUnD+/Hm8/fbbeO+99xAaGorPPvsMWq2Wa9cYFNBqtXj33XexZMkSfPXVV/jPf/6D06dPIz4+nmvXFjRMGE0AHo+HLVu24PLly3j++efx7LPPIi4uDj/88APXrjGMyMGDBxEREYGXX34ZL7/8MoqKirB+/fp5WTA912DCaEKYmZnh/vvvR01NDe6++27cfffdSE1NRU5ODteuMQxIeno6Vq5cicceewyPPfYYKioqcMcdd8yJWUILBfZKmCACgQBPP/00GhoasHr1alx//fXYsmULysvLuXaNMQuKiopwww03YPPmzdi4cSPq6urw2GOPwdLSkmvXGKNgwmjCCIVCvPjii6iqqoKXlxdiY2Nx/fXX49ixYywGOUfQarX45ptvkJqaiqSkJISHh6Ourg6///3v59TY1YUGE8Y5gKenJ95++23U19cjMTERO3bsQEREBPbu3cvKfEwUqVSKv//971iyZAl27dqFG264AU1NTdi7dy/LNM8BWIH3HEShUOCrr77Ca6+9hpaWFtx+++3YvXu3URrx0mK+FHhfvHgRb7zxBr755huEhITgf/7nf3DLLbfMm/EJCwW2YpyDWFlZ4d5770VRUREOHz6Mvr4+LFu2DElJSfjggw/0jWAZdBgaGsK+ffsQHx+PxMREqNVqnDhxArm5udi+fTsTxTkIWzHOE3p6evDpp5/i3XffRXd3N26++WY8/PDDBhuGZGzm2opRq9UiNzcX77zzDr777jv4+fnh4Ycfxl133TViBARjbsJWjPMEFxcX/OY3v0F5eTmOHj0KlUqFNWvWICAgADt27MB3330HpVLJtZtzGoVCgW+++Qb33HMP/Pz8sGHDBggEApw8eRIXL17EI488wkRxnsBWjPMYpVKJs2fP4rvvvsORI0cglUqRnJyMjRs3Ytu2bSbVvMJUV4wdHR04cOAAfvjhB2RnZ8PFxQU333wzNm/ejKSkJLZNnqcwYVwgEEJw+fJlHDlyBIcPH8alS5cQFxeH9evX44477uA8cWNKwnjp0iV8+eWX+Pnnn1FcXIy4uDhs3boVmzdvRmhoKDuZsgBgwrhAaW9vx7Fjx3D48GGcOnUKvr6+SEtLQ1JSEoRBUSiT2004EdDQcCWMWq0WtbW1yMzMRHZ2NtLT0yEWi7F+/Xps3boVN954I9zc3Kj5wzANmDAyMDQ0hFOnTuGHH37A+ZwcXL5cCoGtHTz8FyNxeQyuS07E6tWrERgYaLRjazSEUavVoqqqCtnZ2cjPz8fly5f17d+ioqKQkJCAm266CWvWrIFAIDCKD4y5ARNGxjUolUqUlZWhsLAQuXn5uFBYgEuXLsHe3h6hoaGIjIxEfHw8kpOTERQUZBCxNLQwarVaVFZWIisrSy+CFRUVGB4eRlRUFOLj47F8+XLExcUhLCwM5ubzfsoHYxowYWRMCZVKpRfLgoIC5Ofn49KlS7CwsICrqyvc3Nz0P56envDy8oKfnx98fX3h7+8PJyenCQV0qsKo1WrR29uLhoYGNDU1oaWlBW1tbWhvb0dnZye6urrQ3d2Nrq4uEEKuEcHQ0FAmgoxJYcLImDEqlQpNTU1ob2/X/7S2tqKtrU0vVmKxGH19fRAIBHrhtLOzg7m5OczMzPT/NTMzw/DwMKytraHRaKDRaKBWq6FWq6HRaCCVStHd3Y3u7m7I5XI4OztDJBLBy8trxI9OlD09PeHn58d5IocxN2HCyDA6CoUCYrFYL55SqRRqtRoqlUovfrofc3Nz/Y+FhYX+/4VCoV7wPDw8WEcahlFhwshgMBijYCdfGAwGYxRMGBkMBmMUTBgZDAZjFEwYGQwGYxRMGBkMBmMUTBgZDAZjFEwYGQwGYxRMGBkMBmMUTBgZDAZjFEwYGQwGYxSszQiDUwoKCiCVSnHx4kX85je/4dodBgMAWzEyOKaiogKJiYmoq6vj2hUGQw9rIsHgnO+//x4CgQDW1tbIyMiARqNBcnIyUlNTuXaNsUBhW2kGp7z44ot4/vnnsWnTJvznP/+BWq2GTCZjosjgFLaVZnBKXFwcsrOzERsbi6amJlhaWqK4uJhrtxgLHLaVZpgMUqkUDg4O6Ovrg5MTnemEDMZYMGFkMBiMUbAYI4NTJhtez763GVzAYowMTiGEgBCCt956C4QQPP300/rbmCgyuIIJI8MkePTRR9HZ2Ql/f3+uXWEwmDAyTANCCE6fPo377ruPa1cYDCaMDNPg9ddfx7lz5/DOO+9w7QqDwbLSDAaDMRq2YmQwGIxRMGFkMBiMUTBhZDAYjFEwYWQwGIxRMGFkMBiMUTBhZDAYjFEwYWQwGIxRMGFkMBiMUTBhZDAYjFEwYWQwGIxRMGFkMBiMUTBhZDAYjFH8fzNo7POe5opMAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAF2CAYAAAASrTFdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA7EAAAOxAGVKw4bAAB6tUlEQVR4nO2dd3zUVdb/PzNpkzrpmfSQEFJIIyEEEpIQRGSVpqJYVkXZtYPuo7s+6jaXdVfdn+IqrnXtKwoqICKKlJACqSQE0nuf9Mkkk0y/vz/YmYeE9Mzc7yS579crL2WS+Z4z7TP3nnPuOTxCCAGDwWAw9PC5doDBYDBMDSaMDAaDMQomjAwGgzEKJowMBoMxCiaMDAaDMQomjAwGgzEKJowMBoMxCiaMDAaDMQomjAwGgzEKJowMBoMxCiaMDAaDMQqTFsZLly5hzZo14PF4CA0NxWuvvXbN3+zatQu7du3iwLux6ejowO7du5GYmIg1a9YgMTER1113Hd5880309/dPev/JHs+PP/6ImJgY8Hg8Q7rNYDCuhswBAJCPPvpozN/JZDIik8noOjQOTU1NxMfHh7z55ptEq9Xqb//222+JhYUFOX78+KTXmMrjOXPmDJnJS9fQ0ECefPJJAoA88MAD5LXXXpv2NcZDpVKRPXv2kDfeeIO88cYbJDc3d1r3b2pqIk899RQRCATkjTfeuOb3AwMDJDo6mqxcuXLWfn///ffk888/J6+//jrZuXOnUd8/paWl5MKFC5PeRpsffviBLF26lLz//vsjbrv99ts59Mp0mPPCaEps3LiRbN68eczf7dy5k5w8edIgdmYqjIQQcvr0aeLu7j5CuA3B7t279Y/vr3/9K3nkkUemfY1z586Ru+66izz++OPX/O7AgQMkJCSEnD17dlZ+SiQSwufzSXV1NSGEkE2bNpEXXnhhVteciHvuuYccOnRo0tu4IC4ujlRWVur/LZFIiFgs5tAj08Gkt9KTsW/fPgQEBGDNmjX62/79738jNDQUAQEBePPNN3H99dcjMDAQn376qf5vOjo6cMcdd2D16tVYvXo1du/ejeHhYf3v33jjDaxduxbr1q3DqlWr8Pbbb497/fXr10MgEOC1117DDz/8gM2bN4/p6wcffIDrrrtuwmuM9XgAoLq6GmvWrEF8fDw2b96M4uLiGT9nZ86c0YcnDEVLSwt++ukn/ePbtWsX/vrXv077OoWFhbjjjjtQU1Mz4vYLFy5AJBKhqakJCQkJs/JVKBQiPz8fQUFBAABCCLRa7ayuOREZGRnXvJ5j3Uab3t5edHV1YcmSJfrbhEIhPDw8OPTKdDDn2oHZ8Pjjj6O7uxvp6en623bu3AkzMzM89NBDCAkJwc8//4z9+/fj4Ycfxt133w0ej4fNmzdj5cqV+PLLL6HRaHDLLbfgmWeewRtvvAEA0Gq1+OGHHyAQCKBQKBAREYHo6GgkJiaOuL63tzdOnDiBQ4cOoaSkBFqtFr6+vpP6Pd41BAIBduzYMeLxqNVqbNq0CZs3b8Yrr7wCtVqNW2+9dcbP2ZkzZ3D33XeP+3uxWIzXX399wmukpKTgxhtv1P/7xIkT8PDwwIEDB6BSqXDx4kU8//zz0/ZNpVIhNDR0hDAqFAo0NjZCqVRi1apVsLKympWvABAbGwsAkEgkKC8vx7/+9a8Jr9He3o6vvvoKZWVluOGGGzA4OIjs7Gz885//BI/Hwx//+EeEhYVheHgYhw8fxokTJ3D8+HEcPXoUfD4f+/btw+bNm9Ha2nrNbVFRUVCr1XjllVfg7OwMAHB1dUVwcDCysrLw8ccfIywsDN3d3ViyZAmeeeYZfPXVVzh37hweeeQR1NTUoLi4GLfeeivWrl17je+/+MUvcOONN14Tt9Z9QQLA4OAgPv74Y5w6dQrvvvsuNBrNpDbG8nnbtm2Qy+VjPh8XL14c8/FM9vpxBtdL1qmACbbSf/rTn0hqauqI2z766CMiFAr1/y4vLycASFtbG8nJySEASFVVlf73X3/9NbG2ttZvL0+dOkU2bNhAkpKSSGpqKhEKheSVV14ZcX0HB4cRNnNzcwkA8tNPP424/c033ySpqakkJCSEPPXUUxNeY6zHk5WVRQDot36EXNlWzuSlk8lkxNLSklRUVEz7vhPx4osvEmdnZyKRSAghhLz33nvk17/+9bSuoVQqyVtvvUWUSiURCARErVYTQq48VqVSSR566CGyZ88eg/n83XffkQceeIB88cUXk/7tBx98QDQaDXFzcyMNDQ2EEEJ+97vfkXfffZfcdttt5KuvviKEEPLVV1+RG2+8ccT9nnzyyWuuNfq2e+65R//+bmpqIv/v//0/cvz4caJQKIiDgwOpqKggEomE9Pb2kvfee4+oVCri4OBAcnJyCCGEHD16lOzatWtM30+cOEFqamquuf2RRx4hn3zyCSGEkE8++YTI5XISGRlJKisrp2RjLJ8JIeM+H+M9HlNlTq8YJ8LR0VH//wKBAMD/rT6AK6s2Pv9KJEEul8Pd3R1dXV2QyWS48cYb8a9//QsPPPAAAGDNmjWQyWQjru/k5DTi38HBweDz+frr63j88cfx+OOPY82aNeju7p7wGmPR0tICAHB3d9ff5urqOun9xiI7OxsuLi4ICQkZcXtlZeU1t00He3t7LF68GEKhEADg5+eH559/Hu+9996Ur5Gbm4sVK1bAwsICIpEIjY2NkMvlWLJkCSwsLHDmzBl8+OGHM/ZxNJs2bcKmTZtwxx13oKqqCn/605/G/dtt27ahrKwMERER8Pf3BwA0NzfDwcEBZ8+exZdffgkAKC0tRVpamv5+GRkZuOWWW0Zca/Rt5eXlOHz4MDZs2IBPPvkE5ubmePLJJ2FmZoaMjAysWrVqxGtz++23o6ioCDExMfqwQnFxMcLCwsb0/frrrx/z9lOnTuG5554DAGzduhXV1dWwsLDAkiVL4OHhMaGN8XwuLCwc9/nYsGHDmI/HVJmzwtjU1ISmpqZp3y8gIAAAsH//fnh7e+tv7+zshLu7O77++msoFArcfPPN+t8plcpJr+vk5ISNGzfim2++wa9//etp+zUeuq15Z2cnHBwcAOAagZ0q6enpIz64AFBTU4OysjL9m3Um29OoqKgRcToejwe1Wj0t34qKivDYY48BABYvXozKykr09/fjjjvuQFtbG1pbW7FixYoR95mJrwcPHsQzzzyDmpoa8Pl8rFmzBk8//fSEwigUCrF//36kpqYCuBKXzMzMRHR0NFJTU/VfsGfPnsWrr74KiUQCR0dHZGVlYe/evZDL5VCpVLC3t7/mtsuXLyMuLg533XXXNXZPnz59TSxSKBTizJkzI17HQ4cO4ciRI+jr65vSl21zczMAwMvLCyqVCg4ODvjwww9x//33632fyMZ4Pqenp0/4fIz1eEyVOSuMdXV1I2JxU2X58uVISEjA22+/rU8QnD59Gr///e9x7tw5hISEgMfjISMjA1u2bEFDQwMuXryI9evXT3rtffv2YdWqVXjllVfw9NNP698gly9fRnNzMwIDA6ftb0JCAsLCwvDee+/hlVdegUajwSeffDLt6wBX4kq6VTBwZaX8hz/8AR9//LH+NpFIhJdeemla101KSoJKpYJUKoWDgwPKysqwffv2aV1DpVLpn6+goCC8++67+OKLL/R+JyUlwcLCYsR9ZuIrIWTEh7ehoQFxcXH63x8/fhyBgYHXrGqys7OxZcsWAMDXX3+NhIQEuLq6QiQSAQDq6+tx+fJlREVF4dNPP8XWrVshEAjg7OyMt956C/fddx96enquuS0sLEy/owGuvCZHjhzB9u3bcebMGbz88svXPIYzZ87gmWeeAQBUVVXB2toaQqEQBw4cwM6dO0f87alTp+Dr6zsiyZKdnY3U1FQcO3YM0dHR8PPzw4EDB3Dx4kV88skneOKJJya0kZCQMKbPjo6O4z4fO3fuHPfxmCRc7+Unory8nNx6660EAFm+fDm59dZb9T8pKSnExcWF+Pv7E6FQSLZt20YIIeTLL78kISEhxMrKimzfvp20t7eThIQEAoAkJCSQ6upqIhaLyZ133klWrVpF0tLSyObNm0lTU5Pe7uuvv078/PzIunXryK9//WsSFRVF/P39yZtvvjni+qmpqaSoqGiEz2KxmDz22GMkPj6epKSkkOjoaJKYmEj27dtHBgYGrvHx6mu8+eab1zweQgiprq4mqampJC4ujqxfv57s2bOHACCpqamkpaWFvPPOOyQ6Onrc5zE/P588/fTThM/nk1/96ldkz5495De/+Q0JDAwkjz76qEFeqwsXLpAnnniCvPzyy2T37t36x0oImdC/wsJCcu+995LAwEDy6aefEkIIeeONN8jPP/9MtFot2bNnD4mMjCTx8fHkP//5z6z91Gq15J133iGvvvoqeemll8idd95JWltb9b/fsGEDeeyxx66535IlS8i+ffvIv//9b/LUU0+RoaEhMjg4SH71q1+R/fv3k/3795N7772XvPrqq6S1tZWo1Wpy2223kX//+98kKyuLEELGvI0QQl5++WXy1ltvkU8++YS8//77+rrKqKgoolKprvElJiaGDA8PE0II6ejoIHfeeSd5/fXXx6zH3LRp0zV1oeXl5eTuu+8eUcO4bds28t5775FLly5NycZYPk/0fEz0eEwRHiFsSuBc5/7774ezszNeffVVrl0ZE1P3bzSff/45fvnLX+r/3dbWhs2bN6OgoIBDrxg0mbNbacYVTp8+jbKyMvz8889cuzImpu7faBobG0ckugAgMzNz1vWTjLkFWzHOcYaHh8Hn80fU95kSpu7faLKysrB69Wr9v/Py8vDoo4/CwcEBr7/+OqKiojj0jkELJowMBoMxijl9JJDBYDCMARNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGAUTRgaDwRgFE0YGg8EYBRNGBoPBGIU51w4wGACQnZ2NjIwMaDQaJCcnIzU1lWuXGAsYJowMkyAyMhJqtRoymYyJIoNz2FaaYRI0NTXB0tISxcXFXLvCYIBHCCFcO8FgSKVSODg4oK+vD05OTly7w1jgMGFkMBiMUbCtNIPBYIyCJV8YJgGPx7vmNraZYXAFWzEyTIK33noLhBA8/fTTIIQwUWRwChNGhknw6KOPorOzE/7+/ly7wmAwYWSYBoQQnD59Gvfddx/XrjAYTBgZpsHrr7+Oc+fO4Z133uHaFQaDleswGAzGaNiKkcFgMEbBhJHBYDBGwYSRwWAwRsGEkcFgMEbBhJHBYDBGwYSRwWAwRsGEkcFgMEbBhJHBYDBGwYSRwWAwRsGEkcFgMEbBhJHBYDBGwYSRwWAwRsE6eDOMAiEE/f39aG9vR3t7O9ra2vT/7e/vh1qt1v+oVCqoVCpoNBqYm5vD3NwcFhYW+v83NzeHo6MjvL294enpCU9PT3h5ecHT0xP29vZjdv9mMGYD667DmBHDw8MoKSlBRUWFXvBaWlr0QtjR0QG5XA4nJye4ubnB1dUVbm5u8PDwgFAovEb4zM3N0dHRAQ8PjzFFUyKRoLOzE11dXejq6kJ3dzckEgmsra3h4eEBLy8v/Y9OQMPCwhAZGQkrKyuuny7GHIMJI2NShoaGcPHiRRQWFqKgoAAFBQWorKyEm5sbgoKC4O7urhcnb29v+Pr6wt/fH76+vhAIBFOyodFo8P3332Pjxo0wMzOb0n3kcjkaGxvR2NiI5uZmtLa26kW5s7MTNTU16O3tRVhYGJYvX474+HjExcUhMjJyyn4xFiZMGBkjkMlkehHMOJeDS8UXUFNdDZFIhLCwMERFRSEhIQFJSUnw9vY2mN2ZCONUaG5uRmZmJvLy8lBSUoLy8nJ0d3cjNDR0hFhGRUXB2traYHYZcxsmjAscjUaD8+fP48iRIzh27Bgqq6rg4OwGd//FsBQFISVpJf6wYytEIpHR/TCGMI5FS0sLsrOzkZubi5KSEpSVlaGrqwthYWHYuHEjtmzZgvj4ePD5LDe5UGHCuAAZGBjAiRMncPjwYRw7dgxWVlZYs2YNNm3aBOfQ5bhpfxV4PB4IIch+PAkr/Z2M7hNNYRyL1tZWnD59GkePHkV6ejoAYOPGjdi6dSvWrVsHGxsb6j4xuIMJ4wKhqakJR48exeHDh5GRkYHg4GCsW7cO27ZtQ2Ji4ojVUU5jH9Jre7AmyIWKKALcC+NoX86ePYtvvvkGp06dQmNjI9LS0nDzzTdj48aN8PT05NQ/hvFhwjhPIYSgsLAQ3333HQ4fPoyqqiokJCTghhtuwPbt2xEUFMS1iyMwJWEcTWVlJb766iv89NNPKCgoQEREBLZs2YItW7YgKiqKlQvNQ5gwzjM6Ojrw8ccf47333oNEIkFqaio2bdqEW265BUKhkGv3xsWUhfFqent78c033+Do0aPIzMyEh4cHHnroIdx7771wcXHh2j2GgWDCOA/QarX4+eef8e677+L48eNYuXIldu7ciTvuuAPm5nOjhn+uCOPVKBQKfP755/joo49QWFiIrVu34qGHHkJqaipbRc5xWNptDtPT04O///3vCAgIwM6dOxEQEIDLly/jzJkz+OUvfzlnRHGuYmVlhZ07dyIrKwtFRUVwdnbGHXfcgcWLF+O1115Df38/1y4yZggTxjnI5cuXsXPnTvj5+eHHH3/Eq6++isbGRrz22msmFztcKISGhuKtt95CS0sL/vznP+PgwYPw8fHB448/jqqqKq7dY0wTJoxzBK1Wi++++w5r1qzBqlWroFQqkZOTg7Nnz+K2226bM9vP+Y65uTnuuecenD9/HmfOnEFnZydiYmKwYcMG/PTTT2CRq7kBE0YThxCCH374AdHR0XjssceQkpKChoYGfPbZZ4iMjOTaPcYELF++HAcOHEB9fT2io6OxY8cOrFixAmfOnOHaNcYkMGE0Yc6fP4+UlBTcf//9uOeee1BbW4u//OUvLPs5x/Dw8MDLL7+M+vp63HTTTdi2bRvWr1+PoqIirl1jjAMTRhOkrKwMmzdvxoYNG5CYmIja2lr87ne/g6WlJdeuMWaBQCDAn//8Z1RXVyM0NBQpKSnYvn07amtruXaNMQomjCZEc3MzduzYgfj4eHh4eKCmpgYvv/wy7OzsuHaNYUCcnZ3xxhtvoLy8HJaWloiKisKjjz4KsVjMtWuM/8KE0QTo6enBU089hdDQUMhkMpSUlOD999+Hm5sb164xjIiPjw8+++wzFBQUoLm5GcHBwfj9738PqVTKtWsLHiaMHCKTyfDiiy8iMDAQly5dQmZmJg4ePMhKbhYYYWFhOHr0KH788UdkZGQgICAAr732GuRyOdeuLVjmrTAWFBTg9OnT2Lt3L9eujMmJEycQEhKCI0eO4Ntvv8WJEycQGxvLtVsMDklKSkJGRgY+/fRTfPLJJ1i6dCkyMzO5dmtBMm+FsaKiAomJiairq+PalRFIpVLs3LkT27dvx//+7/8iJycH1113HdduMUyIjRs3oqioCA8++CBuuukmPPHEExgaGuLaLQBAdnY2/v73v+Ovf/0rzp49y7U7RmNen5X+/vvvIRAIYG1tjYyMDGg0GiQnJyM1NZUTf37++Wfcf//9WLJkCT788EMEBARw4ocpMhfPStOgsrIS9913H7q7u/HJJ58gKSmJU3+kUimKioogk8lw4403cuqLMZm3K8YXX3wRGzduxD//+U9ERkYiMTERsbGxnIiiVCrFr3/9a9x222145plncPLkSSaKjCkREhKCc+fOYefOnfjFL36BJ598ktPVY1NTEywtLVFcXMyZDzSYt8IYFxeH7OxsxMbGcvpinjx5EkuXLkVNTQ2Ki4uxa9cu1jKfMS34fD6effZZ5Ofn4/z584iKisK5c+c48cXPzw+rVq3CI488wol9apAFQH9/PyGEkN7eXmo2pVIpefDBB4lQKCT//Oc/iUajoWbbGJxv6CV/O1lNzjcY5zlUq9Xk8OHDRK1WG+X68wWNRkNefPFFYm9vT5588kkyNDTEtUvzkgWxdHFwcAAAODnRadN/6tQpLF26FJWVlSgqKsLu3bvn9Coxp7EPSfuy8YefKpG0Lxs5jX1cu7Rg4fP5eO6555CXl4dz584hKioK58+f59qtece8bdg3WaNQYoSck0ajwTPPPIMPPvgAL7zwwrzZNp+p6QGPx4NGS2DG5yG9tmdGs2DUajUUCgXkcjmUSiW0Wi0IISCEQK1WA7hy+sfMzAw8Hg88Hg98Ph+WlpYQCAQQCAQsMfNfQkNDcf78ebz00ku44YYb8NRTT+EPf/iD0d9vY32ujPFZ4pp5K4xXv1hff/01BgcHsWPHDqPZk0gk2L59O5qbm5Gfn4/g4GCj2aJN2mIXkB+viCIhBGuCrm1iodFoIJVKIZPJIJfLIZfL9SKo+1Gr1TA3N4dAIIClpSX4fD74fP6ID5vuWJxONLVaLZRKpf7+FhYWsLKy0gul7sfKygp2dnZwcHCYF19GU0G3erzppptwyy23oKSkBJ9++ilsbW2NZpMQQuXzxDXzulwHAIqKimBra4tz584Z7YWsrKzExo0bERQUhAMHDui37vOJqycHxvs4oL+/H/39/ZBIJOjv74dUKoVAIICdnd0IsRotXuN1FZ9KuY5arR5TcHU/g4ODUCqVsLe3h6Ojo/7H3t5+3q80e3p6cPPNN6O3rw/Hvv8e/v7+RrFD4/NkCszbFaOOrq4u1NbWGq2DyU8//YTt27dj586d+Mc//jHvViuEEEilUrhr+nCD0wAkdc04dnEAAoEAjo6OEAqF8PLygqOjI6ysrIzqi7m5Oezs7CZsqiGXy/Vi3dHRgcrKSigUCjg4OOj9dXFxgb29/byay+Li4oK/ffQNHn7kUUTExOL40SNYvXq1we0Y+/NkKsx7YVy/fj3279+PwcFBg16XEILXXnsNL7zwAt5444159e2p0WjQ3d0NsViMjo4OaDQauLi4wNHREd7e3hAKhUYXwZkiEAggEokgEon0t8nlcv3qtrOzE+Xl5bCwsND/nYuLy7z4Qsts6EdFzA4sdvHHuvU34I3X9+LBBx80qA1jfZ5MjXm/lTYGcrkcDz74IE6fPo1vvvkGCQkJXLs0axQKBTo6OiAWi9HZ2Qlra2u9cDg7Oxt9dUXz5ItWq0Vvby/EYjHEYjEUCgU8PDwgEong7u4+Z/te6qoHeDwevCWVGDr0Eu64Yzv27t3LBqNNEyaM06S9vR1bt27Vz2Dx9PTk2qUZI5PJ0NbWBrFYDIlEAmdnZ71A0O4BydWRQEIIBgcH9SKpex5EIhG8vLxgbW1NzRdDcHUs2EMrwebNm+Hm5oaDBw+yzu/TgAnjNCgoKMDmzZuRlpaGDz/80GS3kxOh0WggFovR0NCAvr4+vRB6eHhwulIylbPSo1fOrq6u8Pf3h4eHx5zcbstkMtxxxx0oLS3F0aNHsXTpUq5dmhMwYZwi3377Le677z48++yzeO6557h2Z9rIZDI0NDSgqakJAoEA/v7+8PX1hYWFBdeuATAdYbwahUKB5uZmNDY2QqVSwc/PDwEBAbCxseHatWmh1Wrx/PPP41//+hcOHjyI9evXc+2SycOEcQp88cUXePjhh/Hxxx/jlltu4dqdKUMIQVdXF+rq6tDd3Q1vb28EBATA0dHR5DKypiiMOggh6O3tRUNDA9rb2+Hu7o6goCAqsVdD8vHHH2PXrl344osvsGnTJq7dMWlYRHYSPvzwQzz55JM4cOAANmzYwLU7U0Kj0aC5uRl1dXVQqVQIDAxEbGzsnE0qcA2Px4OLiwtcXFwgl8vR0NCA/Px8CAQCBAYGwsfHZ05ss3fs2AEbGxvcdddd+Pjjj3Hrrbdy7ZLJwoRxAt5++208++yzOHTo0JxoJksIQUtLCyoqKmBpaYmQkBB4enrOiQ/tXEEgECA0NBTBwcFoa2tDTU0NqqurERYWBk9PT5NfQd5+++2wsrLCPffcA4VCgbvuuotrl0wSJozjsHfvXuzZswdHjx5FcnIy1+5MCCEEHR0dKC8vh1arxdKlS+fEh3QuY2ZmBl9fX/j4+KClpQWlpaWorq5GeHi4yQ8x27JlCw4cOIDbb78dQ0ND+NWvfsW1SyYHE8YxeP3117Fnzx589tlnJi+Kvb29KCsrg0wmQ2hoKHx9fdkKkSI8Hg++vr7w9vZGQ0MDCgsL4eDggPDwcDg6OnLt3rhs2LAB7733Hh566CHweDzs3LmTa5dMCiaMo3j77bfxl7/8BQcOHIBSqURzczN8fX25dusapFIpysvL0dPTg+DgYAQGBppc0mIhwefzERgYCF9fX9TV1SE7OxseHh4IDQ01ybng9fX1EAqF+Pzzz3H33XfD2tqabauvggnjVXz44Yd49tln9dvn3t5e5OTkAIDJiKNcLkd5eTlaW1v1SRVTKblhABYWFggJCUFAQACqqqqQnp4OX19fhIWFmUzyq76+Xj8sTigU4ssvv8Qdd9wBKysrlpD5L2zP9V+++OILPPnkk/jmm2/022dnZ2esXLkSly5dQnNzM6f+EULQ2tqKM2fOgBCC6667DuHh4UwUTRQrKytERkZi7dq1UCqVOH36tL6lGpeMFkUAuPHGG/HJJ59gx44d+P777zn20DRgwgjg8OHDePjhh/Hll19ek302BXFUKBTIz8/H5cuXERsbi9jY2Dl3VG2hYmNjg/j4eERFRaGoqAgXLlyAUqnkxJexRFHHzTffjA8++AB33nknTp48yYl/psSC30oXFRXhnnvuwYcffjjuOEidOHKxrW5tbUVJSQlEIhHWrl3LVohzFC8vL7i4uKCkpARnzpxBdHT0iA5AxmYiUdSxfft2DA4OYtu2bcjLy8OSJUuo+WdqLGhh7OjowKZNm/Db3/4Wt91224R/S1scFQoFSkpK0Nvbi9jYWHh4eBjV3kzIaezDmZoepC12mdGog4WGlZUV4uPj0dbWhqKiInh4eCAyMnLcLztDPb9TEUUdO3fuxOXLl7Fx40bk5eWZdGbdmCzYI4EKhQJr1qyBr68vvvzyyymXuOgSMpGRkUYTR90qcbIPDpdc3eKKEILsx5Nm9eE15SOBxuDqL76YmJhrvvgM9fxORxR1aLVa/OIXvwAA/PDDDwvi9RjNgowxEkLw8MMPQ6lU4tNPP51W3Z8xY45qtRoFBQUjYommKIrAyAFZPN6VAVmMqaNbPUZERODChQsoLi6GRqPR/94Qz+9MRBG4Unp08OBBNDU14Zlnnpm23fnAghTGN954AydOnMCRI0cgEAimfX9jiOPQ0BAyMzOhVquRlpZmklvnq0lb7AJCJh6QxZgcb29vrF27FjKZDNnZ2ZDL5QBm//zOVBR1ODg44LvvvsPHH3+MTz75ZNr3n/MYc2i1KXLixAlib29PsrKyZn2tnp4ecuzYMdLU1DSr63R3d5Pjx4+Ty5cvE61WO2u/aHG+oZf8/VQ1Od/QO+trqdVqcvjwYaJWqw3g2dxDo9GQ4uJi8uOPP5K+vj5CyMyf37q6OvLDDz8QiUQya79+/PFHYmdnR86fPz/ra80lFpQwVlVVEUdHR/LBBx8Y7JqzFceGhgby/fffz1pc5zoLXRh11NXVke+//560tLTM+P6GEkUdr7zyCnF3d5+xT3ORBZOV7u/vx6ZNm3Dvvfca9FzoTLPVWq0Wly9fRnt7OxITE+HkxLK6DGDRokWwt7dHfn4+pFIpQkNDp9wMZLbb5/H47W9/i8uXL2Pz5s3IyspaEDW0CyIrrdFosGnTJqjVavz4449GabIwnWy1UqlEfn4+1Go1VqxYsSDeaGOh1WpBCIFWq4VarcaJEyewfv16mJubg8/ng8/nL9gOQTKZDLm5ubC1tZ1SEs5YoqhDqVQiNTUV/v7+2L9//7x/XRaEMD777LP49ttvkZeXZ5Q3jY6piKNUKkVeXh6cnJwQExMzb0shNBoNBgYGMDQ0BLlcPuJHoVBALpdP6QSIpaUlBAKB/sfKykr//7a2trC3t5+33YRUKhUuXLgAmUyGhIQE2Nrajvl3xhZFHR0dHVixYgUeffTReZ+tnvfCmJmZiZtuugm5ubkICwszur2JxLGvrw/nz59HcHAwFi9ePG++dTUaDaRSqX52s0QigVQqhZWVFWxtbccVNisrK5iZmYHH40Gr1eLYsWO46aabwOfzQQiBRqMZIaSjhXVwcBAqlQoODg5wdHSEo6MjhEIhHBwc5o1YEkJQUVGBxsZGJCYmwsHBYcTvaYmijry8PKxduxZZWVmIiYkxuj2umNcxxqGhIezYsQPPP/88FVEExo859vT0IDc3F0uXLoW/vz8VX4wF+e8MFLFYjK6uLr0I6sRJJBLB0dFxWqVQuu9nHo+nFzUzM7MJO9IQQiCXyyGRSNDf34/29naUl5frxdLNzQ0ikQhOTk5z9kuIx+PpO/NkZ2dj1apV+tMotEURAFasWIHHHnsM9957LwoKCkymY5ChmdcrxieeeAL5+fnIysqivoK4euUoEAiQl5eH6Oho+Pj4UPXDUKhUKnR1dUEsFqOjowNmZmb6AfVOTk6zHiVryJMvcrkcfX19+jGoAPRjYt3c3Obs8Pn6+nqUl5dj1apVkEgk1EVRh1qtRmxsLG6++Wa88MILVG3TYt4Ko24LXVhYiODgYE586O3txblz50AIQVxcHLy8vDjxY6aoVCq0traivb0d3d3dcHBwgEgkgkgkgoODg0FXYcY6EkgIgUQi0Qv64OAgXF1d4eXlBS8vrzknkk1NTSgpKQGPx8Pq1aupi6KOCxcuICUlZd5uqefWu2KKyGQy3Hffffj973/PmSgC0B/x4vF4I457mTKEEPT19aGxsRGtra1wdHSEj48PYmJi5mT2nMfjwcnJCU5OTggLC8PQ0BDEYjEaGhpw6dIl+Pj4ICAggDOBmS5Xv4+0Wi1nfsTGxmLXrl245557UFhYOO+21PNyxbh7924UFhYiMzOTsyB8T08PcnJysGzZMggEAqM3npgtGo0GbW1tqK2txfDwMPz8/ODn5wd7e3tq9mk3kZBKpWhoaEBLSwvs7e0RGBho0lMVr44pSiQSlJaWIikpiTNRV6vViIuLw5YtW/CXv/yFEx+MxbwTxrNnz2LTpk2cbqF12eeoqCh9TJFGV56ZoFKpUFdXh/r6ev2cZG9vb+plRFx211Gr1WhpadHP4Q4KCkJAQIBJbbPHSrTobktKSromW02LoqIiJCcnIzMzE8uWLePEB2Mwr4RRJpMhIiICjz76KH77299y4sPAwACysrIQHh5+TfbZlMRRo9GgoaEBVVVVcHR0xJIlS+Ds7MxZ9tYU2o4RQtDV1YWqqirIZDKEhITAz8+P8xXkRNnn2tpaVFdXIyUlBTY2Npz499xzz+Ho0aPzaks9r4Tx8ccfR3FxMTIyMjh5MyuVSmRkZMDPz2/c7sdciyMhBC0tLaioqICVlRXCw8Ph6upK3Y/RmIIw6iCEoLOzE2VlZdBqtQgLC5vVnO7ZNJydSklOaWkpurq6sHr1ak5WuWq1GsuXL8emTZuwZ88e6vaNwbwRxvT0dGzevJmzLbRWq0Vubi4sLCwQFxc34YeIC3E09Ifd0JiSMOog/x1AVl5eDktLS4SHh8PNzW1a15hNw9mp1ikSQpCbmwszMzMsX76ck9dUt6XOyMhAbGwsdfuGxjSjzNNEoVDg/vvvxx/+8AfO4oplZWVQKBRYtmzZpG9M2gO2hoaGcP78eRQXFyMwMBBpaWnw8vIyGVE0VXg8Hnx8fHDdddfB19cXhYWFyM3NxfDw8JSvMdOGs9Mp3ubxeIiLi4NUKkVVVdWUfTMky5Ytw5NPPokdO3bMmQqMiZgXwvivf/0LDg4OeOqppzix39TUhJaWFiQkJEx5tUNDHAkhqK+vx5kzZyAUCrFu3Tr4+/tzHjOba/D5fAQGBuK6666DQCDAmTNn0NzcjKlstmbScHYmJ1osLCyQkJCA2tpatLW1Tek+hubPf/4zZDIZPv/8c07sG5I5v5WWSqVYtGgRPvroI2zevJm6/d7eXpw/fx6rVq2Cs7PzjO5vjG310NAQioqKMDw8jNjY2Bn5NhNmGk8zxa30eHR1daGoqAhCoRDR0dGTHn3MaexDem0P1gRN/pzM9phfZ2cn8vPzkZyczEmm+uOPP8Yf/vAHVFdXz6g7vqkw54XxD3/4A9LT05GZmUnd9vDwMM6ePYvw8HD4+fnN+DqGFEdCCBobG1FaWgp/f3+EhYVRE5rZxNPmkjACV8qcysrK0NraisjISPj4+Mw6NGGos8+1tbWoq6tDSkrKrI9qThetVovY2Fjce++9+J//+R+qtg3JnN5TdXR04PXXX8dLL71E3bZarUZubi58fHxmJYqA4bbVcrkc58+fR01NDVatWoWIiAiqIrOQBmRZWFggOjoa8fHxKC8vR15e3pTaqI2HIRtCBAYGwtXVFfn5+dRPx/D5fLz44ov461//CqlUStW2IZnTwrhnzx6kpqYiKSmJuu2SkhJYWVlh6dKlBrnebMVRIpEgIyMDNjY2SEtLo7Z1vpqFOCDLzc0NaWlpMDc3R0ZGBgYGBqZ9DUN3yeHxeIiKigIhBKWlpbO+3nS56aabsHTpUvzjH/+gbttQzNmtdF1dHSIjI5GXl2cwcZoqYrEYxcXFSEtLM/hWZSbb6tbWVhQXFyM8PByLFi0yqD/TZTrxtKuZa1vp0RBCUFNTg+rqasTFxU15yqMxW4cNDw/jzJkzWLFiBfVa1fPnz2P9+vWoqakx+YmXYzFnhfHOO++EmZkZ9QyYUqnE6dOnERUVZbRuOVMVR10T04aGBixfvnzaNXamxFwXRh1isRgXLlyYUjNiGv0UGxsbUVVVpV/V0mTTpk3w8/PDW2+9RdWuIZiTwlhcXIzk5GSUlZVRPz1SWFgIQgiWL19uVDuTieNU297PFeaLMAJTG19Bq8ksIQQ5OTmwtbVFVFSU0eyMRXl5OZYvX46SkhIEBQVRtT1b5mSM8amnf4ebt99NXRTb29vR1dVF5Q02UcxxeHhYn4VPTk6e86I433BwcEBKSgoUCgWysrKgUChG/J5m520ej4eYmBi0tLSgu7vbqLZGExYWhltuuQXPP/88VbuGYM4JY3p6OnLy8vC1fRpyGvuo2VUqlbh48SKio6OpHZQfSxyHhoaQlZUFNzc3rFixYtLpcQxusLS0xMqVK+Hg4IDs7GzI5XIA3IwjsLa2xtKlS1FUVAS1Wk3Fpo6//e1vOHbsGIqKiqjanS1zShgJIXho928QcN1tUFrYUS0HuXTpEtzc3ODp6UnNJjBSHGtqapCVlQVvb29ERESwI30mDp/PR0xMDFxcXJCdnY2qqirOxhHoemuWlZVRtevr64sdO3bMuamCc0oY09PT0d7SjJrAG6mWg+i20JGRkVTsjcbZ2RnR0dEoLS2Fo6MjwsLCmCjOEXSlMwKBAOXl5YiLi+OksSyPx0N0dDQnW+oXXngBOTk5KC4upmp3NswpYdy7dy9uu+NOvHBT5LROVcwGLrbQoxkaGkJpaSn8/PzQ3d2NlpYWTvxgzIyGhgb09/fDx8cHly5d0m+raWNtbY2IiAjqW2pnZ2ds27YNe/fupWZztsyZrHRdXR0iIiJQXV0Nb29vanZLSkqgVCqNnoUej+HhYWRnZ8PLywthYWHo6+szmWa3hmQ+ZaWv5uqYooODA0pKStDT04OkpCTqx/WA/8tS63YetKioqEBsbCwaGhrg7u5Oze5MmTPC+Jvf/AaNjY349ttvqdmUyWQ4c+YM0tLSOMn8qtVqZGZmwtXVdURMketmtzNBq9ViYGAAw8PDkMvlI340Gg20Wi16e3vh7OwMPp8Pc3NzCAQCWFlZQSAQQCAQwMbGBnZ2dpx1B5pug4yxEi2EEBQVFUEmkyExMZGTLwGpVIrMzEx9tyBaXHfddUhNTcUf//hHajZnypwQxoGBAXh7e+Onn37CqlWrqNnVtWrnIrZICNGfdU1ISLgmpmjK4kgIwcDAAHp7e9Hf3w+JRAKpVAoLCwvY2NjohU4nfBYWFiCEoKCgQN9oVaVSQS6XQ6FQ6AVUJpNBo9HAwcEBjo6OEAqFcHZ2hp2dndFjrtNtkDFR9lmr1eLcuXOwtbVFTEwMJ/HiwsJCWFhYUK1t/O677/DrX/8azc3NJj8CwXSm/UzAp59+ipCQEKqi2N/fD7FYjHXr1lGzeTVVVVUYGBhASkrKmB8cXbY6JycHADgXR41Gg56eHrS3t6OjowMajQZOTk5wdHRESEgIhELhhONXdc1NRSLRuKsoQgjkcjkkEgkkEgna2tpQWloKCwsL/bxrFxcXo6wor26QYca/0iBjPGGcrCSHz+cjPj4eZ8+eRX19PQIDAw3u72SEhobizJkzCAoKorYb2rhxI5ycnHDgwAH88pe/pGJzppi8MBJCsG/fPupNaMvKyhAUFMRJHKitrQ11dXVITk6esE6Ra3HUDY9qamqCWCyGtbU1RCIR4uLijDJYi8fjwdraGtbW1vqyKa1Wi56eHnR0dODixYtQKBQQiUTw9/eHi4uLwXxIW+wC8uPkDTKmWqdoZWWFhIQEZGVlwc7OjnrczdbWFv7+/vrTKTTg8/l44IEH8NZbb5m8MJr8Vvr8+fPYtGkTWltbjSJSY8WNuru7kZ+fj3Xr1lEvoO7v70dWVhZWrFgx5bPPtLfVSqUSjY2NaGhoACEE/v7+8Pb2hp2d3YyvaYjkCyEEg4ODaGlpQVNTE8zMzLBo0SL4+fkZ5HWcrEHGTIq329raUFxcjJSUlFk9fzNBoVDg5MmTSEpKgqOjIxWbEokEPj4+yMvLQ3h4OBWbM8HkhXHHjh2wsLDA+++/b/BrjxU3SvBzREZGBnx8fKif71QoFDh79iwWL1487e0VDXFUKBSoqqpCY2MjXF1dsWjRIri7uxtkVWborLRWq0VHRwfq6uogkUgQEBCA4OBgo8W2ZnOipbKyEi0tLUhJSaH+RVxRUYG+vj6qYarbbrsNPj4+Jl2+Y9J1jP39/Th48CAef/xxo1x/rMaq7e3tUCqVCAgIMIrN8dBlK93c3GbUOsyYM2RUKhUqKipw8uRJKJVKpKamYuXKlfDw8DDZQnM+nw9PT08kJSUhOTkZMpkMJ0+eRHV1tcFr+GZ7zG/JkiWwt7dHSUmJQf2aCkFBQZBIJOjq6qJm85FHHsEnn3xyzRlyU8KkhfGLL75AeHg4oqOjjXL90Y1VUwOdUV5ejtDQUOplFM3NzRgYGEBkZOSMxcbQ4qjValFXV4eTJ0+ir68Pq1evRlxcHOzt7Wd9bZo4ODhgxYoVWLlyJTo6OnDq1Ck0NjZOaZjVZBji7LOu0UNXVxfa29tn7dN0sLCwQEhICMrKygzyfEyFNWvWwN3dHYcOHaJibyaYtDC+8847uO+++4x2/ZX+Tsh+PAl/3RCC7MeT4Gs+pB+ZSZPh4WFcvnwZy5Ytm3XPPEOJo67WrampCfHx8Vi1ahUnR9kMibOzM5KSkhATE4Pa2lpkZ2djcHBwxtczZEMIS0tLREdH4+LFi7MakTATAgICoFAo0NnZScUen8/HXXfdhXfeeYeKvZlgsjHG6upqxMTEoLOzk1o5QUZGBvz9/eHv70/FHvB/w9JtbGwMWlM205ijVqvVd6LWNVudbfnLVAqjaZ980Wg0qKysRH19PUJDQxEYGDitlbqxuuQUFhYCAOLi4gx2zalQU1ODrq4uarHGrq4ueHt7o6WlxSRPwpjsivHo0aNITEykJoq9vb2QyWTUV4u6LbShM3QzWTkODAwgMzMTbW1tSE5OxpIlSwwiikn7svGHnyqRtC+baqu4iTAzM0N4eDgSExPR2NiI7OxsDA0NTem+xmwdFhkZycmW2t/fHz09PTOaWTMT3NzcEBMTg2PHjlGxN11MVhgPHTqEG2+8kZq9uro6BAQEUI0tGnILPRbTEceOjg5kZmbCw8MDKSkpBptJbOqTA52cnJCamgonJyecPXsWPT0T+2fsfopXb6lpJicsLCzg6+uLuro6ajZvuOEGHD58mJq96WCSwtjb24vc3FzcfvvtVOwNDw9DLBZTz0SXlJTAx8fHqIOKJhNH3RCnwsJCxMbGIjQ01KAnR+bC5EAzMzMsXboUkZGRyMnJQUNDw5h/R6vJrKenJ9zc3HD58mWj2RiLwMBANDc3U4txbt++HSdPnuSs29BEmKQwHj9+HEuXLqXWRaepqQkeHh4THlmbCjmNffj7qZopbRe7u7vR29tLpcPJeOKo0WhQVFSE+vp6rF69GiKRyOC2Rye4aLSKmyk+Pj5ITExEZWUlSkpKRsxkpt15OyIiAmKxGBKJxOi2dNjb28PZ2dng5V7jERERAU9PT5w+fZqKvelgksJ4+PBhrF+/nootQggaGxtnvVqcTiyNEIKysjIsWbKEWkHvaHFUq9XIycnB8PAwUlNTDbZ1HouV/k7437WLTVoUdei21n19fcjPz4dGo+FkHIGVlRWCgoJQXl5OxZ6OgIAAg5UyTYW1a9fiyJEjVGxNB5MTRqVSiZ9++gnbt2+nYq+zsxM8Hm/W29npxNLa29uhUCiob9114lhSUoL09HSYm5tj5cqVJt/phDYCgQBJSUlQq9U4e/YsysvLORlHwEXxtUgkglKpRF8fnSTZrbfeiu+++46aEE8VkxPGjIwMODk5ITY2loq9xsZG+Pv7z/oEx1RjaVqtlrMicuBKsbONjQ2GhoYm7GSz0DE3N4dIJMLg4CDs7e2pn2MGuCm+5vP58PX1RWNjIxV769atg1KpxIULF6jYmyomJ4xHjhxBWloaFVtyuRwdHR3w8/Ob9bWmGktrbm4Gn8+nXhYEXIkp6momExMTUVpaSi2eZGpMFg+ur69HVVUVVq9eDT6fj4KCghExR1oEBARAqVRSLd/x9/dHa2srVCqV0W2ZmZkhJSXF5LbTJiWMhBAcOXIEt9xyCxV7YrEYLi4uButiPFksTaPRoKKiAuHh4dTPGBNCUFJSAkIIli9fDldXV6OdrTZ1JosHXx1TdHZ2RkJCAoaHh6lP2AOurOBCQ0NRXl5OTZjt7Ozg4OBA7STM5s2bmTBOxOXLl9Hf348NGzZQsScWi6mOQ21oaICtrS0nlf51dXXo7u5GfHy8fvtszMYTpsxE8eCxEi3m5uZISEjQtzOjjY+PD/h8PtUhaCKRCGKxmIqtW265BZWVlSb1HjQpYTxy5AiSk5OpJAPUajW6urqMUqIyFoQQ1NXVITg4mPpqsbOzExUVFUhISLimp+VCFMfx4sETZZ+tra2xYsUKXLp0Cb29vVT95fF4CA4ORm1tLbVYo0gkQkdHB5VVqlAoxIoVK3D06FGj25oqJiWMx48fp7Za7Orqgr29/axrF6eKWCwGj8ejvlqUyWQoKChAbGzsuCU5C00cx4oHT6Ukx9nZGZGRkcjLy8Pw8DBVn728vKBQKCY9mWMo7O3tYWFhQe1L4Prrr8fx48ep2JoKJiOMGo0GxcXF1BIvYrGY2moRuLKVnW6jgtlCCMGFCxcQEBAwachgIYqjLh48nTpFPz8/eHp6ori4mGqJCZ/Px6JFi1BbW0vFHo/Hg4eHB7XtdEpKCgoKCqjYmgomI4xVVVUwNzenchKEEIKOjg5qwiiVSiGRSKbdWXs6J2nGora2Fmq1GqGhoVP6+4UmjsDMTrQsXboUg4OD1OONAQEB6OrqorZa1cUZaXwBxMfHo7u7m5oQT4bJCOOFCxcMfk53PPr6+sDj8agV7DY1NcHb23tap1xm25VmYGAAlZWVWLZs2bSe04UkjjM90WJubo5ly5ahtLSU6pbaysoKHh4e1ATZ1dUVCoViVj0rp4qNjQ2Cg4P1bde4xmSEsaCgABEREVRs6bbRNLa1Go0Gzc3N0z7lMpuuNLoxCUFBQTMacrQQxHG2x/xcXV3h6+tLfUvt7+9P7cgen8+Hu7s7tVVceHi4yWynTUYY8/PzER8fT8UWzfiibqzodAVqNl1pmpqaoFarsWTJkml6+38YWxwJIRgaGkJ7ezsaGhr07a7q6+vR0NAAsVhstNWYoc4+h4WFYXBwkGrxtZubG3g8HrVjgjTLdmJjY01GGE1irrRWq8XFixfx9ttvG93W0NAQhoaGjNrq62ra2tpm1CVIlzmdaFznWOiKyGNiYmYdljDk3GqtVovu7m50d3ejv78fEokEGo0GDg4OsLa21q/eJRIJtFothoeHIZVKYWFhAUdHRwiFQri6usLV1XVWK31DNoTQxcTLy8shEomohIF4PB68vb3R3t5OpcLBw8MDxcXFUCqVRi+jW7lyJfbt22dUG1PFJISxuroaPB4PS5cuNbqt3t5eODk5UTkjrNVq0dnZOeXkx2hW+jtNuyNNXV2dQYvIZyuOQ0NDqK+vR3NzM8zNzeHu7g5vb28sXboUdnZ2ejHRaDRobW3FsmXL9K+NVqvFwMAAJBIJJBIJioqK9D4EBARMu9TKGF1yvL29UV1djebmZmojMUQiEfLz8xEVFWX0cJClpSXs7e3R19cHDw8Po9pauXIlurq60NHRYXRbk2ESwlhYWIiwsDAq37gSiYTacPHu7m5YWVlRm6qnUqlQXV2NlStXGvQDMxNxlEqlqKqqglgshpeXF+Lj4+Hs7Dwtv/h8PoRCIYRCIfz9/UEIQXd3NxobG3Hq1Cl4eXkhJCRkSuMvjNU6jMfjITw8HMXFxfDx8aHyhevk5ARCCPr7+6m8l4VCISQSidHFysbGBosXL0ZhYSHV7v1jYRIxxoKCAiqrReDKrGpa2WiaJUHAlZW3i4sLnJ2dDX7tqcYctVotqqqqkJGRAWtra6xbtw6xsbFwcXEZIYozKUXi8Xhwc3PD8uXLsXbtWlhYWCA9PX3SEyHG7qfo7u4OW1tbamMBaNcYOjo6or+/n4qt8PBwk+i0YxLCSCvxQgihtmIkhFBN8qjVajQ0NCAkJMRoNiYTR93I1ba2NqSkpGDp0qVjNugwxIAsGxsbREZGjhhmJZPJrvk7Gk1meTweQkJCUFdXR63RA82kiKOjI7VO4suWLUNeXh4VWxPBuTDqEi+JiYlGt6X74NCYPDgwMACVSmWU1dtYNDc3w8HBYULRn23BODC2OBJCUFtbi8zMTIhEokmHaRlyQJau47azszPS09NHzGuh2Xnb1dUVlpaWaGtrM6odHW5ubhgYGKBSR+ng4AC5XE5lONeqVatMopaR8xijbhtEo4ZRIpFAKBRSqV8Ui8Xw8PCgEjclhKC+vn7C1aJulcbj8UB+JLOav3J1zJEQAqlUira2NqxevXpKApS22AXkR8MNyNKNQhWJRMjLy4NCoYCFhQUqKyupdd7m8XhYtGgRGhoaqPTaNDc3h5ubG8RiMRYtWmRUW2ZmZrC3t0d/f7/RM+ErV65EZ2cnOjs7OZ03zfmKsaqqitrYUlrBauBKkwpaL2xfXx+USuWE56ENPcZU16fw4sWLaG1tRXJy8pQFyJADsq5eBTs7O2P16tWora1FaWkpVq1aRXUcgY+PD/r7+6nNZnZ3d6dWz0hrO21ra6vP9HMJ5yvG9vZ2uLm5UbElkUiolFTQzBgCVwq6fX19J1ydGnqVpouhWllZQaVSobu7e1qlPDMpRRrNWKtgD60EwJWxAJ2dndReA+DKKs7b2xtNTU1UkomOjo7UmkoIhUJ0d3dTseXq6kq1aH4sTEIYaaysdImXqKgoo9saGhqCVqulMidEJ1AJCQkT/t1MC8bHo76+Xr9SHB4eNkgR+HS5ehVsxuehuLwa/qQHSUlJMDMzQ1ZWFqytran65OXlhZKSEirC6ODggOHhYSrF146OjqipqTGqDR3u7u6cCyPnW+nW1lYqmduhoSEAoCJWusw3jVimriHGVFZGhhpjOjg4iPLycqxYsQLW1tacna2++tjkeg8NvNRd+piinZ0dli9fjkuXLlFt9KBrvEBjO21ubg47OzsqW1yhUAi5XA6lUml0W+7u7mhtbTW6nYkwCWH08vIyuh2ZTAZbW1sqYqVL8tCAZkMM4P8aVAQGBo4QYy7EUbcK3rfWDQ+HmCE1eWTyx9XVFT4+Prh48SLVKXs0Gy/QqjE0MzODtbX1mCVRhkYkElHL7o8H58LY3t4+o7PE00Uulxts6NVk0Iwv6rLftKirq4NKpRqzQQUX4uihlcCf9FwjijrCw8MxMDBAdSWrGwtAA5o1hgKBAHK53Oh2vLy8mDC2tbUZZHzpZNASRl0sk8aKcXh4GENDQ9SSVzKZDBUVFYiNjR23ioCmOE6lTlHXO/Hy5ctUPtTAlcYLvb29VMaP0hRGKysrKrWMvr6+CzvGqNVq0dXVRUUYFQrFNYOgjMHw8DC0Wi2V89F9fX0QCoVUSp2AK0cOfX19J10N0xDH6RRvu7q6wsPDg1oG19LSEra2tlQES5eAoSHCtFaMfn5+nHfy5lQYe3p6QAihUhBLa8U4NDQEGxubeRfLlMvlaGlpQVBQkP62iU7SGFMcZ3KiZfHixWhoaKAiIAC9lZy5uTmsrKz0yUVjQksY/f390dvbSyXRMx6cCmN7ezucnZ2prHhoCSPNWCbNTkGNjY36ZgnA1M47G0McZ3rMTygUwtHRkVqskWbjBVqCRcuOs7MzBAIBp6tGToWxra2NWnxsvgkjzSJyQsg1/QanepLGkOI427PP/v7+VIVxviVFaNnh8/lwc3PjNM7I+YqRhjASQqBQKKgJI41Yplwuh1qtplKX2dfXB7VaPaIQfzqjFwwhjoZoCOHp6YnBwUEqNYZCoRAymWxexf5oJV8A7k+/cHryhZYwqtVqaDQaKoKlUCiorOKGh4dhbW1NpUlFb2+vftaIjumepJlNJ3BDdckxMzODi4sLent7jZ4cMzc3h6WlJYaHh6c1HXIm0BIsnQATQoweQ1/Qwjg4OEhlxSOXy2FpaUlFRObblh24Est0crpW+KZ73nkm4mjo1mG6btQ0zswLBAJqgiWVSo1ux9LSEjwej8ruy87OjsrY1vHgdCutUqlgbm58baZxllTHfBVGQ2W/p7OtNkY/RZYUmTk8Hg+WlpZUssXm5ubUKgjGglNhVKvVVISREEJltQjQq5ekJYwqlQpDQ0MGLQuaijgaq8msThhpdNqej7E/Ho9H5XilmZkZ1Gq10e2Mx4JYMdKIiejQarVURJiWAEulUtjY2Bg8TjaROBqz87ZAIICFhQWVbRotweLz+dRGKvD5fCrCaG5uvnCFUa1WGz0wDVwRK5pNFmgII63VtjHjSVeL444PTgEAHvr3zwYVxdFF6DweD1ZWVrPeDk5lTIS5uTk0Go3BrzuaqaziDDHWQmfrahE21HVHI9fwDCKMUqkUf/7zn3H8+PFpza2f1iertbUV//znP9HTc6VmzdnZGbt3755xvzuVSgUzM7Npv3mmi0ajuVJzZ2Q7wBVh1Gq1Rrel1WpBCDG6HbVaDT6fbzQ7QqEQb9dZ4A7PKyc3Up0V+Ge1Ldavt5u1zbymPqx95zx4PB7+coLg9MOrsMLvyuhRpVI54+uPd93RaLVaqFSqKduZ6nVHQwiZ0M5MrzsWGo1G/2PI647291KTGNYG+N7/+OOPERcXh1/84hfYtm0b7r777gnnEengkWmsiy9duoTAwEBkZWWhu7sbd99996yc3rFjB8zMzLB58+ZZXYcxPyAEoLSwZ5g4t956KzQazay37bt27cKOHTsQFxeHxx57DDt27JjSRNJpaXJkZCQ++ugjbN26Fe+8886MndUbNzeHo6MjNm7cOOtrTURHRwdqamqQlJRkVDsAcOzYMaxbt87o8b+CggK4ubkZveykra0NTU1NWLlypdFsPPzhSaQ4yeFgAcjUwPFua3z8q+tmfd2rVzSE/N+KJjMzE6GhoTOuoR3vuqOpqamBTCZDdHS0Qa87msHBQZw7dw7r16836HXHIj09HVFRUXB2djbodUf7G752C9ZHzX7Il1ar1R851mg0Uz5+PO3FanZ2Nu6//34UFRVN967XYGFhMS1nZ4q5ufmVUxoUzmTzeDzweDyj29Jdn8Zzd/Wby9DU19fjFh8t/llji0f8ZNjfboNHAlVoa2ub9UiCVYtccebR1dcUoWu1Wpibm8/4MY133bEwMzObsp3pXPdqJnvPzfS6Y0EI0T93hrzuaH9DXG0MsrhYunQp2tvbERMTg+bmZgQGBk7pftMWxhdeeAEA8P/+3/+b7l2vNU6pVolWiQFNW7SydtbW1kbr3HJ19nn9ejt8//33OPzIWvT39xtshszoInRCCIaGhmBtbW3Q647FTBJkMxkSNpWEnyGGjwHXJjINdd3RCMxgkOTiL3/5S7z++uvQarVYs2bNlE+lTduyrtu2IXooWlhYUGmXNDqTZkxo1V/RqpGzt7eHQqEweN3k6JKcqxMHszk+OBmDg4Pg8/mwsbEx2DXHQy6XUzkeqtFoqNXp0qq6MFQpn4ODA/74xz8CAG666aYp34/Tch1aqx6adV40j4HREEYzMzM4ODgY9LTIVOoUjdXPUXeKh0b51nw8BUWr9E2j0VApRxsPToXRwsKCijDSPBkw346BAYZtoTWd4m1jiCPNeTzzTRi1Wi2USiWVgwW0Dn+MB6fC6OTkhL4+wxaGjoWVlRXUavW8EmGaYm8oYZzJiRZDiyPN5r40W9DREEaFQgE+n0/lUEZ/fz+cnZ2Nbmc8OBVGT09PdHd3G92Oubk5zM3N59UW19bWFsPDw1SK1l1dXdHV1XXNF8t0Tj3M5pifocRRoVCgr68PLi7j9440FAqFAhqNZtZJnqnaoinANLbS3d3d8PT0NLqd8VgQwgjMvy2upaUlBAIBlU4xdnZ2EAqFI0ZaTmW0gQ5DnH02hDi2tLTAzc2NyupKIpHAwcFhXo3toCXAABNGdHV1UbE134QRoNs+38/PD42Njfp/T3W0gSEbQsxGHAkhaGxspDKREqA/qGw+xTI1Gs3CFkYvLy/09fXNK8GiLYy0egt6e3tjcHAQvb29AKY22sAYXXJmKo6dnZ1Qq9UQiUQG8WMyaMcy55Mwtre3Q6vVUpsHNRacCqODgwMEAgGVAUU0Y39DQ0NUYn80V4zm5uZYtGgRqqqqAPzfaIO/bghB9uNJ1xT5GrN12HTFkRCC6upqBAUFUav3o5X9ViqVUKlU1OoyaQijbiIlrXnpY8GpMPJ4PHh4eIzYohkLmtliWq3mHR0dMTg4SG3+blBQEPr7+9Ha2grgijj+79rFVEVRx3TEsbGxEXK5nMo4AwCQyWRQKpVT6uIyWyQSCezt7amICK0YY0tLC7WV/XhwKozAle10U1OT0e3Q3OLq5ooYG0tLSzg5OaGjo8PotoArdacxMTEoKSkZ90uGhijqmIo4Dg0NobS0FMuWLaNWFycWi+Hm5kZFrOZjLLOpqYnT+CJgIsKoW4EYk/ka+xOJRFQHk3t4eEAkEuHixYvXnAmnKYo6JhJHQgiKi4vh7+9PpURHh1gsZrHMWdDe3q4/eswVJiGMNMYk6qaOzbfYn0gkQmdnJ5XHpSMiIgJ9fX0jvtC4EEXgStnQu0W9sAsIv0YcGxoaMDQ0hLCwMGr+qFQq9Pb2wsPDg4o9mrFMhUIBW1tbo9sSi8Xw8vIyup2J4HR8KnBFGPPz841uRyAQwMrKCgMDA0Z/IwmFQkilUiot1ezs7CAQCNDT0wN3d/cJ/zansQ9nanqQtnh2LaIsLCwQGxuLvLw8CAQCDAwMcCaKSfuy9R2NztwfgUuXLgG4EmYoKytDYmIi1SB+Z2cnhEIhlZWVUqnE8PAwtVimnZ0dlXBEV1cXUlNTjW5nIkxCGGnVMupWcsYWRpoiDFypB21paZlQGEeIyI9kzEzydHBzc0NMTAxycnLA4/GwevVqqqIIjKylNOPzcE6sxoMrV+LcuXMghGDFihVjzsM2Ji0tLdRWOzTFiuYZ866uLhZj9PLyopY8EAqF1GJ/jo6O+po/Y+Pv74+2trYJe1tOtSB7OlydDediBvBYtZQ6n3g8HrVsvY7h4WF0dnYatE3aRPT19VETK5pJns7OTiaMS5cuRX19PZVSGpqxP3d3d3R2dlKxZWtrC2dn5wmz+1MpyJ4OuphicnIyli1bhtzcXDQ2Nk65Sa8hpstdXUuZ9Vgi3NS9KCwsxIoVK5CYmGjwlmWT0dTUBJFIRO3YXEdHx7yLZXZ1daGzs5NqXHgsON9Ke3p6wsnJCXl5eUhOTjaqLUdHR0ilUiqzn0UiES5fvkxtzOmiRYtQWlqKwMDAMQ/560TEEG3oRydahEIhrKysUFRUhLa2NsTExEzYPGGsbX28z8ziZCv9nRDpaomioiI0KpVISkrSf4CN1ex2LLRaLerr67F8+XKj2tEhl8vR398/aVzZEKhUKgwNDVFZMWZlZSEoKAh2dnZGtzURnK8YASA2Nhbnz583uh3dsHUaxdfW1tawt7entmoUiUQghEwYlhivIHs6jJd9dnFxwZo1a2BnZ4czZ85MuHo01LaeEIK6ujqkp6fD2dkZqampI1Y1xmp2Oxatra0QCATUyoI6Ojrg7OxMpQUYzVhmbm4utS+XiTAJYYyPj0dhYSEVW7RrDGnFT3k8HoKDg1FRUWG0mTOTleSYm5sjMjISK1asQFVVFbKystDe3n6NP7Pd1mu1WrS2tiIjIwMNDQ1ITExEeHj4mNlnGuKo1WpRWVmJ4OBgKi25APq1krTiixcvXmTCqGP58uUoKyujYot2jaFYLKY2iMvPzw9qtdooBfPTqVN0dXVFWloafHx8UFpailOnTqG6uhrDw8MAJj9nPR5DQ0OorKzEqVOnUFFRgYCAAKSmpk6aeTa2ODY2NsLc3JxaNlqj0aCrq4uaMNLMSJeVlSEuLo6KrYngPMYIAHFxcaiqqqJyFlMoFOobIRgboVAIPp+Pvr4+Kt2I+Xw+wsLCUF5eDi8vL4PFUWdSvK1rOhEQEICOjg40NTWhsrJS39vRw9ERDy1zGbcGT61WQyqVQiKRQCKRoL+/HzKZDCKRCNHR0XBzc5vW6sxYA7bUajUqKysRGxtLbbXY1dUFGxsbKsXWwJUV46JFs5/xPBnd3d1oaWnBsmXLjG5rMkxCGL28vCAUCpGfn4/Vq1cb1ZaLiwukUimUSiUsLS2NaovH40EkEqG9vZ1am3YvLy9UV1ejsbHRIG/m2Z5o0T0HIpEISqUSfX19kEgk6OrqQnV1NeRyOSwtLfUifurUKf1sEWtrazg6OkIoFMLHxwdOTk6ziqkZQxzr6upgb29PJQmig+Y2emhoCHK5nMpWOjs7G4GBgbC3tze6rckwCWHk8Xj6BIyxhfHqxgs06s28vb1RWFiI8PDwaa8oZnJShcfjYenSpSgoKICXl9esVuCGPuZnaWkJDw+PESUmCoVC3zorMzMTy5cvh4WFBaysrIzyxWVIcRwaGkJ1dTUSExMN5d6kaDQatLW1ISkpiYo9XUMMGomXnJwck4gvAiYSYwToJmBoNl5wcXGBmZnZtJMw0xkdMBo3Nzd4eHigpKRkuu7qoXX22crKCvb29nobQqEQ9vb2Rl3NGyLmqGtQ4efnR/V0TVtbG2xtbaklQ2iuTouLixEfH0/F1mSYjDDGxcWhvLycii2ajRd4PB78/f2n3XNytiUtkZGR6O3tHTGnZapw1RCCJrMVx8bGRuoNKnR2afWVVKlU6OnpoVZEXlFRYRKJF8DEhLGqqorKMa6rGy/QwNfXF11dXfqs7FSYbUmLrnfixYsXp3WqaCGIoo6ZiiMXPR4BYGBgABKJhFpLLpoNMXp7e9Hc3GwSiRfAhITRx8cHtra283I7LRAI4Onpifr6+infZ6YlLVeji+cVFxdPqWRoIYmijumKo1arRVFREfUej8CVRI+fnx+Vom6A7jY6KysLAQEBVDoFTQWTEUYej4cVK1bg1KlTVOzRrjEMDAxEY2PjtLbvhjipEhkZCZlMhsrKygn/biGKoo7piGNpaSnUajX1LbRSqURzczOVshngyhdAR0cHNWE8e/YsEhISqNiaCiYjjACwadMm/PTTT1RsOTk56WvlaNmztbVFS0sLFXs6LCwskJCQgPr6+nHjjQtRFEc3sZiKODY2NqK1tRUrVqygPqipqakJLi4u1EpZent7YWFhQc3eyZMnsWnTJiq2poLJCWN+fj6VI3t8Ph8eHh5UxwIsXrwY1dXV0Gq11GwCV7rvLF++HEVFRdc8twtVFMfK+E8kjj09Pbh8+TJWrFgxYYMMY6BWq1FTU4PFixdTs6nbRtMoWm9ubkZ5eTk2bNhgdFtTxaSE0cfHB6Ghofjmm2+o2NMVX9PC09MT5ubmVKYijsbNzQ1hYWHIzc3VJ4EWoigCE2f8xxLHwcFB5OfnIyoqilqh/tXU1tbC3t6e2pxlQgjEYjG1bPSXX345oiuSKWBSwggAW7ZswXfffUfFloeHB2QymcG205P1GOTxeAgPD0dlZSXUarVBbE6HRYsWwdvbG9nZ2aiqqlqQoghMnvG/Whxramr0JzJoNaC9GqVSiZqaGoSHh1Oz2dvbC7VaDVdXVyr2jh8/jq1bt1KxNVVMUhgzMjKoCIe5uTl8fHwMsoKbakG2u7s7HBwcUFtbO2ub00UnzAKBAOXl5YiLi1twoghMLePv7OyMmJgYlJaWwtHREUuWLOHAU6Cqqgru7u5Ui8gbGxvh5+dn9J6lwJUZ3Dk5OSYVXwRMUBiXLVsGgUBALTvt7++P5ubmWRd7T6cgOzw8HDU1NVS6lo+moaEBUqkU3t7eKCkpmVZt5Xxisoz/4OAgLl26BD8/P3R3d1PtBK5jaGgIDQ0N1KcctrW1USsiP3z4MAICAhAYGEjF3lQxOWHk8XjYvHkzvv76ayr2HB0dYWNjM6MTIlcznYJsR0dHuLu7o7q6elY2p4suppiUlIS4uDh4enoiIyMDfX0zHy8wH+nu7kZmZiYWLVqEZcuWYdWqVdTHJABAZWUlfH19qXazbm5u1ldQ0ODIkSPYsmULFVvTweSEEbiynT59+jQ1ewEBAbPeTk+3IDssLEw/95gGoxMtumYTISEhOHfuHPUyIlOloaEBubm5iIyM1G+faXYC1yGVStHa2kp1C08IQWNjIwICAqjY02q1SE9PZ8I4VdLS0iAWi/Uzgo2Nj48PpFLprMuEplOQbWdnh4CAgCmfSpkNE2WfAwICkJCQgEuXLqGsrMwovhhi8JWx0Wq1KCkpQWVlJRITE+Hj4zPi9zTFUdegIjg4mGppUE9PDxQKBbUJfRkZGfoxt6aGSQqjQCDA9ddfj6+++oqKPXNzc/j5+aGuro6KPR2hoaEYGhoyavnOVEpyXF1dkZqaio6ODpw/f96gccfZdAmihUwmQ3Z2NiQSyYQdwWmJY01NDbRaLYKDg41mYyxqa2uxaNEiKkkXADh48CA2btxIzd50MD2P/svWrVupnYIBrhzZa21tpZoQMTc3x7Jly1BaWmqULfV06hRtbGyQnJw8pWFW08EY86wNxdXDtFxcXJCUlDRpwwRji+PAwACqqqqwbNkyqoIhk8nQ1dVFbRsNXGlKbGplOjpMVhhvuukmXLx4kVoBto2NDdzc3NDQ0EDFng4XFxf4+/sbfEs903EEUVFR+mFWVxeDzxRDz7M2FLpVYn19/YTDtMbCWOKo1Wpx4cIFLF68mHoZVX19Pby9vanNxC4vL0dDQwPWrVtHxd50MVlhdHNzQ1paGt566y1qNoOCglBfX0+9+NrQW+rZnmjRDbOysbHB6dOnZ1WQboguQYZEpVKhrKwM6enpcHJywpo1a2ZUI2gMcaypqQEhhPoWWqlUorGxkWrJzL59+7B161Zq2e/pYrLCCAAPP/ww9u/fb9SzxVcnBlxdXTkpvjbkltpQx/x0q8ekpCT09PTg5MmTqK+vn9FrYYguQbNFo9GgpqYGP//8MwYGBpCcnIylS5fOqhmEIcVRKpWiuroasbGx1GNuuiJyWqtUtVqNb775Bg899BAVezPBpIVx48aNGBgYwIkTJ4xy/bESA1wVX7u4uCAgIAAFBQUzLjY3xtlnR0dHJCYmIi4uDk1NTTh16tS026dxiVqtRn19PU6ePIn29nYkJCQgISHBYH3/DCGOarUahYWFWLx4MfV+hFwUkX/55ZewsbHBmjVrqNmcLiYtjBYWFnjggQfw9ttvG+X6YyUGuCq+Bq7UNpqZmeHixYvTjjcauyGEm5sbUlJSsHTpUjQ0NODEiRMoLy+nVoc5XQYHB1FaWooTJ06gtbUV0dHRWL16tVGay85GHAkhuHDhAmxsbDg5dlhRUUG9iPzf//43HnroIWrjZmeCSQsjAPz617/Gzz//jO7uboNfe7zEAO3iax18Ph/Lly9HT0/PtEqHaHXJ4fF48PLyQmpqKhISEjA0NITTp0/j/PnzaGxs5OSI49UMDw+joaEB2dnZSE9Ph1KpRGJiIlavXm30FlozFcfKykoMDg5SnUutQyqVoq2tjaog19bWIicnBzt27KBmcybwCK0W1rMgLS0Na9aswZ/+9CeDXzunsQ/ptT1YEzRyROnFixeh0WgQGxtrcJuTIZVKkZmZifj4+EnnFXPdOkypVKKlpQXt7e3o7e2FUCjUz5G2t7ef8oddo9Hg+++/x8aNG6cc9yOEQCqVQiwWQywWQyqVwtXVFZ6envD29jb4CICpjLPt7e1FTk4OIiMjJ+3G09raipKSEqSkpHCShMjNzYW9vT3Vzj1PPvkkmpqa8O2331KzORPmhDB+++23eOqpp1BTU0Otc7JcLsfJkyeRkpLCyRyK9vZ2FBUVISUlZdxtDteiOBqVSoWOjg6IxWJ0dHSAx+NBKBTC0dERjo6OEAqFsLGxGTO5MJkwarVayGQy9Pf3QyKRQCKRoL+/X99wWCQSwc3NzWjzUHTxaB7vyu5iogz7VMRRIpEgOzsbK1asoNZn8Wp6enqQm5uL66+/ntoMGYVCAT8/P+zfvx9r166lYnOm0BtxNgu2bNmCJ598El9//TW2b99OxaZAIEBgYCDKy8s5mUXh6ekJqVSK3NxcpKSkXPPmNTVRBK7EhH18fODj4wNCCAYHB/UCVl9fj/7+fqjValhZWcHKygoCgQACgWDEpL2ysjIAV0RWoVBALpdDLpdDqVTC3NxcL7IBAQFwdHSEra0tlS3o1fFoM/6VePR4wqjbVufk5ADANeIol8uRl5eH8PBwTkSREIKysjIsWbKEmigCwAcffAAXFxekpaVRszlT5oQwmpmZYdeuXXjzzTepCSMABAcH4+eff0ZPTw/1iXAAsGTJEgwMDCA3NxcrV67UC4gpiuJoeDwe7O3tYW9vrxcGQghUKpVe7HTCp9Fo9FluPp8PMzMzCAQCuLm56cVTJ6BcBezTFruA/Dj1QvXxxFGlUiEnJwceHh5UT5lcTUdHB4aGhqgN1tLx7rvv4qmnnjLppIuOObGVBoC+vj74+voiIyODatyvpqYGra2tSE5O5uRMp0ajQV5eHgghSEhIQFNTk8mL4kyYSYyRNuPFoyfi6m21SCTC+fPnYWNjg7i4OE4EQqPRID09HYsXL6bWcxG4Muzq9ttvR2trK/WZOTNhzggjADzyyCNo6+rBykf+NmEA3JBotVpkZGTA29ub+okEHRqNBjk5OfoVVlJS0rwSRWBuCONM6e3txfnz5yEQCGBnZ4f4+HjOGieUlpZCIpEgMTGRqjDfeOONiImJwd/+9jdqNmeDyZfrXM0TTzyBH499j5eO5lLr1MLn8xEbG4uqqipqo1ZHY2ZmBpFIhMHBQdjb21OtOWPMHnt7e9jY2EAmk0EkEnEmir29vWhoaEBMTAxVUaysrER6ejoee+wxajZny5wSxtDQUKRdfwN8Lx2k2qnFwcEBixcvRlFREfXRp8CVmGJVVRVWr14NMzMz5ObmcjJMizF9VCoVzp8/D1tbWyQmJqK0tJSTMQkajQZFRUUICwujXhr0u9/9Dvfccw+8vb2p2p0Nc0oYAeDNV19BVfZPcBoWU+3UEhwcDEIIampqqNkERiZanJ2dkZCQAD6fj5ycHCiVSqq+MKaHXC5HdnY2bGxssHz5cri6ulLvBK6joqICAoGAesIlNzcXp06dMkoNsjGZc8IYHByM++69B8tqD1FtSqDbUldXV1PbUo+VfTYzM9MPfc/IyOBse8+YmL6+Ppw9exZOTk6Ii4vTb5+5GJPA1RYaAP73f/8Xu3btgpeXF1W7s2XOCSMA/OWFF3AuI11fCkELmlvqiUpydCIdEBCArKwsiMVio/rCmB4tLS04d+4cQkJCEB0dfY0Y0RRH3RY6PDyc+hb6xx9/RHFxMZ555hmqdg3BnBRGT09P7N69m5MnnMaWeip1ijweD4sXL0ZcXBwuXLiA6upqo8+OYUyMrnD60qVLSEhImLBOkZY46rbQtGsmtVotnnvuOTz33HNwdHSkatsQzElhBIBnnnkGJSUl+OGHH6jaNfaWerrF2x4eHkhOTkZjYyMuXLgwZ9qBzTdUKhXy8vLQ0dGB1NRUuLq6TnofY4sjl1voL774Ah0dHdi1axdVu4ZizgqjUCjE888/j+eff556ptjBwQEhISHIy8szaAJkpida7O3tkZKSAoVCgczMTAwMDBjMp+kyFyYCGpr+/n5kZmaCx+MhOTkZNjY2U76vscRRLpcjPz8fERER1LfQarUaL7zwAvbs2TPpDB1TZc4KIwA8/vjj6OzsxH/+8x/qtoOCguDk5ISCggKDCPNsj/lZWlpi5cqVEIlEyMjI0LfJp8lcmAhoSLRaLSoqKpCVlQU/Pz/Ex8ePOPc9VQwtjrrTUp6enlRPt+jYt28f+Hw+7r33Xuq2DcWcFkaBQIA9e/bghRdeoF7Xx+PxEBMTA5VKhdLS0lldy1Bnn/l8PkJDQ7F69Wo0NzdTXz2a8kRAQ9Pf34+MjAx0dnYiJSUFixcvntV21VDiSAjBxYsXYWZmhoiIiBlfZ6YMDQ3hH//4B1566aUZfUmYCnNaGAHg3nvvhbm5Od58803qtnWlM62trTMeZGWMhhBCoRCpqalwd3enuno01YmAhkSr1aKyshJZWVnw9vZGcnIy7O3tDXJtQ4hjbW0tenp6ODt2+NJLL8Hb29tkx6JOlTl1Vno8Dh8+jEceeQQ1NTWcNPzUnYVduXLltLrw0OiSI5FIUFRUBHNzc0RHRxu9t+RMGi0Ac+OstEQiQXFxMXg8HmJjY6csiFNpcHs102l2ezUdHR0oKChAcnIyJz1Ee3p6EBwcjEOHDiE1NZW6fUMyL4SREIK0tDQsXrwYH3zwASc+NDc3o7S0FCkpKVMKvtNsHabValFVVYWamhp4eXkhNDR0WgkCGpiyMA4ODqK8vBydnZ1YsmQJgoKCprwam06D26uZrjgODAwgMzMTsbGxEIlEU/LN0Nx2221QqVQ4fPgwJ/YNyZzfSgNX4n0ffvghvvrqK/z000+c+ODr6wtfX1/k5eVNGu+k3U9RF3tct24dzMzMcPr0aVy+fJnzGS2mjlwux8WLF5Geng5ra2usW7cOwcHB09qizjTuOp1ttVKpRG5uLhYvXsyZKB48eBCnTp3CO++8w4l9QzMvhBEAAgMD8fe//x0PP/wwZDIZJz6Eh4fDysoKRUVF48b0uGwyKxAIEB0djTVr1uhHN1RWVrKGFKNQqVQoKyvDqVOnoNFosHbtWkRERMDKymra15pN3HUq4qjValFYWAhHR0fO2uL19PRg165d2LdvH2fCbGjmxVZah1arRVpaGoKDgznbUqtUKmRlZcHJyema42Cm1nlbIpGgrKwMUqkUgYGB8Pf3n9GH3xCYwlZaLpejoaEBdXV1cHFxQVhYmEFidTONu+oYb1tNCEFhYSGGhoaQmJjIWRZ427Zt+i30XOjOPRXmlTACV8QnOjoaBw8exA033MCJDwqFAllZWXB3d0dERAR4PJ7JieLVdHd3o7a2Fl1dXfD29kZgYCB1H7kUxr6+PtTV1aG9vR0eHh4ICgqCs7MzVR8mY7Q4EkJQVFQEqVSKpKQkqrNbrubAgQN4+OGHUVZWNm9Wi8A8FEYA+Ne//oV//OMfuHz5MidZauDKjOPs7Gx4enrC2toalZWVJimKVyOTyVBXV4empibY29vD398f3t7eVFYitIVRpVKhpaUFjY2NGBoagr+/PwIDA0267b5OHCMiItDX14fe3l4kJSXB0tKSE3+6u7sRERGBvXv34s477+TEB2MxL4VRq9Xiuuuuw6JFi/Dhhx9y5sfQ0BDS09Oh0WiQnJw8Zw7Tq9VqtLW1obGxEVKpVD8n2t3d3WgrExrCqFQq0dnZqZ9D7eTkBH9/f3h6eppcJnw8enp6cO7cOVhaWmLNmjWchT4A4NZbb4VGo8GhQ4fmzRZax9wtTZ8APp+Pjz76CFFRUdi+fTtnW+qOjg4AV47rtba2QigUzok3kLm5Ofz8/ODn54eBgQG0tbWhtrYWFy5cgIuLi14oTa3kZywGBwf1s657e3vh6OgIkUiE0NDQOTcighCC5uZmWFlZQaVSobOzc1p1jobkq6++wpkzZ1BeXj4n3tPTZV4KIwAEBATg5ZdfxkMPPYTLly9T/xDoYoq6rU52djY0Gg0iIyPn1BvJ3t4eISEhCAkJgVwu14tMWVkZbG1t4e7uDicnJzg6OsLa2prTx0YIwdDQECQSCfr6+tDR0YHh4WG4u7vD19cXy5cv53SFNRu0Wi2Ki4vR39+P1NRUyGSycedWG5vu7m488cQT+Ne//gUPDw+qtmkxL7fSOgghuO666xAQEEB1Sz1WokXX5t7FxWXM5qVzDbVaje7ubnR1dUEikaC/vx9mZmYQCoVwdHSEo6MjhEIhbGxspvRYp7uVJoRAJpOhv78fEolE7wMhRO+Dm5sbXF1d58w2eTy0Wi0uXLiAwcFBJCYm6mOKMz0hM1tuueUWEELw7bffzvn38XjMa2EEgMbGRkRGRuKzzz7Dli1bjG5vouyzQqHA+fPnYW1tjdjYWM4yicaAEIKBgYFrhEqr1cLKygoCgWDEj+42Pp+vPxVy/vx5rFq1Sv9vjUajHxkrl8uv+f+xhNjOzm5efViVSiUKCgqg0WiwcuXKa94ztMXx448/xlNPPYWysrJ5u1oEFoAwAlfiIY888giys7MRFhZmNDtTKclRqVS4cOECZDIZEhISOMua04AQAoVCMULQRoucVqsFIQRarVY/HpbH44HH48HMzGyEqI4WWEtLy3klgqORSqXIy8uDk5MTYmJixl350hLHvLw8rFu3Dl9++SVuvPFGo9kxBRaEMALA888/j4MHDyIvL88o2eHp1CkSQlBRUYGGhgbEx8dPqdvzfMcUCrxNCbFYjAsXLiA4OHhKLc2MLY5isRjx8fHYvXs3fvvb3xr8+qbGghFGrVaLrVu3YnBwED///LNBP3wzLd5ubW1FcXExwsPDqY+1NDWYMF5BN0+ouroacXFx09quGksclUolkpOTERwcjM8++2xer9J1zJuz0pPB5/Pxn//8B2KxGE888YTBrjubEy3e3t5ISkpCVVUVLl68SH1EA8O00Gg0uHDhAhobG5GcnDztGJ6xxiQ88MAD0Gq1+OCDDxaEKAILSBiBK6Un33//Pb744gu89957s76eIY75OTo6IjU1FVKpFOfOnWMdbxYow8PDyMrKgkKhQEpKyoyb3xpaHF9++WWcOnUKR44cmbPzW2bCghJG4EoXnm+++QZPP/00MjMzZ3wdQ559FggESExMhK2tLTIyMtDXNzdmpSzEwVfGoLu7G2fPntWLmq4cZ6bPr6HE8dixY/jrX/+K7777Dl5eXjO+zlxk3hZ4T0RaWhr+/ve/4/bbb0deXt604zHGaAhhZmaGmJgYNDQ04Ny5c1i0aBFCQkJMNt42ogHrj1NvwMr4P9RqNcrKytDS0oKIiAj4+fnpfzfb51cnjjMtAq+oqMC9996Ld955B/Hx8dO673xgwa0YdTz66KPYvHkzNm3aBLlcPuX7GbNLDo/Hw6JFi7BmzRr09vbi7NmzJrt6XEiDr4xBd3c30tPTIZPJkJaWNkIUAcM8vzNdOfb392Pz5s341a9+hbvvvnvaducDC1YYeTwe3nzzTdjb2+Ouu+6aUuKDVuswW1tbJCUlwd/fH+fOnUNZWRk0Go3R7M2EhTD4yhio1WpcunQJeXl5CA4OxsqVK8fs6GOo53e64qjRaHDrrbdi8eLF+Nvf/jYjm/OBBVOuMx5dXV2Ii4vDnXfeiZdffnncv+Oqn+Lg4CCKi4uhVCqxbNkyODmZznZ1tg1Yr2YhlOv09PSgqKgItra2iImJmbTFmSGf36mW8jz88MNIT09HXl4eJwO1TIUFL4wAUFZWhpSUFOzevRt//OMfr/k9101mCSGoq6tDRUWFycceZ8p8Fka1Wo3y8nI0NTXpY4lclL1MJo7/8z//g6+++gpZWVkLvq52QSZfRhMeHo5Tp04hLS0N1tbWIyr7uRZF4Mq2PygoCB4eHigqKkJ6ejqWLl0KDw+PBVNXNhchhKCtrU3fiSgtLY3TVm0TJWSee+45/Oc//2Gi+F+YMP6X6OhonDhxAuvWrYOVlRV2795tEqJ4NXZ2dli9ejWamppQUlICa2trhIeHT2uWNYMOnZ2dKCsrg1qtRlhYGLy9vU3iS2wscXzhhRfw3nvvISMjg7OBWqYGE8arWL58OX744Qds2LABcrkckZGRJiOKOng8Hvz9/eHj44P6+nrk5uYadHATY3ZcPWAsJCQE/v7+0xq3SoOrxfGDDz7AG2+8gfT0dISHh3PtmslgWq+YCZCYmIijR4/iL3/5C6qqqkxKFK/GzMwMixcvxvXXXw8HBwdkZmbiwoULGBoa4tq1Bcng4CDy8/P1PTfXrVuHRYsWmZwo6nB2dkZBQQH27t2LEydOIDo6mmuXTAq2YhyD1NRUHDt2DJs2bQIAg56tNjQWFhYICwvDokWLUFlZidOnT8Pf3x9LliyZs92q5xJyuRyVlZVobm5GQECAPhRj6rzwwgt4/fXXcfr0aSxfvpxrd0wOJozjkJqaip9++gm/+MUvIJfL8cwzz3Dt0oQIBAJER0cjKCgIFRUVOHnyJHx9fREYGDjnZpvMBaRSKerq6tDS0gIvLy+sXbt2TszAAYBnn30W77//PtLT09lKcRyYME7AqlWrcOrUKVx//fWQy+X405/+xLVLk2JnZ4fly5dDKpWivr4e6enpcHV1RWBgINzc3EwiATBXIYSgo6MDtbW1kEgk8PPzw5o1a+bUF89vfvMb7N+/HxkZGSymOAFMGCchLi4O6enpuO666zAwMIBXXnnFZONGV+Pg4IDo6GiEhYWhsbERxcXFMDMzg7+/P3x9fefEds9UkMvlaGpqQmNjI4ArjUhWrFgxp0ZTaDQaPPzwwzh+/DgyMzNZ9nkSWIH3FKmoqMCNN96IpUuX4ssvv5xzIwm0Wi06OjrQ2NiI7u5uiEQi+Pv7w9XV1SRWkaZW4E0IQWdnJxobG9HZ2Ql3d3f4+/vD3d3dJJ6v6SCRSHDLLbdALBbjhx9+QEBAANcumTzzdsV46NAhpKen484778TKlStnfb3Q0FAUFBRg27ZtSEhIwJEjRxAUFGQAT+nA5/Ph6ekJT09PDA8Po7GxEUVFRSCE6OdEz4eJerNBrVajq6sLYrEYHR0d+hV2VFTUnO1FWFpaiq1btyI0NBS5ubkz7vO40Ji3K8asrCysXr3a4NdVqVT6o1P79+/HddddZ3AbtCCEoK+vD2KxGGKxGENDQ3B3d4dIJIKHhwfV7TZXK8bh4WH9rOzu7m7Y2trqvygcHR3n3Orwao4cOYL7778fjzzyCPbs2TOrEND777+PiooKDA8P49VXX530nPdcZ94KY1lZGbRaLSorKyESiZCRkQGNRoPk5GSkpqbO+vrvvfcennrqKbz44ovYvXu3ATzmHplMphfJ3t5eODo6wsPDAyKRSD+9z1jQEkZCCKRSqf5xSqVSuLq66h/nXMksj0dOYx/O1PSg8+Sn+GDfXnzwwQfYvn37rK/b2dkJFxcXfbx9vjNvt9L5+fm477778Pnnn+O5556DWq2GTCYziCgCwIMPPoiwsDDcfPPNuHTpEt5++22Ym8/tp9PW1hZBQUEICgqCUqlEZ2cnxGIxqqurwefzR8xvdnR0hLW1tUmvqAghGBoaumbWtS58EBwcDDc3tzmVRJmInMY+JL+RjuD899FReeVMfVxcnEGu7e7ujq+//hobNmxAdna2wRcapsbc/iRPwNKlS1FQUIDY2Fg0NTXB0tIS2dnZBp2Hm5ycjMLCQmzatAlpaWk4fPjwvDm3bGlpCR8fH/j4+ECr1WJgYEAvLDU1Nejv74e5ufkIoeRSLHUieLUASiQSaLVavX8+Pj6IiIgw+uqXK44XVMDz2J9gYWuF0otFEIlEBr1+SUkJtm3bhsjISIMvNEyNeSuMump+XU2fg4MDQkNDDW7H398f58+fxz333IP4+HgcOnRo3hXN8vl8CIXCEccjtVotBgcH9UJUW1uL/v5+AICVlRUEAgEEAsGI/7/6NktLyymJEyEESqUScrlc/6NQKMb8N4/H0wu1r68vIiMjYWdnNy9FcDQ5OTl4f9c2JK9Zi08/+sAo8WGZTAYARltomBLzNsZIG61Wiz179mDv3r14++23ceedd3LtkkHRxa7SFo/fNJUQMkKwxhIx3W3AlYYYfD4fPB4PPB4PKpUKFhYWIISAEAKtVgtCrrT2t7KygpWVFaytra8R26v/vRBEcDTvv/8+nnrqKbzwwgt48sknjf4c6BYafX19JtU42ZAwYTQwhw4dwgMPPIB169bhnXfemRdb6xGDmcjsB1/pVoE6ASSEQKVSIT09HWlpaTA3N9eLJZ/Ph4WFxYIUvMkQi8XYuXMn8vPz8fnnn2P9+vVcuzRvMP0jHDNE98Ea78dY3HzzzSgvL4dCoUBERAQOHjxoNFu0MPTgK90KUCAQwNraGjY2Nvpjdba2trCxsYG1tTUEAsGUt9wLjY8//hiRkZFwcHBAeXm50UWRq88TV8xbYbx6NXLw4EF89NFHI24zJiKRCEeOHME//vEPPPjgg7j99tvR29trVJvGhA2+Mh3EYjE2btyI3/3ud3j//fexf/9+KrsSLj9PXDBvhVFHUVERoqKiqNvl8Xj45S9/ibKyMgwNDSEiIgLffvstdT8MwUp/J2Q/noS/bghh86M55NNPP9UnlMrLy7F161bqPnD1eaLNvM1K6+jq6kJtbS1qa2s5se/p6YmjR4/i888/x86dO3HgwAG88847cHR05MSfmbLS34kJIkd0dHTgV7/6FXJycvDuu+/illtu4cwXrj9PtJj3K8b169dDpVJhcHCQMx94PB7uuecelJWVYXBwEEuXLsWhQ4c484cxd/j8888RGRkJGxsblJeXcyqKgGl8nmjAstKUIYTgs88+w+7du7Fhwwa89dZb8yJzPVtMrbsO14jFYjz00EM4d+4c56vEhci8XzGaGjweD/fee68+9hgcHIzf//73bFYLA8CVGsGnnnoKS5YsgbW1tUmsEhciTBg5wsvLC9999x0OHz6MkydPYvHixdi7dy/UajXXrjE4QKFQ4G9/+xuCgoJw4cIFnDp1Cl9++SVcXV25dm1BwoSRY1JSUnD+/Hm8/fbbeO+99xAaGorPPvsMWq2Wa9cYFNBqtXj33XexZMkSfPXVV/jPf/6D06dPIz4+nmvXFjRMGE0AHo+HLVu24PLly3j++efx7LPPIi4uDj/88APXrjGMyMGDBxEREYGXX34ZL7/8MoqKirB+/fp5WTA912DCaEKYmZnh/vvvR01NDe6++27cfffdSE1NRU5ODteuMQxIeno6Vq5cicceewyPPfYYKioqcMcdd8yJWUILBfZKmCACgQBPP/00GhoasHr1alx//fXYsmULysvLuXaNMQuKiopwww03YPPmzdi4cSPq6urw2GOPwdLSkmvXGKNgwmjCCIVCvPjii6iqqoKXlxdiY2Nx/fXX49ixYywGOUfQarX45ptvkJqaiqSkJISHh6Ourg6///3v59TY1YUGE8Y5gKenJ95++23U19cjMTERO3bsQEREBPbu3cvKfEwUqVSKv//971iyZAl27dqFG264AU1NTdi7dy/LNM8BWIH3HEShUOCrr77Ca6+9hpaWFtx+++3YvXu3URrx0mK+FHhfvHgRb7zxBr755huEhITgf/7nf3DLLbfMm/EJCwW2YpyDWFlZ4d5770VRUREOHz6Mvr4+LFu2DElJSfjggw/0jWAZdBgaGsK+ffsQHx+PxMREqNVqnDhxArm5udi+fTsTxTkIWzHOE3p6evDpp5/i3XffRXd3N26++WY8/PDDBhuGZGzm2opRq9UiNzcX77zzDr777jv4+fnh4Ycfxl133TViBARjbsJWjPMEFxcX/OY3v0F5eTmOHj0KlUqFNWvWICAgADt27MB3330HpVLJtZtzGoVCgW+++Qb33HMP/Pz8sGHDBggEApw8eRIXL17EI488wkRxnsBWjPMYpVKJs2fP4rvvvsORI0cglUqRnJyMjRs3Ytu2bSbVvMJUV4wdHR04cOAAfvjhB2RnZ8PFxQU333wzNm/ejKSkJLZNnqcwYVwgEEJw+fJlHDlyBIcPH8alS5cQFxeH9evX44477uA8cWNKwnjp0iV8+eWX+Pnnn1FcXIy4uDhs3boVmzdvRmhoKDuZsgBgwrhAaW9vx7Fjx3D48GGcOnUKvr6+SEtLQ1JSEoRBUSiT2004EdDQcCWMWq0WtbW1yMzMRHZ2NtLT0yEWi7F+/Xps3boVN954I9zc3Kj5wzANmDAyMDQ0hFOnTuGHH37A+ZwcXL5cCoGtHTz8FyNxeQyuS07E6tWrERgYaLRjazSEUavVoqqqCtnZ2cjPz8fly5f17d+ioqKQkJCAm266CWvWrIFAIDCKD4y5ARNGxjUolUqUlZWhsLAQuXn5uFBYgEuXLsHe3h6hoaGIjIxEfHw8kpOTERQUZBCxNLQwarVaVFZWIisrSy+CFRUVGB4eRlRUFOLj47F8+XLExcUhLCwM5ubzfsoHYxowYWRMCZVKpRfLgoIC5Ofn49KlS7CwsICrqyvc3Nz0P56envDy8oKfnx98fX3h7+8PJyenCQV0qsKo1WrR29uLhoYGNDU1oaWlBW1tbWhvb0dnZye6urrQ3d2Nrq4uEEKuEcHQ0FAmgoxJYcLImDEqlQpNTU1ob2/X/7S2tqKtrU0vVmKxGH19fRAIBHrhtLOzg7m5OczMzPT/NTMzw/DwMKytraHRaKDRaKBWq6FWq6HRaCCVStHd3Y3u7m7I5XI4OztDJBLBy8trxI9OlD09PeHn58d5IocxN2HCyDA6CoUCYrFYL55SqRRqtRoqlUovfrofc3Nz/Y+FhYX+/4VCoV7wPDw8WEcahlFhwshgMBijYCdfGAwGYxRMGBkMBmMUTBgZDAZjFEwYGQwGYxRMGBkMBmMUTBgZDAZjFEwYGQwGYxRMGBkMBmMUTBgZDAZjFEwYGQwGYxSszQiDUwoKCiCVSnHx4kX85je/4dodBgMAWzEyOKaiogKJiYmoq6vj2hUGQw9rIsHgnO+//x4CgQDW1tbIyMiARqNBcnIyUlNTuXaNsUBhW2kGp7z44ot4/vnnsWnTJvznP/+BWq2GTCZjosjgFLaVZnBKXFwcsrOzERsbi6amJlhaWqK4uJhrtxgLHLaVZpgMUqkUDg4O6Ovrg5MTnemEDMZYMGFkMBiMUbAYI4NTJhtez763GVzAYowMTiGEgBCCt956C4QQPP300/rbmCgyuIIJI8MkePTRR9HZ2Ql/f3+uXWEwmDAyTANCCE6fPo377ruPa1cYDCaMDNPg9ddfx7lz5/DOO+9w7QqDwbLSDAaDMRq2YmQwGIxRMGFkMBiMUTBhZDAYjFEwYWQwGIxRMGFkMBiMUTBhZDAYjFEwYWQwGIxRMGFkMBiMUTBhZDAYjFEwYWQwGIxRMGFkMBiMUTBhZDAYjFH8fzNo7POe5opMAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -113,7 +113,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAF2CAYAAAASrTFdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAB+fUlEQVR4nO2deXjTVfb/30nTNt33Nl1TutCNLpRutLSlgIoKiIyKOoPiMI47OsPMOG7jIOM46k9hFBX3XdyQTRSRpXSBFlrK2n1L13RP0y37/f3RbzKldG9yk7b39Tx9lDT5nJM0eefce849h0MIIWAwGAyGDq6xHWAwGAxTgwkjg8FgDIMJI4PBYAyDCSODwWAMgwkjg8FgDIMJI4PBYAyDCSODwWAMgwkjg8FgDIMJI4PBYAyDCSODwWAMgwkjg8FgDIOqMLa2tuLhhx9GYmIili5dioSEBDz00EMQi8UGs3n48GHExMSAw+EYzIahaWlpwebNm5GcnIylS5ciOTkZy5cvx5tvvonu7u5xH//YY4/hscceG/F3s+H1YTD0DqFEU1MTEQqF5L///S/RaDSEEEI0Gg15/fXXibe3N6mrqzOY7RMnThB9PdXnn3+epKen6+VaE6Guro74+PiQN998U/e6EULIDz/8QMzNzcnPP/887jX6+vpIX1/fqL+f6utTW1tLnnjiCQKA/P73vyevv/76pK8xGkqlkmzbto288cYb5I033iD5+fmTvkZdXR3ZsmUL4fP55I033rjm9z09PSQ6OpokJSVN2/cff/yRfPHFF2THjh1k06ZNY77e0+XKlSvk3Llz4942m+jq6iIPPPAAiYmJoWKPmjCuW7eOrFq1asTfrVy5kqxevdpgtmeyMK5atYqsWbNmxN9t2rSJHD16dNo2pvP6HD9+nLi7u18l2vpg8+bNuuf2r3/9izz00ENTus6pU6fI3XffTR599NFrfvftt9+SkJAQcvLkyWn5KpFICJfLJRUVFYQQQlavXk22bt06rWuOxYYNG8jevXvHvW228eGHH5KHH36Yii0qwtjV1UXMzMzI+++/P+Lv3333XcLlcsk///lPIhQKdcJTVFREoqOjr/nQ/ve//yUZGRlk+fLlJCkpibz99ttX/b68vJykp6eTuLg4snr1arJ9+/arrvHBBx+QkJAQIhQKyRtvvEGuu+46YmlpST7++OMxr/32228ToVBIHBwcSHp6Olm2bBnZsWPHuD6PZU8sFpP169eTlJQUkpKSQh577DHS399PCCGko6ODcLlc8sEHH4z7Go9m480337zKv4m8PpPhueeeI3fccceUHjsa9fX1JCQkRPfv7u5u0tHRMaVrvfnmm+TAgQNk5cqVV91eWFhIsrKyiJWVFZHJZNPyV3s97ZfDqlWryPPPPz/ta46GUCgkXV1d494227jjjjvInj17qNji0Viul5eXQ61Ww8/Pb8TfC4VCaDQa3HjjjSCEIDMzEwAQExODHTt2ICMj46r7azQa/PTTT+Dz+ZDL5ViwYAGio6ORnJwMlUqF1atXY82aNXjllVegUqnwm9/85qrHb9q0CWZmZnjggQfg7e2NI0eOYO/eveDz+ZBIJKNe+6GHHkJLSwsyMzN1PgJAV1fXmD6PZs/CwgJr1qxBUlISvv76a6jVaqxbtw5PPvkk3njjDVRWVkKj0cDX13fc13is57Rx40adfxN5fSbDiRMn8Nvf/nbM+4jFYuzYsWPM+6SlpeGmm24CABw5cgQeHh749ttvoVQqceHCBTzzzDNT8k+pVCI0NBSVlZW62+RyOUQiERQKBRYvXgxLS8sp+6olNjYWACCRSFBSUoK333571Mc3Nzfjm2++QXFxMW644Qb09vYiNzcX//3vf2FlZQWZTIZ//OMfCAsLw8DAAPbt24cjR47g559/xsGDB8HlcrFz506sWbMGjY2N19wWFRUFlUqFV155Bc7OzgAAV1dXBAcHIycnB5988gnCwsLQ3t6O+fPn48knn8Q333yDU6dO4aGHHkJlZSXOnz+P3/zmN1i2bNlVvt9444246aabrtmzlslkeO655xAWFgalUolTp07hnXfewccff4yjR4/i3Xffhbu7Oz7++GO0tLTg73//u+5xIz1X7d/p+eefx/z58zEwMIDMzEzs2rVrzL+N3qChvvn5+QQA+eWXX0b8/eHDhwkAcvHixWuWqiMt844dO0ZWrlxJUlJSSHp6OnFwcCCvvPIKIYSQnJwcAkC3rCFkcMk0/Boff/wxsbe3v8aXsa5NyMhL6Yn4PJK9vLw8AoCUl5frbvv++++JlZUV0Wg0o75ub775JklPTychISFky5Yt4z6nof5N9PWZCH19fcTCwoKUlpZO+rFj8eKLLxJnZ2cikUgIIYS899575P7775/0dRQKBXnrrbeIQqEgfD6fqFQqQsjg81UoFOSBBx4g27Zt05vfBw4cIL///e/JV199Neb9PvjgA6JWq4mbmxupra0lhBDyt7/9jbz77ruEEEJuv/128s033xBCCPnmm2/ITTfddNVjn3jiiWuuN/y2DRs2kI8//pgQMrjX+v/+3/8jP//8M5HL5cTe3p6UlpYSiURCOjs7yXvvvUeUSiWxt7cneXl5hBBCDh48SB577LFrfD9y5AiprKy85vbbb7+dfPnll4QQQvbv30/S09PJl19+SWQyGYmMjCRlZWWEEELWrl1Lvv/++6seN9pzvfPOO3XX/OWXX0hcXNyYr6s+oZKVDg4OBpfLRV1d3Yi/r6urg5mZGQIDA8e9Vk1NDW666SbcfvvtyMnJQWZmJmJiYtDX1wcAaGhoAAC4u7vrHuPq6jritZycnCZ17eky3J5IJAIwGO0tXboUS5cuxauvvgp3d3e0tbXpXjft/bQ8+uijyMzMhEAgQHt7+5g2hjOZ12c8cnNz4eLigpCQkKtuLysrm9L1tNjZ2SEoKAgODg4AAD8/P+zbt2/S18nPz0dCQgLMzc0hEAggEolQXFyM+fPnw9zcHCdOnLhmNTIdVq9ejQ8//BD79+/H1q1bR73fbbfdhuLiYixYsABCoRAAUF9fj/b2dhQWFuLkyZO47bbbAABXrly5ysesrCwsXbr0qusNv62kpAT79u2DhYUFPv30U2RlZeGJJ57AypUrkZeXh8WLFyMkJAQODg5wcnLCHXfcgaKiIsTExCAxMREAcP78eYSFhV3j+3XXXXfN51Tr85133gkAuHz5MpYsWYLVq1ejoqICfD4f8+fPByEEOTk5Ol/Heq6FhYU4fvz4Vddcvnz5mK+/PqGylHZycsLNN9+MAwcO4A9/+MM1v9+3bx82bNgAa2trWFhYQCaT6X7X1dV11X0LCwshl8tx66236m5TKBS6/9cuO1tbW2Fvbw8A14jHaIx37dEYz+fR8Pf3BwDs3r0b3t7euttbW1t1wrVq1Srs2bMH999//4SuOR7TeX2Gk5mZeY2wVFZWori4+CqxnOzyNCoqChqNRvc7DocDlUo1af+KiorwyCOPAACCgoJQVlaG7u5u3HnnnWhqakJjYyMSEhKuesxUltLfffcdnnzySVRWVoLL5WLp0qX4y1/+gueff37Exzs4OGD37t1IT08HABBCkJ2djccffxyZmZlIT08HlzsYs5w8eRKvvfYaJBIJHB0dkZOTg+3bt0Mmk0GpVMLOzu6a2y5fvoxFixbh7rvvvsb28ePHrxFWBweHa74k9u7di/3796Orq2vcL9vhPp84cQJbtmyBnZ0d9u3bh7vuugsAcOnSJXh7e8Pe3h59fX1jPteRrrl582bd62BoqNUxvvXWWygqKsJbb72lu40QgjfeeAMikQgvvfQSgMHosqysDP39/QBwTaQQEhICDoeDrKwsAEBtbS0uXLig+31iYiLCwsLw3nvvAQDUajU+/fTTCfk43rWBwTdRT08PAOCJJ55AXl7euD6PRlxcHBITE/HOO+/objt+/DjWrl2r+/fOnTtx+fJlvPLKK1eJxeXLl1FfX69740yU6bw+wxn+YdLuMw3ffxMIBPjPf/4z5s/Qx6SkpECpVEIqlQIAiouLsX79+kn7p1Qqda9PYGAg3n33XaxZs0bne0pKCszNzaflKzD4Ph76Ia6trcWiRYsAAD///POIEXRubi4iIiIAAN9//z0SExORmJgIR0dHCAQCAIMrmMuXLyMqKgp79uxBR0cH+Hw+nJ2d8eGHH4LD4Yx4W1hYGPh8vs6WTCbDN998o3vew4Vx+O3l5eWwsrKCg4MDfvjhh6vud+zYMZSXl19121CfRSIR8vLykJycDABoamrSfUkePnwYqampOHz4sE7gRnuuQ39XX1+P3NxcLFmyRPc8DA61RTshRCwWk0cffZQsXryYpKWlkYULF5J//OMfpLOzU3cfhUJBbr/9dhISEkLWrVtHduzYQQCQ9PR00tDQQAghZMeOHcTPz4+sWLGC3H///SQqKooIhULy5ptvEkIIqaioIOnp6WTRokXk+uuvJ9u2bbvqGl9//TUJCQkhlpaWJD09nRQVFensj3ft2tpaEhkZSVJSUsiNN95IZDLZuD6PZU8sFpO77rqLLF68mGRkZJA1a9ZcU9MpFovJI488QuLj40laWhqJjo4mycnJZOfOnaSnp4cQQka1oc1KOzg4kNtuu21Crw8hhOzatYtER0eP+Hc8e/Ys+ctf/kK4XC75wx/+QLZt20b+9Kc/kYCAAL2VU5w7d448/vjj5OWXXyabN2/WPc/xfCNkMEN8zz33kICAAPLZZ58RQgh54403yK+//ko0Gg3Ztm0biYyMJPHx8bo9rOmg0WjIrl27yGuvvUb+85//kLvuuos0NjYSQgZL0R555JFrHjN//nyyc+dO8uGHH5ItW7boKhF6e3vJH/7wB7J7926ye/ducs8995DXXnuNNDY2EpVKRW6//Xby4YcfkpycHEIIGfE2Qgh5+eWXyVtvvUU+/fRT8v777+vqKqOioohSqbzGn5iYGDIwMEAIIaSlpYXcddddZMeOHdfUY65evfqamlCtz19++SX585//fNXf5vTp02Tz5s3k888/Jx999BG57777yEcffTTuc+3t7SX3338/2b17N/nyyy/Jww8/THbs2HHV3rgh4RBinCmBbW1tuP766/HRRx9h4cKFxnCBMQb33XcfnJ2d8dprrxnblWswZd9G4osvvsDvfvc73b+bmpqwZs0aFBQUGNErw7Bz506UlpZi586dxnZlWlDZYxwJNze3qzapP/zwQ2O5whjG8ePHUVxcjF9//dXYrlyDKfs2EiKR6KpEFwBkZ2frkhyzjbNnz+LGG280thvTxmgRI8N0GRgYAJfLvaq+z1QwZd9GIicnB0uWLNH9+8yZM3j44Ydhb2+PHTt2ICoqyoje6ZetW7filVdewW9/+1u8+uqruqqCmQgTRgaDwRgGazvGYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMPgGdsBBgMAcnNzkZWVBbVajdTUVKSnpxvbJcYchgkjwySIjIyESqVCX18fE0WG0WFLaYZJUFdXBwsLC5w/f97YrjAY4BBCiLGdYDCkUins7e3R1dUFJycnY7vDmOMwYWQwGIxhsKU0g8FgDIMlXxgmAYfDueY2tphhGAsWMTJMgrfeeguEEPzlL38BIYSJIsOoMGFkmAQPP/wwWltbIRQKje0Kg8GEkWEaEEJw/Phx3HvvvcZ2hcFgwsgwDXbs2IFTp05h165dxnaFwWDlOgwGgzEcFjEyGAzGMJgwMhgMxjCYMDIYDMYwmDAyGAzGMJgwMhgMxjCYMDIYDMYwmDAyGAzGMJgwMhgMxjCYMDIYDMYwmDAyGAzGMJgwMhgMxjCYMDIYDMYwWAdvhkEghKC7uxvNzc1obm5GU1OT7r/d3d1QqVS6H6VSCaVSCbVaDR6PBx6PB3Nzc93/83g8ODo6wtvbG56envD09ISXlxc8PT1hZ2c3YvdvBmM6sO46jCkxMDCAixcvorS0VCd4DQ0NOiFsaWmBTCaDk5MT3Nzc4OrqCjc3N3h4eMDBweEa4ePxeGhpaYGHh8eIoimRSNDa2oq2tja0tbWhvb0dEokEVlZW8PDwgJeXl+5HK6BhYWGIjIyEpaWlsV8uxgyDCSNjXPr7+3HhwgUUFhaioKAABQUFKCsrg5ubGwIDA+Hu7q4TJ29vb/j6+kIoFMLX1xd8Pn9CNtRqNX788UesWrUKZmZmE3qMTCaDSCSCSCRCfX09GhsbdaLc2tqKyspKdHZ2IiwsDHFxcYiPj8eiRYsQGRk5Yb8YcxMmjIyr6Ovr04ng2bNnUVBQgPLycggEAoSFhSEqKgqJiYlISUmBt7e33uxORRgnQn19PbKzs3HmzBlcvHgRJSUlaG9vR2ho6FViGRUVBSsrK73ZZcxsmDDOcdRqNU6fPo39+/fj0KFDKC8v1y1Do6OjkZCQgNTUVAgEAoP7YQhhHImGhgbk5uYiPz8fFy9eRHFxMdra2hAWFoZVq1bhlltuQXx8PLhclpucqzBhnIP09PTgyJEj2LdvHw4dOgRLS0ssXboUq1evxvLly+Hh4YE8URdOVHYgI8gFSUIng/tEUxhHorGxEcePH8fBgweRmZkJAFi1ahXWrl2LFStWwNramrpPDOPBhHGOUFdXh4MHD2Lfvn3IyspCcHAwVqxYgdtuuw3JyclXRUd5oi6k7MwFh8MBIQS5j6YYXByNLYzDfTl58iT27NmDY8eOQSQSISMjA7feeitWrVoFT09Po/rHMDysXGeWQghBYWEhDhw4gH379qG8vByJiYm44YYbsGvXLgQGBo762BOVHeBwOFBrCMy4HGRWdVCJGk0FMzMzLFu2DMuWLQMAlJWV4ZtvvsEnn3yCRx99FAsWLMAtt9yCW265BVFRUaxcaBbCIsZZRktLCz755BO89957kEgkSE9Px+rVq7Fu3To4ODhM6BpzPWIci87OTuzZswcHDx5EdnY2PDw88MADD+Cee+6Bi4uLsd1j6AkmjLMAjUaDX3/9Fe+++y5+/vlnJCUlYdOmTbjzzjvB401tUZAn6kJmVQeWBs6NPcapIJfL8cUXX+Djjz9GYWEh1q5diwceeADp6eksipzhMGGcwXR0dOC9997DO++8A41GgzvuuAOPPPLImMtkU2UmCuNQSktL8eabb2LPnj2wsbHBI488gk2bNk04SmeYFqweYQZy+fJlbNq0CX5+fjh8+DBee+01iEQivP766zNSFGcDoaGheOutt9DQ0IB//vOf+O677+Dj44NHH30U5eXlxnaPMUmYMM4QNBoNDhw4gKVLl2Lx4sVQKBTIy8vDyZMncfvtt8/IKGs2wuPxsGHDBpw+fRonTpxAa2srYmJisHLlSvzyyy9gC7SZARNGE4cQgp9++gnR0dF45JFHkJaWhtraWnz++eeIjIw0tnuMMYiLi8O3336LmpoaREdHY+PGjUhISMCJEyeM7RpjHJgwmjCnT59GWloa7rvvPmzYsAFVVVV44YUXWPZzhuHh4YGXX34ZNTU1uPnmm3Hbbbfh+uuvR1FRkbFdY4wCE0YTpLi4GGvWrMHKlSuRnJyMqqoq/O1vf4OFhYWxXWNMAz6fj3/+85+oqKhAaGgo0tLSsH79elRVVRnbNcYwmDCaEPX19di4cSPi4+Ph4eGByspKvPzyy7C1tTW2aww94uzsjDfeeAMlJSWwsLBAVFQUHn74YYjFYmO7xvg/mDCaAB0dHdiyZQtCQ0PR19eHixcv4v3334ebm5uxXQMwWNP40rFK5Im6jO3KrMLHxweff/45CgoKUF9fj+DgYDz77LOQSqXGdm3Ow4TRiPT19eHFF19EQEAALl26hOzsbHz33XcmVXKjPQXz3C9lSNmZy8TRAISFheHgwYM4fPgwsrKy4O/vj9dffx0ymczYrs1ZZq0wFhQU4Pjx49i+fbuxXRmRI0eOICQkBPv378cPP/yAI0eOIDY21thuXcPQc9MczuC5aYZhSElJQVZWFj777DN8+umniIiIQHZ2trHdmpPMWmEsLS1FcnIyqqurje3KVUilUmzatAnr16/H3//+d+Tl5WH58uXGdmtUMoJcQMhgMwlCCJYGsoy4oVm1ahWKiorwxz/+ETfffDMef/xx9Pf3G9stAEBubi5eeukl/Otf/8LJkyeN7Y7BmNVHAn/88Ufw+XxYWVkhKysLarUaqampSE9PN4o/v/76K+677z7Mnz8fH330Efz9/Y3ix2ShcW56ph8JNBRlZWW499570d7ejk8//RQpKSlG9UcqlaKoqAh9fX246aabjOqLIZm1EeOLL76IVatW4b///S8iIyORnJyM2NhYo4iiVCrF/fffj9tvvx1PPvkkjh49OmNEEQCShE74+7KgOdV6zFQICQnBqVOnsGnTJtx444144oknjBo91tXVwcLCAufPnzeaDzSYtcK4aNEi5ObmIjY21qh/zKNHjyIiIgKVlZU4f/48HnvsMdYynzEpuFwunnrqKZw9exanT59GVFQUTp06ZRRf/Pz8sHjxYjz00ENGsU8NMgfo7u4mhBDS2dlJzaZUKiV//OMfiYODA/nvf/9L1Go1NdszEZVKRfbt20dUKpWxXTFp1Go1efHFF4mdnR154oknSH9/v7FdmpXMidDF3t4eAODkRGcpeOzYMURERKCsrAxFRUXYvHkzixIZeoHL5eLpp5/GmTNncOrUKURFReH06dPGdmvWMWtHG4zXKJQYIOekVqvx5JNP4oMPPsDWrVvZsnkYKpUKcrkcMpkMCoUCGo0GhBAQQqBSqQAMnv4xMzMDh8MBh8MBl8uFhYUF+Hw++Hw+S8z8H6GhoTh9+jT+85//4IYbbsCWLVvw3HPPGfz9NtLnyhCfJWMzq7PSWr7//nv09vZi48aNBrMhkUiwfv161NfXY//+/QgODjaYLVNErVZDKpWir68PMpkMMplMJ4LaH5VKBR6PBz6fDwsLC3C5XHC5XN2HraWlBR4eHgCgE02NRgOFQqF7vLm5OSwtLXVCqf2xtLSEra0t7O3t59yX0YULF7Bu3TrExMTgs88+g42NjUHt0fg8GZtZGzFqKSoqMvhmdVlZGVatWoXAwEDk5eXplu6zFbVaje7ubnR3d0MikaC7uxtSqRR8Ph+2trY6sXJ0dLxGvEYbtaAt14mPjx81KlSpVCMKrkQigUwmQ29vLxQKBezs7ODo6Kj7sbOzm9WRZnR0NM6cOYNbb70VixcvxsGDByEUCg1ii8bnyRSY9cLY1taGqqoqg3Uw+eWXX7B+/Xps2rQJr7766qyLVgghkEql6Ojo0AlhT0+PTvgcHBzg5eUFR0dHWFpaGtQXHo8HW1vbMZtqaIWyu7sbLS0tKCsrg1wuh729vc5fFxcX2NnZzaq5LC4uLjh+/DgeeeQRxMXFYe/evViyZIne7Rj682QqzHphvP7667F792709vbq9bqEELz++uvYunUr3njjjVm1rFCr1Whvb4dYLEZLSwvUajVcXFzg6OgIb29vODg4GFwEpwqfz4dAIIBAINDdJpPJdKLe2tqKkpISmJub6+7n4uIyK77QChp74H/HX/GA/3zceOONeP3113H//ffr1YahPk+mxpzYY9Q3MpkMf/zjH3H8+HHs2bMHiYmJxnZp2sjlcrS0tEAsFqO1tRVWVlY64XB2djZ4dEXz5ItGo0FnZyfEYjHEYjHkcjk8PDwgEAjg7u4+I/teDh95+048wbOPDh493b59+5SnRc5V2Ks1SZqbm7F27VpoNBqcPXsWnp6exnZpyvT19aGpqQlisRgSiQTOzs7w8PBAeHj4rO4ByeVy4erqCldXV0RERKC3txdisRg1NTUoKiqCs7MzBAIBvLy8YGVlZWx3J8TQZh9mXA46XUORn5+PNWvW4Prrr8d3333HOr9PAiaMk6CgoABr1qxBRkYGPvroI5NdTo6FWq2GWCxGbW0turq64OHhAX9/f3h4eMzISGm6cDgc2NnZwc7ODsHBwVdFziUlJXB1dYVQKISHh4dJL7czglxADl/d7GOe0Al5eXm48847ER8fj4MHDyIiIsLYrs4I2FJ6gvzwww+499578dRTT+Hpp582tjuTpq+vD7W1tairqwOfz4dQKISvry/Mzc2N7RoA02wiIZfLUV9fD5FIBKVSCT8/P/j7+8Pa2trYro3IaM0+NBoNnnnmGbz99tv47rvvcP311xvRy5kBE8YJ8NVXX+HBBx/EJ598gnXr1hnbnQlDCEFbWxuqq6vR3t4Ob29v+Pv7w9HR0eQysqYojFoIIejs7ERtbS2am5vh7u6OwMBAKnuv+uSTTz7BY489hq+++gqrV682tjsmDVtKj8NHH32EJ554At9++y1WrlxpbHcmhFqtRn19Paqrq6FUKhEQEIDY2Fi9LZXzRF04UdmBjCDDtSEzJTgcDlxcXODi4gKZTIba2lqcPXsWfD4fAQEB8PHxMelltpaNGzfC2toad999Nz755BP85je/MbZLJgsTxjF455138NRTT2Hv3r0m3UxWCyEEDQ0NKC0thYWFBUJCQuDp6anXD+1V2c/DBLmPpswJcdTC5/MRGhqK4OBgNDU1obKyEhUVFQgLC4Onp6fJR5B33HEHLC0tsWHDBsjlctx9993GdskkYcI4Ctu3b8e2bdtw8OBBpKamGtudMSGEoKWlBSUlJdBoNIiIiDDYh3R49jOzqmNOCaMWMzMz+Pr6wsfHBw0NDbhy5QoqKioQHh5uMkPMRuOWW27Bt99+izvuuAP9/f34wx/+YGyXTA4mjCOwY8cObNu2DZ9//rnJi2JnZyeKi4vR19eH0NBQ+Pr6GnRZN1L2cy7D4XDg6+sLb29v1NbWorCwEPb29ggPD4ejo6NebelzC2PlypV477338MADD4DD4WDTpk168nJ2wIRxGO+88w5eeOEFfPvtt1AoFKivr4evr6+x3boGqVSKkpISdHR0IDg4GAEBAVSSFklCJ+Q+mmLwUQczDS6Xi4CAAPj6+qK6uhq5ubnw8PBAaGioXmpC9b2FUVNTAwcHB3zxxRf47W9/CysrK7asHgITxiF89NFHeOqpp3TL587OTuTl5QGAyYijTCZDSUkJGhsbdUkV2iU3SUInJoijYG5ujpCQEPj7+6O8vByZmZnw9fVFWFjYtJJf+tzCqKmp0Q2Lc3BwwNdff40777wTlpaWLCHzf5h+Ko0SX331FZ544gns2bNHt3x2dnZGUlISLl26hPr6eqP6RwhBY2MjTpw4AUIIli9fjvDwcJOpQ2RcjaWlJSIjI7Fs2TIoFAocP34cYrF4ytfT17TG4aIIADfddBM+/fRTbNy4ET/++OOUfZxV0GoVbsrs3buX2NnZkUOHDo34+46ODnLo0CFSV1dH2bNBZDIZyc/PJ4cPHyZisdgoPhia2T7aoLGxkfz000+ksLCQyOXyKV3jdG0neelYBTldO7URHdXV1eSnn34iEolkxN9//fXXxNbWlvz6669Tuv5sYs4XeBcVFSEtLQ0fffQRbr/99lHvp11WR0ZGUl1WNzY24uLFixAIBFiwYMGsjRBNucBbX8jlcly8eBGdnZ2Ijo6+qgOQoRkpUhyJDz/8EFu2bMGZM2cwf/58av6ZGnN6j7GlpQWrV6/GX//61zFFEfjfsprWnuPQD1FsbKyuszVj5mJpaYn4+Hg0NTWhqKgIHh4eiIyMNPiX3URFEQA2bdqEy5cvY9WqVThz5ozeM+szhTkbMcrlcixduhS+vr74+uuvJ1ziQiNy1EaJtD44psBciBiHMvSLLyYmxmBffJMRRS0ajQY33ngjAOCnn36aE3+P4czJ5AshBA8++CAUCgU+++yzSdX9GTIho1KpUFBQgMuXLyM2NtYoGWcGHbTR44IFC3Du3DmcP38earVarzamIorAYOnRd999h7q6Ojz55JN69WmmMCeF8Y033sCRI0ewf/9+8Pn8ST/eEOLY39+P7OxsqFQqZGRksKXzHMHb2xvLli1DX18fcnNzIZPJ9HLdqYqiFnt7exw4cACffPIJPv30U734NJOYc8L466+/4rnnnsO3334LHx+fKV9Hn+LY0dGBrKwsuLu7IzExcU72RZzLWFpaYvHixXBwcMDJkychkUimdb3piqKW4OBgfPnll3j00Ud1e+tzhTkljBUVFbjjjjuwfft2pKSkTPt6+hBHkUiEvLw8REREICIiwuSbEDAMA5fLRXR0NObPn4/c3Fw0NjZO6Tr6EkUtN9xwA/7xj3/glltumbJPM5E5k5Xu7u7G6tWrcc899+j1XOhUs9UajQaXL19Gc3MzkpOT4eTETpIwgHnz5sHOzg5nz56FVCpFaGjohL8s9S2KWv7617/i8uXLWLNmDXJycmbMuIfpMCey0mq1GqtXr4ZKpcLhw4cN0mRhMtlqhUKBs2fPQqVSISEhYU680UZCo9GAEAKNRgOVSoUjR47g+uuvB4/HA5fLBZfLnbMRdF9fH/Lz82FjYzOhJJyhRFGLQqFAeno6hEIhdu/ePev/LnNCGJ966in88MMPOHPmjEHeNFomIo5SqRRnzpyBk5MTYmJiZm0phFqtRk9PD/r7+yGTya76kcvlkMlkUCgU417HwsICfD5f92Npaan7fxsbG9jZ2c2IJrFTQalU4ty5c+jr60NiYiJsbGxGvJ+hRVFLS0sLEhIS8PDDD8/6bPWsF8bs7GzcfPPNyM/PR1hYmMHtjSWOXV1dOH36NIKDgxEUFDRrvnXVajWkUqludrNEIoFUKoWlpSVsbGxGFTZLS0uYmZmBw+FAo9Hg0KFDuPnmm8HlckEIgVqtvkpIhwtrb28vlEol7O3t4ejoCEdHRzg4OMDe3n7WiCUhBKWlpRCJREhOToa9vf1Vv6clilrOnDmDZcuWIScnBzExMQa3Zyxm9R5jf38/Nm7ciGeeeYaKKAKj7zl2dHQgPz8fEREREAqFVHwxFOT/ZqCIxWK0tbXpRFArTgKBAI6OjpMqhdJ+P3M4HJ2omZmZjZmhJ4RAJpNBIpGgu7sbzc3NKCkp0Ymlm5sbBAIBnJycTPJLaCL9FTkcjq4zT25uLhYvXqw7jUJbFAEgISEBjzzyCO655x4UFBTM2gqKWR0xPv744zh79ixycnKoRxBDI0c+n48zZ84gOjp6WiVCxkSpVKKtrQ1isRgtLS0wMzPTDah3cnKa9ihZfZ58kclk6Orq0o1BBQAPDw8IBAK4ubmZxPD5q/orkon1V6ypqUFJSQkWL14MiURCXRS1qFQqxMbG4tZbb8XWrVup2qaF8d8hBiI7Oxsff/wxCgsLjbKs0kaOp06dAiEEixYtgpeXF3U/poNSqURjYyOam5vR3t4Oe3t7CAQC3ZLOFKMwYHAui6enJzw9PUEIgUQigVgsRllZGQoLC+Hq6govLy94eXkZTSSn0l9x3rx5MDMzQ27uoKAuWbKEuigCAI/HwyeffIK0tDTceuuts3JJPSuFsa+vD/feey+effZZBAcHG80P7REvDoej9+NehoIQgq6uLohEIjQ2NsLR0RE+Pj6IiYmZkdlzDocDJycnODk5ISwsDP39/RCLxaitrcWlS5fg4+MDf39/6gIz1RERQ99HGo3GUO6NS2xsLB577DFs2LABhYWFs25JPSuX0ps3b0ZhYSGys7ONtgnf0dGBvLw8LFy4EHw+3ygtyyaDWq1GU1MTqqqqMDAwAD8/P/j5+cHOzo6afdpNJKRSKWpra9HQ0AA7OzsEBATofariWOSJuiY1ImLonqJEIsGVK1eQkpJilKgRGFxSL1q0CLfccgteeOEFo/hgKGadMJ48eRKrV69GYWGh0aJFbfY5KipKt6dorH6O46FUKlFdXY2amhrdnGRvb+9Ji9N0BzUZs7uOSqVCQ0ODbg53YGAg/P39TWIvUstIiRbtbSkpKddkq2lRVFSE1NRUZGdnY+HChUbxwRDMKmHs6+vDggUL8PDDD+Ovf/2rUXzo6elBTk4OwsPDr8k+m5I4qtVq1NbWory8HI6Ojpg/fz6cnZ2ntG84lUTCSP4Yu+0YIQRtbW0oLy9HX18fQkJC4OfnZ/TSn7Gyz1VVVaioqEBaWhqsra2N4t/TTz+NgwcPzqol9ewo9vo/nnzySXh7e2PLli1Gsa9QKJCfn4/AwMARS3JMYYYMIQT19fU4fvw4GhsbER8fj8WLF8PFxWXKyZShiQQOZzCRMBPhcDhwd3dHSkoKYmJiUFNTgxMnTqCpqQnGih/GK8kJDAyEr68vzpw5A5VKZQQPgRdeeAFmZmbYtm2bUewbAtNZK0yTzMxMfPbZZ0bLQms0GhQWFsLR0XHMJTztTuBaCCFobW1FcXExNBoNIiIi4OnpqZfM8mybNc3hcODh4QF3d3c0NjbiypUrqKioQHh4ONzc3Kj5MdE6xfDwcOTn56OoqAhxcXHUqwV4PB4+/vhjpKam4tZbb0VsbCxV+4ZgViyl5XI5QkNDjbqEvnz5Mtrb25GamjqhpSDNZXV/fz/Onz+Pnp4ehIaGwtfXV+9fHpNNJAzHFJbSo6HRaHTbDk5OToiKijJ4hn6yxdtKpRJZWVnw8fFBSEiIQX0bjWeffRYHDhxAUVGRyf0NJ8usWEq//fbbsLe3N9oSuq6uDg0NDUhMTJzwG4LGspoQolsOOjg4YMWKFRAKhQaJqJOETvj7sqBZOW+ay+UiICAAy5cvB5/Px4kTJ1BfX2+w5fVUTrSYm5sjMTERVVVVaGpqMohf4/HPf/4TfX19+OKLL4xiX5/MeGGUSqX417/+hW3bthllCd3Z2YlLly5NqUuOIcWxv78fp06dQlVVFRYvXoyIiIgZ/y1ubMzNzREdHY34+HiUlJTgzJkzeuu4rWU6x/xsbW0RFxeHoqIiSKVSvfo1EXg8Hp577jk8++yzen9daDPjhfHVV19FeHg41qxZQ932wMAAzpw5g8jISDg7O0/pGvoWR0IIamtrdVFiRkbGlH1jjIybmxsyMjLA5/Nx/PhxvUWP+jj77O7ujtDQUOTn50Mul0/bp8lyzz33wMXFBW+//TZ12/pkRu8xtrS0ICgoCIcPH9ZLR+7JoFKpkJOTA1dXVyxYsGDa19PHnqNMJsO5c+fQ39+P2NjYGSWIprzHOBZtbW0oKiqCg4MDFi5cOOVyFX02hCCE4Pz58+jr60NycjL1ldShQ4ewYcMG1NbWGq2+crrM6Ihx27ZtSE9Ppy6KAHDx4kVYWloiIiJCL9ebbuQokUiQlZUFa2trFiVSRBs98ng8ZGVloaenZ9LX0HeXHA6Hg6ioKBBCcOXKlWlfb7LcfPPNiIiIwKuvvkrdtr6YscJYXV2Njz/+GC+//DJ122KxGK2trYiNjdVracRUxbGxsRG5ubkIDg6e1c1vTRVzc3PExsZCKBQiOzsbLS0tE36soVqHmZmZIS4uDvX19Whvb9fbdSfKK6+8gh07dkzqtTAlZqwwPvPMM7j11lv1FrFNFIVCgfPnzyMqKmrarbZGYjLiSAhBSUkJLl68iISEBMybN0/v/jAmBofDQXBwMGJjY1FYWIiKiopx9x0N3U/RysoKERERKCoqol78vXjxYixdunTGnqGekXuM58+fR2pqKoqLi6kfrSssLAQhBHFxcQa1M96e40Tb3s8UZuoe40hMZHwFrSazhBDk5eXBxsYGUVFRBrMzEiUlJYiLi8PFixcRGBhI1fZ0mZER45NPPol7772Xuig2Nzejra2NyhtsrMhxYGAA2dnZAIDU1NQZL4qzDXt7e6SlpUEulyMnJ+ea7DDNztscDgcxMTFoaGigvqQOCwvDunXr8Mwzz1C1qw9mnDBmZmbi7Nmz1EN0hUKBCxcuIDo6mtpB+ZHEsb+/Hzk5OXBzc0NCQsK40+MYhiNP1IWXjlUiT9R1ze8sLCyQlJQEe3t75Obm6ur6jDGOwJhL6n//+984dOgQioqKqNqdLjNqKU0IQUJCAm688Ua88MIL0251NRkKCwsBAIsWLTKonZHQLqvnz5+P6upq+Pj4ICwszGQ7aE+FmbaUnmhHIUIILl68iPb2dvj6+qKqqsoo4wgIIcjPz4e1tTX1JfVjjz2GsrIyHDlyhKrd6TCjIsbMzEyIRCL8/e9/170xn/ulDCk7c0f81tYX2iV0ZGSkwWyMhbOzM6Kjo3HlyhU4OjrOOlGciUy0o5C2dIbP56OkpASLFi0ySmNZDoeD6Ohooyypt27diry8PJw/f56q3ekwo4Rx+/bt+N3vfgdra2tqra6MsYQeTn9/P65cuQI/Pz+0t7ejoaHBKH4w/kdGkAsImVhHodraWnR3d8PHxweXLl0y2nE5KysrLFiwgPqS2tnZGbfddhu2b99OzeZ0mTHCWF1djaNHj+oaRUzmjTkdSktL4erqCk9PT4NcfzwGBgZw6tQp3dwVY/dzZAySJHRC7qMp+NfKkDEb8w7tsh0bGwtXV1ecOnXKKMf1gME2d7a2tqioqKBq929/+xu+++47tLa2UrU7VWbMHuOf/vQniEQi/PDDD7rbptvqajz6+vpw4sQJZGRkGCXzq1KpkJ2drTt2qF0+m1In8Imi0WjQ09ODgYEByGSyq37UajU0Gg06Ozvh7OwMLpcLHo8HPp8PS0tL8Pl88Pl8WFtbw9bW1ugdtSfKSIkWQgiKiop0x/WMsZ8qlUqRnZ2t6xZEi+XLlyM9PR3/+Mc/qNmcKjNCGHt6euDt7Y1ffvkFixcvntI1ppKo0bZqN8beIiEEZ8+ehUajQWJi4jV7iqYsjoQQ9PT0oLOzE93d3ZBIJJBKpTA3N4e1tbVO6LTCZ25uDkIICgoKdI1WlUolZDIZ5HK5TkD7+vqgVqthb28PR0dHODg4wNnZGba2tia35zpW9lmj0eDUqVOwsbFBTEyMUXwvLCyEubk51UTMgQMHcP/996O+vt7kRyDMiA7en332GUJCQqYliroM4uGJzSTp7u6GWCzGihUrpmRzupSXl6OnpwdpaWkjfnCM1Ql8NNRqNTo6OtDc3IyWlhao1Wo4OTnB0dERISEhcHBwGLMtm3YsqEAgGDWKIoRAJpNBIpFAIpGgqakJV65cgbm5OQQCAQQCAVxcXIweUY5XksPlchEfH4+TJ0+ipqYGAQEB1H0MDQ3FiRMnEBgYSG01tGrVKjg5OeHbb7/F7373Oyo2p4rJCyMhBDt37pxWE9qpDDcvLi5GYGCgQY79jUdTUxOqq6uRmpo6Zp2iscVROzyqrq4OYrEYVlZWEAgEWLRo0ZQHa40Fh8OBlZUVrKysdHu+Go0GHR0daGlpwYULFyCXyyEQCCAUCqc1x2aqTLRO0dLSEomJicjJyYGtrS3c3d0pegnY2NhAKBTqTqfQgMvl4ve//z3eeustJozTJS8vD21tbdiwYcOUrzHZmSTt7e2QSCTU3jBD6e7uRlFRERISEmBrazvu/Y0hjgqFAiKRCLW1tSCEQCgUIjQ0dEL+6hsulws3Nze4ubkhIiICvb29aGhoQGFhIczMzDBv3jz4+flRKYSfbPG2tlVZQUEB0tLSqL9+8+fPx9GjRyGRSODo6EjF5h//+Ee88MILKC4uRnh4OBWbU8Hk9xg3btwIc3NzvP/++9O6zkQTNYQQ3ewM2uc75XI5Tp48iaCgoEkvr2jsOcrlcpSXl0MkEsHV1RXz5s2Du7u7XqIyfRd4azQatLS0oLq6GhKJBP7+/ggODjbY3tZ0TrSUlZWhoaEBaWlp1E8ylZaWoqura8rbVFPh9ttvh4+Pj0mX75i0MHZ3d8PLywunTp1CdHQ0FZvafatly5ZRzRhqTyZYWlpOeUPeUOKoVCpRVVWFqqoqCAQCzJ8/H3Z2dhN67ESTXoY8+SKVSlFaWor29nYEBwdj3rx54PH0t1ia7jE/baLNzMyM+skqpVKJo0ePIi4ujtoExOPHj+O2225Dc3OzUbaqJoJJ1z189dVXCA8PpyaKGo0GJSUlCA0NpV5GUV9fj56eHkRGRk45AtP3mASNRqOrH+3q6sKSJUuwaNGiSYkirdNJY2Fvb4+EhAQkJSWhpaUFx44dg0gkMplxBNpGD21tbWhubp62T5PB3NwcISEhKC4upjY7e+nSpXB3d8fevXup2JsKJi2Mu3btwr333kvNXlNTEzgcDnx8fKjZBAaLuC9fvoyFCxdOO5LRlzhqa93q6uoQHx+PxYsXT/qDT+t00kRxdnZGSkoKYmJiUFVVhdzcXPT29k75evpsCGFhYYHo6GhcuHABCoViWteaLP7+/pDL5dSKr7lcLu6++27s2rWLir2pYLLCWFFRgcrKStx3333UbFZXVyMwMHDUiG2sbipThRCCCxcuwMfHB66urnq55nTEUaPRoLy8HNnZ2fD09ERaWtqU/aJ1OmkycDgceHh4ID09Hc7Ozjh58iSqqqomHS0ZokuOp6cn3NzccOnSJb1cb6Jox8NWV1dTs/nQQw/h1KlTJnsSxmSF8eDBg0hOTqZWY9XZ2Ym+vr5Ro0VDLQu1S2h9Z+imIo49PT3Izs5GU1MTUlNTMX/+/GnVBE702JwxMDMzQ3h4OJKTkyESiZCbm4v+/v4JPdaQrcMiIyONsqQWCoXo6OiY0syaqeDm5oaYmBgcOnSIir3JYrLCuHfvXtx0003U7FVXV8Pf33/UvUVDLAv1uYQeicmIY0tLC7Kzs+Hh4YG0tDS9TXdLEjrh78uCTEoUh+Lk5IT09HQ4OTnh5MmT6OgY++9q6H6KQ5fUNM9Tm5ubw9fXl2rUeMMNN2Dfvn3U7E0GkxTGzs5O5Ofn44477qBib2BgAGKxGP7+/qPexxDLwosXL+p1CT0S44kjIQSVlZUoLCxEbGwsQkNDjX5yhDZmZmaIiIhAZGQk8vLyUFtbO+L9aDWZ1S6pL1++bDAbIxEQEID6+npqe5zr16/H0aNHjdZtaCxM8hPw888/IyIiAt7e3lTs1dXVwcPDY8wja/peFra3t6OzsxNhYWHTus5EGE0c1Wo1ioqKUFNTgyVLlkAgEBjcF1PGx8cHycnJKCsrw8WLF6HRaHS/o915e8GCBRCLxZBIJAa3pcXOzg7Ozs7UOjctWLAAnp6eOH78OBV7k8EkhXHfvn24/vrrqdgihEAkEo0ZLWrR17KQEILi4mLMnz+fWkHvcHFUqVTIy8vDwMAA0tPTZ+xgdH2jXVp3dXXh7NmzUKvVRhlHYGlpicDAQJSUlFCxp8Xf319vpUwTYdmyZdi/fz8VW5PB5IRRoVDgl19+wfr166nYa21tBYfDMehydjjNzc2Qy+UTEmN9ohXHixcvIjMzEzweD0lJSSbf6cRQjFZlwOfzkZKSApVKhZMnT6KkpMQo4wgCAwMhkUjQ1tZGzaZAIIBCoUBXF52a09/85jc4cOAANSGeKCYnjFlZWXByckJsbCwVeyKRCEKhkFqzAWMWkQODxc7W1tbo7+8fs5PNbGe8KgMejweBQIDe3l7Y2dkZ5Ry4MYqvuVwufH19IRKJqNhbsWIFFAoFzp07R8XeRDE5Ydy/fz8yMjKo2JLJZGhpaYGfnx8Ve8BgeQ6Xy6VeRA4M7ilqByIlJyfjypUrc7YT+HhVBjU1NSgvL8eSJUvA5XJRUFBw1Z4jLfz9/aFQKKiW7wiFQjQ2NkKpVBrclpmZGdLS0kxuOW1SwkgIwf79+7Fu3Toq9sRiMVxcXKh1MVar1SgtLUV4eDj1dljaaXWEEMTFxcHV1XVOj0kYq8pg6J6is7MzEhMTMTAwgOLiYup+crlchIaGoqSkhJow29rawt7enlrx9Zo1a5gwjsXly5fR3d2NlStXUrEnFoupznKpra2FjY0N9d57wGCdZnt7O+Lj43XLZ32frZ5JjFZlMFKihcfjITExEQ0NDairq6Puq4+PD7hcLtUhaAKBAGKxmIqtdevWoayszKTegyYljPv370dqaiqVZIBKpUJbWxu1EhVCCKqrqxEcHDxitGiI44ZaWltbUVpaisTExGu6mcx1cRxaZTBW9tnKygoJCQm4dOkSOjs7qfrJ4XAQHBw8paOLU0UgEKClpYVKlOrg4ICEhAQcPHjQ4LYmikkJ488//0wtWmxra4Odnd2YtYv6RCwWg8PhjBgtGrILTV9fHwoKChAbGztqSc5cFkctEynJcXZ2RmRkJM6cOYOBgQGq/nl5eUEul497Mkdf2NnZwdzcnNqXwHXXXYeff/6Ziq2JYDLCqFarcf78eWqJF7FYTLWgubq6GgEBASNGi4bqQkMIwblz5+Dv7z/ulsFcFsfJ1Cn6+fnB09MT58+fp1piwuVyMW/ePFRVVVGxp222QWs5nZaWhoKCAiq2JoLJCGN5eTl4PB6VkyCEELS0tFATRqlUColEMmrzWEN1oamqqoJKpUJoaOiE7j8XxXEqxdvaEQq09xv9/f3R1tZGLVrV7jPS+AKIj49He3s7NSEeD5MRxnPnzlE7p9vV1QUOh0OtYLeurg7e3t6jnnIxRBeanp4elJWVYeHChZN6TeeSOE71RAuPx8PChQtx5coVqktqS0tLeHh4UBNkV1dXyOXyafWsnCjW1tYIDg5GYWGhwW1NBJMRxoKCAixYsICKLe0ymkbJjFqtRn19/binXPTZhUY71D0wMHBKQ47mgjhO95ifq6srfH19qS+phUIhtSN7XC4X7u7u1KK48PBwk1lOm4wwnj17FvHx8VRs0dxf1I4VpTWFDRiMUFUqFebPnz/laxhaHAkh6O/vR3NzM2pra3XtrmpqalBbWwuxWGywaExfZ5/DwsLQ29tLtfjazc0NHA6H2jFBmmU7sbGxJiOMJjE+VaPR4MKFC3jnnXcMbqu/vx/9/f3UzkY3NTVR6xIE/K+IPCYmZtrbEvoczarRaNDe3o729nZ0d3dDIpFArVbD3t4eVlZWuuhdIpFAo9FgYGAAUqkU5ubmcHR0hIODA1xdXeHq6jqtSF+fDSG0e+IlJSUQCARUtoE4HA68vb3R3NxMpR7Ww8MD58+fh0KhMHgZXVJSEnbu3GlQGxPFJISxoqICHA4HERERBrfV2dkJJycnKmeENRoNWltbJ5z80AfV1dV6LSKfrjj29/ejpqYG9fX14PF4cHd3h8zSESVmdlgc5oXF/s4ABgW9sbERCxcu1P1tNBoNenp6IJFIIJFIUFRUpPPB399/0qVWhuiS4+3tjYqKCtTX10MoFOrlmuMhEAhw9uxZREVFGXw7yMLCAnZ2dujq6oKHh4dBbSUlJaGtrQ0tLS0GtzUeJiGMhYWFCAsLo/KNS3O4eHt7OywtLSc8VW+6KJVKVFRUICkpSa8fmKmIo1QqRXl5OcRiMby8vBAfHw9nZ2fk10mwYmcuOBwOyK+1YyabuFwuHBwc4ODgAKFQCEII2tvbIRKJcOzYMXh5eSEkJGRC4y8M1TqMw+EgPDwc58+fh4+PD5UvXCcnJxBC0N3dTeW97ODgAIlEYnCxsra2RlBQEAoLC6l27x8Jk9hjLCgooBItAoOzqmllo2mWBAGDkbeLiwucnZ31fu2J7jlqh2llZWXBysoKK1asQGxsLFxcXMDhcKZVs8nhcODm5oa4uDgsW7YM5ubmyMzMHPdEiKH7Kbq7u8PGxobaWADaNYaOjo7o7u6mYis8PNwkOu2YhDDSSrwQQqhFjIQQqkkelUqF2tpahISEXPM7fR03HE8ctSNXm5qakJaWhoiIiGsadOirZtPa2hqRkZFXDbPq6+u75n40msxyOByEhISgurqaWqMHmkkRR0dHap3EFy5ciDNnzlCxNRZGF0Zt4iU5OdngtrQfHBqTB3t6eqBUKg0SvY1EfX097O3trxF9fR83HEkcCSGoqqpCdnY2BALBmMO09F2zqe247ezsjMzMzKvmtdDsvO3q6goLCws0NTUZ1I4WNzc39PT0UKmjtLe3h0wmozKca/HixSZRy2j0PUbtMohGDaNEIoGDgwOV+kWxWAwPDw8q+6aEENTU1IwYLQ5duppxB5eu0xWjoXuOhBBIpVI0NTVhyZIlExKgJKGTXqcGnm2Q4kSzBZbMW4DS0hLI5XKYm5ujrKyMWudtDoeDefPmoba2lkqvTR6PBzc3N4jFYsybN8+gtszMzGBnZ4fu7m6DZ8KTkpLQ2tqK1tZWo3Sh0mJ0YSwvLx9zbKk+obVZDQw2qaDVALerqwsKhWLE89AZQS4gh/V/3FDbp/DUqVOwsLBAWloatYYcQ9FGxBzO4PM7eX8sqirPQ61WIzU1leo4Ah8fH1y5cgU9PT1UEm7u7u5oa2szuDAC/1tOG1qsbGxsdJl+Ywqj0ZfSzc3NcHNzo2KL5v4iTRGuq6uDr6/viNGpoYbea/dQLS0toVKp0N7erpfrTpbhyZzL1YM9C83Nzak1WtXC4/Hg7e1N7cgezaSINjNNA1dXV6pF8yNhEsJI45tBm3ihEUH09/dDo9FQmROiFSgvL69R72OIofc1NTVobGxEamoqFi9ebLTjg0OTOdd7qOGlakNKSgqWLFmC6upq6j55eXlR+1Db29tjYGCAyhxomgkYd3d3JoyNjY1UMrf9/f0AQEWstJEpjb1MbUMMmkcOe3t7UVJSgoSEBFhZWRn1bLU2It65zA0PhpghPXVwn9PW1hZxcXG4dOkS1UYP2sYLPT09BrfF4/Fga2tLRbAcHBwgk8moiLC7uzsaGxsNbmcsTEIYx4p29EVfXx9sbGyoiBWtyBSg2xAD+F+DioCAgKvE2Jji6KGRQEg6dKKoxdXVFT4+Prhw4QLVKXs0Gy/QWk6bmZnByspqxJIofSMQCKhl90fD6MLY3NxM5SyxTCajNvSK5v6iNvtNi+rqaiiVyhEbVBhDHMcryQkPD0dPTw9VsdaOBaABzSUun8+HTCYzuB0vLy8mjE1NTVSyt7SEkeZe5sDAAPr7+6klr/r6+lBaWorY2NhRqwhoiuNE6hS1vRMvX75M5UMNDDZe6OzspDJ+lKYwWlpaUqll9PX1ndt7jBqNhlpZi1wuv2YQlCEYGBiARqOhUq7R1dUFBwcHKqVOwOCRQ19fX5R2kzFP0tAQx8kUb7u6usLDw4PaWAALCwvY2NhQESxtAoaGCNOKGP38/IzeyduowtjR0QFCCJWCWFoRY39/P6ytrWfdXqZMJkNDQwN6+K4TOkljSHGcyomWoKAg1NbWUhEQgF4kx+PxYGlpqUsuGhJawigUCtHZ2Ukl0TMaRhXG5uZmODs7U4l4aAkjzb1Mmp2CRCIR3N3dkVXfP+EmEIYQx6ke83NwcICjoyO1vUaaNYa0BIuWHWdnZ/D5fKNGjUYVxqamJmr7Y7NNGGkWkRNCdP0GJ9sEYiLimCfqwqsnxl/mTvfss1AopCqMsy0pQssOl8uFm5ubUfcZjXokkNapF0II5HI5NWGksZcpk8mgUqmo1GV2dXVBpVLB3d0dHhwOch9NQWZVB5YGukyoaHysfo7aI32WZsDuxcCZui4snndtd3V9NITw9PTEhQsXqBzZc3BwQF9fH5RK5ahD0PQFLcGilXwBjH/6ZU4Io0qlglqtpiJYcrmcShQ3MDAAKysrKk0qOjs7dbNGgKk1gRhNHP93pG+wXVdWdadOGPNEXThR2YFERznkrXXTbghhZmYGFxcXdHZ2GlwYeTweLCwsMDAwYHBhpCVYWgEmhBh8D93YwmjUpXRvby+ViEcmk8HCwoKKiMy2JTugv73MkZbVQ5fmAJAWMNimTRtJ5lwoQWNNJWz9F+gl0UTzzC+fz6cqWIbGwsICHA6HynOytbWlMrZ1NIwqjEqlEjye4YNWGoN8tMxWYdRX9ru8h4Nyng+KLlxEfX297kjf89cNFown+A1GoicqO7DSk+BOPw22XjFDbrN+PowsKTJ1OBwOLCwsqGSLeTwetQqCEe0bzTIGl7g0hJEQQiVaBOjVS9ISRqVSif7+fr0I49AWYfNtNfgPLgIAkoS+iPexx48/lujum+goh8//iWJNL/TWLk0rjBqNxuDvidm496dt72ZozMzMoFKpDG5nNIwqjLQiRhp7IlpofOCAQQGmsQ0hlUphbW2tl32yoS3Cynu5qLH0Be/SJQC46rx8TU0N5K118I+IxR+c5RNO8kwEPp8Pc3Nz9Pb2jtplXF/QEiwul0ttpAKXy6UijDweb+4Ko0qlgrW1tcHtaDQaqk0WaAgjrWhbn9n84U1zE+f7Yr6dD/Ly8nQf7NraWpSXl+sSLalhg4/VJmIygqYmkkMfb2lpqdfl4Gi+8Xg8vXX2Gev56yuKm8hrzOFwJizCk/2bDb2/voRRKpXi9ddfR2JiImpra/HQQw9N6HGT+mQ1Njbiv//9Lzo6Bot6nZ2dsXnz5ikPYlcqlTAzM4NarZ7S4yeKWq0ejFQMbAcYFEaNRmNwWxqNBoQQg9tRqVTgcrl6sRPvY4+ch5OQVd2JtABnxPsMRmzx8fG6AUilpaVYvHgxbG1tdTbP1HVh2a7T4HA4eOEIwfEHF+v2IifC8Md/l8GHQqHQy3MayzeNRgOlUjltO+M9f0LItO1M9DVWq9W6H31cb7T7L+3o0ksU/Mknn2DRokW48cYbcdttt+G3v/3thFYKHDKJr5pLly4hICAAOTk5aG9vx29/+9tpOb1x40aYmZlhzZo107oOg8GYXfzmN7+BWq2ediT82GOPYePGjVi0aBEeeeQRbNy4cUITSScVMUZGRuLjjz/G2rVrsWvXrik7qzPO48HR0RGrVq2a9rXGoqWlBZWVlUhJSTGoHQA4dOgQVqxYYfAETEFBAdzc3CAUCg1qp6mpCXV1dUhKSjKYjdraWpSWluq2BxYsWHDV+fmh0QQh04sYCSH4frk1FkVF6KWGdizfKisr0dfXh+joaIPZAAbL3k6dOoXrr7/eYDa0ZGZmIioqatzpl5P9mw2//213/Ra+gul39tdoNLojx2q1esLHjye9SZWbm4v77rsPRUVFk33oNZibm0/K2anC4/EGa+UonMnmcDjgcDgGt6W9Po3Xbuiba7oM33eqqalBeXk5Fi9ejOzsbCQkJODs2bPgcrm6LZrF81xx4uElkzptM5Thj++vKgKPx9PLcxrPNzMzs2nbGc+GPt5zE32NCSETeu0m+zcbfv9dz+/RS4ldREQEmpubERMTg/r6egQEBEzocZMWxq1btwIA/t//+3+Tfei1xinVKtEqMaBpi1bWzsrKSm+dW66a6HeY4Nc75+lOtGgz7KOdkJnuyFXt4wkhOHSpX68TDUfzTZ8JsrGev74SfhN5jSeTyJzs32zo/d9Sq/Xy2v3ud7/Djh07oNFosHTp0gkfVJi0ZW23bX30UDQ3N6fSLmkymbTpQqv+ilaNnJ2dHeRyuV7qJoeW69zkRdDVWIMV6YMjTodu5mvFMefUaRy40oJFYYF6K9fp7e0Fl8ulUg0hk8moHA9Vq9XU6nRpVV3oq5TP3t4e//jHPwAAN99884QfZ9STL7SiHpp1XrPtGJiZmRns7e31clpEe/zvJq/BEy3uwdGjFo6X93Dw93MaOPY14qlvskft+zhZtKd4aJRvzcZTULRK39R6ihinilGF0dzcnIow0jwZMNuOgQH6a6GVJHTCr3fOw++DOPCPiEVq2OAyeaS2YycqO1Dey8W2y1z8IZDgXKl+um/TnMcz24RRo9FAoVBQOdlF6/DHaBhVGJ2cnNDVpZ9IYCy0Q+FnkwjTFHt9CaP2RMuK9NSrRDFlZy5eOFoOYDA7Cfwvuqzs4+LFK1z4KFv00kuRZnNfmi3oaAijXC4Hl8s1eLcgYPALbLzMtyEx6skXT09PtLe3G9wOj8cDj8eDXC43+LcQrUjOxsYGAwMDVLL6rq6uuHz58rSSCaP1Uxyt7Zi2uYQ2SznfjozYz3EyyOVydHV1IS4ubkqPn6wttVqt1yTPWLZodani8/lUltLt7e3w9PQ0uJ3RMGrESEsYgdm3xLWwsACfz6fSKcbW1hYODg66kZZ5oq4xh2ENZ6wms6O1HQMGl95/XxaEJKGTXsYkNDQ0wM3NjUp0JZFIYG9vP6vGdtBqkAIYXxiNHjG2tbVRsTXbhBH43xKXxpLDz88PIpEITcTuqpKb3EdTxswYj9d5WxsZnqxsA3pLxiwCHqsT+HgQQiASiRAaGjrhx0wH2oPKZtNeplqtNrowGjVi9PLyQldX16wSLNrCSKu3oLe3N3p7e5FXVj/hYVgTHUeQJHTCX5YGTsiPqUaOra2tUKlUEAgEE37MdKC9lzmbhLG5uRkajYbaPKiRMKow2tvbg8/nUxlQRHPvr7+/n0rDCpoDl3g8HubNm4cQ8+4JDcPSx4yW0ZisOBJCUFFRgcDAQGr1frSy3wqFAkqlklpdJg1h1E6kpDUvfSSMKowcDgceHh4QiUQGt0UzW8zn8yGVSg1uy9HREb29vdTm7wYGBoKr6Mex383Hv1aGjLqMNqQoapmMOIpEIshkMoOfK9fS19cHhUJh8H6PwGBkamdnR0VEaO0xNjQ0UIvsR8OowggMLqfr6uoMbofmEpfWXBELCws4OTmhpaXF4LaAwbrTmJgYDDRV4U8pvkYTRS0TEcf+/n5cuXIFCxcupFYXJxaL4ebmRkWsZuNeZl1dnVH3FwETEcbGxkaD25mte38CgYDqYHIPDw8IBAJcuHDhmjPhNEVRy1jiSAjB+fPnIRQK4eKin9EIE0EsFrO9zGnQ3NysO3psLExCGGmMSdROHZtte38CgQCtra1UnpeWBQsWoKur66ovNGOIopbRxLG2thb9/f0ICwuj5otSqURnZyc8PDyo2KO5lymXy2FjY2NwW2Kx+KpRF8bAJISRxlKQz+fD0tISPT09Brfl4OAAqVRKRaxsbW3B5/N1XdVpYG5ujtjYWFy4cAHt7e1GFUVgsK7y3aJO2PqH68SxpaUFxcXFWLRoEdVN/NbWVjg4OFCJrBQKBQYGBqjtZdra2lLZjmhrazO6MBq1jhEYFEZatYzaSM7Q37BDRZjGt7mnpycaGhrg7j79xp4Txc3NDTExMcjLywOHw8GSJUuMJoq6ukpCcOK+BbplfkJCApyc9NOVZ6I0NDRQ+1DTFCuaZ8zb2trYHiOtiBEYjORo7f05Ojqis7OTii2hUIimpqZRe1tO9qTKRBmaDTfWDOChrcw4HA4uNgw+Rw6HQy1br2VgYACtra1TPrI4Wbq6uqiJFc0kT2trKxPGiIiIweYCFEppaO79ubu7o7W1lYotGxsbODs7j5jd10ZUz/1ShpSduXoTR+3yOTU1FQsXLkR+fj5EIhG1hsBatEcKeVzgRoEafvJGJCQkIDk5eVrHB6dCXV0dBAIBtWNzLS0ts24vs62tDa2trVT3hUfC6MLo6ekJJycn3ZQ4Q+Lo6AipVEqlN6NAIEBbWxu12bjz5s1DTU3NNcI0PKIa66TKRBm+p+jl5YWkpCRUVFQgLy9PbyNDJ0KS0Akn74/Fp2mWeCDCCmmpS+Du7q6Xs9WTQaPRoKamBvPmzTO4LWAwQ9zd3U1l+0SpVKK/v59KxJiTk4PAwEAqTTHGwujCCACxsbE4ffq0we1oh63TKL62srKCnZ0dtahRIBCAEHLNtsTQJg1jnVSZKKMlWlxcXLB06VLY2trixIkTY0aP+lraE0JQXV2N7ooixAR448YVy66KamiKY2NjI/h8PrWyoJaWFjg7O1NpAUZzLzM/P59K96PxMHryBRicK1xYWEjFlrbGkMayQCAQoKWlhcpmPIfDQXBwMEpLS+Hh4aFrDTW8fdd0RgSMl33m8XiIjIyEp6cnioqKUFdXh6CgIAgEAp0/w+e+jNeEYiQ0Gg2am5tRWVkJtVqN5OTkUZMs02k8MRl/ysrKEBYWRqUlF0C/VpLW/uKFCxemNe1QX5hExBgXF4fi4mIqtmjXGIrFYmr7bn5+flCpVNcUzA9t3zVVJlOS4+rqioyMDPj4+ODKlSs4duwYKioqMDAwMK2lfX9/P8rKynDs2DGUlpbC398f6enp42aeDR05ikQi8Hg8atlotVqNtrY2asJIMyOtLbEyNiYRMS5atAjl5eVUzmI6ODigvLzcoDaG2uJyuejq6qLSGozL5SIsLAwlJSXw8vLSW8OEqdQpaptO+Pv7o6WlBXV1dSgrK0OUBR8PBapR3cdBZQ9B+ryRRU2lUkEqlUIikUAikaC7uxt9fX0QCASIjo6Gm5vbpKIzQ0WOKpUKZWVliI2NpRYttrW1wdramkqxNTAYMdLYO21vb0dDQwMWLlxocFvjYRLC6OXlBQcHB5w9exZLliwxqC0XFxdIpVIoFAq9zK0dCw6HA4FAgObmZmpt2r28vFBRUQGRSKSXN/N0i7e1r4FAIIBCoUBXVxcsHcRobu+AI0eBtku5OFxmoRPxY8eO6WaLWFlZwdHREQ4ODvDx8YGTk9O09tQMIY7V1dWws7OjWkNKcxnd398PmUxGZSmdm5uLgIAA2NnZGdzWeJiEMHI4HF0CxtDCOLTxAo16M29vbxQWFiI8PJxKRMHhcBAREYGCggJ4eXlNKwLX94kWCwsLeHh4XFViIpfLda2zsrOzERcXB3Nzc1haWhrki0uf4tjf34+KigokJyfry71xUavVaGpqQkpKChV72oYYNBIveXl5JpF4AUxkjxGgm4Ch2XjBxcUFZmZm1IrYgcFTKR4eHrh48eKUr0HrmJ+lpSXs7Ox0NhwcHGBnZ2fQaF4fe47aBhV+fn5UT9c0NTXBxsaGWjKEZnR6/vx5xMfHU7E1HiYjjIsWLUJJSQkVWzQbL3A4HAiFQio9J4cSGRmJzs5O3ZyWyWDss880mK44ikQi6g0qtHZp9ZVUKpXo6OigVkReWlpqEokXwMSEsby8nMoxLtqNF3x9fdHW1jZm4bO+j+1peydeuHBhUqeK5oIoapmqOBqjxyMA9PT0QCKRUGvJRbMhRmdnJ+rr600i8QKYkDD6+PjAxsZmVi6n+Xw+PD09UVNTM+LvDXVsT7ufd/78+QmVDM0lUdQyWXHUaDQoKiqi3uMRGEz0+Pn5USnqBuguo3NycuDv70+lU9BEMBlh5HA4SEhIwLFjx6jYo11jGBAQAJFINOLy3RDH9rRERkair68PZWVlY95vLoqilsmI45UrV6BSqagvoRUKBerr66kdOdRoNGhpaaEmjCdPnkRiYiIVWxPBZIQRAFavXo1ffvmFii0nJyddrRwtezY2NmhoaLjmd/o+tjcUc3NzJCYmoqamZtT9xrksilomIo4ikQiNjYNNKmgPaqqrq4OLiwu1UpbOzk6Ym5tTs3f06FGsXr2aiq2JYHLCePbsWSqtwbhcLjw8PKiOBQgKCkJFRcU1TSy0x/bGGjA1HWxsbBAXF4eioqJrXlsmiv9jLHHs6OjA5cuXkZCQACsrK6p+qVQqVFZWIigoiJpN7TKaRolZfX09SkpKsHLlSoPbmigmJYw+Pj4IDQ3Fnj17qNjTFl/TwtPTEzweb8QMtT6O7Y2Fm5sbwsLCkJ+fr0sCzXVRHCnhNZI49vb24uzZs4iKiqJWqD+Uqqoq2NnZUZuzTAiBWCymlo3++uuvkZKSQu3Y4UQwKWEEgFtuuQUHDhygYsvDwwN9fX3UltMcDgfh4eEoKyuj1o5sKPPmzYO3tzdyc3NRXl4+50VxtITXUHGsrKzUncig1YB2KAqFApWVlQgPD6dms7OzEyqVCq6urlTs/fzzz1i7di0VWxPFJIUxKyuLinDweDz4+PhQrTF0d3eHvb09qqqqqNnUohVmPp+PkpISLFq0aE6KIjB+wsvZ2RkxMTG4cuUKHB0dMX/+fKP4WV5eDnd3d6pF5CKRCH5+fno7az8WfX19yMvLM6n9RcAEhXHhwoXg8/nUstNCoRD19fVUp+yFh4ejsrKSStfy4dTW1kIqlcLb2xsXL16k2lTWlBgv4dXb24tLly7Bz88P7e3tVDuBa+nv70dtbS31KYdNTU3Uisj37dsHf39/BAQEULE3UUxOGDkcDtasWYPvv/+eij1HR0dYW1tP6YTIdGy6u7ujoqKCmk3gf3uKKSkpWLRoETw9PZGVlYWuLv3OgpkJjJXwam9vR3Z2NubNm4eFCxdi8eLF1MckAEBZWRl8fX2pdrOur6/XVVDQYP/+/bjllluo2JoMJieMwOBy+vjx49Ts+fv7T2g5rc/TKWFhYbq5xzQYnmjRNpsICQnBqVOnRiwjmu2MlPCqra1Ffn4+IiMjdctn2mMSAEAqlaKxsZHqEp4QApFIBH9/fyr2NBoNMjMzmTBOlIyMDIjFYly6dImKPR8fH0il0jHLhPR9OsXW1hb+/v4TPpUyHcbKPvv7+yMxMRGXLl1CcXEx9WFWpoJGo8HFixdRVlaG5ORk+Pj4XPV7muKobVARHBxMtTSoo6MDcrmc2oS+rKws3ZhbU8MkhZHP5+O6667DN998Q8Uej8eDn58fqqurR72PIU6nhIaGor+/36DJn4mU5Li6uiI9PR0tLS04ffr0nNt37OvrQ25uLiQSyZgdwWmJY2VlJTQaDYKDgw1mYySqqqowb948KkkXAPjuu++watUqavYmg+l59H+sXbuW2ikYYPDIXmNj46gJEUOcTuHxeFi4cCGuXLlikCX1ZOoUra2tkZqaOqFhVrMF7TCtzMxMuLi4ICUlZdyGCYYWx56eHpSXl2PhwoVUBaOvrw9tbW3UltHAYFNiUyvT0cIhJvrub2trg7e3N0QiEbXQPj8/H46OjggJCRnx93miLr0MlRrO5cuXIZVKsXjxYr2dNJhO8XZ7ezuKiopgZ2eH6OjoaS3n8kRdOFHZgYygsV8ztVqNH3/8EatWraJy3K6vrw9FRUWQy+WIjY2ddDlMZ2cn8vLyEBkZqbf6Ro1Gg+zsbAgEglHfg4bi8uXLUCqV1LrblJSUYOHChejo6KCW6JkMJhsxurm5ISMjA2+99RY1m4GBgaipqRm1htJQp1P0vaSe7okW7TAra2trHD9+fMoF6YbqGjQdlEoliouLkZmZCScnJyxdunRKNYKGiBwrKytBCKG+hFYoFBCJRFRLZnbu3Im1a9eapCgCJiyMAPDggw9i9+7d15wtNhSurq5GKb7W55JaX8f8eDweoqKikJKSgo6ODhw9ehQ1NTWT+lsYsmvQZFGr1aisrMSvv/6Knp4epKamIiIiYlrRqT7FUSqVoqKiArGxsdT33LRF5LSK/VUqFfbs2YMHHniAir2pYNLCuGrVKvT09ODIkSPUbBqr+NrFxQX+/v4oKCiYcrG5Ic4+Ozo6Ijk5GYsWLUJdXR2OHTs2avu04Riya9BEUalUqKmpwdGjR9Hc3IzExEQkJibqre+fPsRRpVKhsLAQQUFB1PsRGqOI/Ouvv4a1tTWWLl1KzeZkMdk9Ri1///vfUVJSgv3791OzefbsWVhZWWHBggXUbAKDe0ynT5+GlZUVFi5cOKn9RhoNIQghaG5uRkVFBfr7++Hv7w+hUAhra+tRHzPRfVl97zH29vZCJBJBJBLB3t4eQUFB8PDwMFi3mKnuORJCcPbsWV3ZCq0RrFrOnTsHMzMzREdHU7OZkZGBlStX4sknn6Rmc7KYvDBWVVUhMjISdXV10zrUPtEkADD4ocrMzMSyZcvG/NAbArlcjqysLAQEBCAwMHBCjzFGl5zOzk7U1NSgubkZLi4u8PLygkAgmPJUQn0I48DAAFpaWtDY2Iiuri54e3tj3rx51Lq2TEUcS0tL0dTUhNTUVGqdubVIpVJkZWVh+fLl1Oolq6qqsGDBAtTW1lLr3jMVTF4YgcFvmKVLl+L555+f0uO1SQAOZ3BJN5GehxcuXIBarUZsbOyUbE4HqVSK7OxsxMfHjzuv2NitwxQKBRoaGtDc3IzOzk44ODjo5kjb2dlNOAKaijASQiCVSiEWiyEWiyGVSuHq6gpPT094e3tTFxpgcuLY2NiIixcvIi0tzShJiPz8fNjZ2VHt3PPEE0+grq4OP/zwAzWbU8Ek5kqPx2OPPYYtW7bg2WefnVI0MTQJYMYdTAKMJ4whISE4evSoUfZ97O3tERsbi4KCAqSlpY16VtbYoggMzooOCAhAQEAAlEolWlpaIBaLUVFRAQ6HAwcHBzg6OsLR0REODg6wtraeUnJBo9Ggr68P3d3dkEgkkEgk6O7u1jUcDg4Ohpubm1HEcCgTnVstkUhw/vx5JCQkGEUUOzo60NHRQfWLXy6XY/fu3di9ezc1m1NlRkSMarUa8+bNw6uvvor169dP+vFTiRgBoLi4GD09PUabRVFWVoaGhgakpaVd84E3BVEcC0IIent7dQKm/a9KpYKlpSUsLS3B5/PB5/N1k/aqq6t1JSNKpRJyuRwymQwymQwKhQI8Hu8qkXV0dISNjQ31fbmJMFbkKJPJkJWVheDgYGozXIZCCEFOTg48PT2pdgV/66238NZbb+HKlSsm+TcbyowQRgB49dVXsX//fuTk5Ezp8VMpzlYqlfj111+RmJhIfSIcMPgGLiwshEwmQ1JSkk5ATF0UR4MQAqVSqRM7rfCp1WpdOU1QUBDMzMxgZmamE86hAmrqH6ihjCSOSqUSubm5cHJyQlRUlFGej1gsxoULF7BixQqqs2uioqLw+OOPY9OmTdRsTpUZI4xdXV3w9fVFVlaWLvyfTEJlqlRWVqKxsRGpqalGOdOpVqtx5swZEEKQmJiIurq6GSmK40H75AsthoqjQCDA6dOnYW1tjUWLFhlFFNVqNTIzMxEUFESt5yIwOOzqjjvuQGNjI/WZOVPBpOsYh+Lk5IQNGzbg1VdfBUDvVEVAQAAIIUbpuA0AZmZmSEhIACEEJ0+eRElJyawTxZnKRNrQafccL168iKysLFhaWiI2NtZokW9paSn4fD78/Pyo2n399dfx4IMPzghRBGaQMALA448/jgMHDqCxsZHaqQoul4vY2FiUl5dTmw0zHDMzMwgEAvT29sLOzo5q41LGyEzmi9nOzg7W1tbo6+uDQCAwWjeZzs5O1NbWIiYmhqowl5WVITMzE4888gg1m9NlRgljaGgobrrpJjz99NNUT1VoC4SLioqoHU8cSk1NDcrLy7FkyRKYmZkhPz/fKMO0GP9jol/MSqUSp0+fho2NDZKTk3HlyhWjjElQq9UoKipCWFgY9Sz43/72N2zYsAHe3t5U7U6HGSWMAPDvf/8b33//PRwHWgw6i3k4wcHBIISgsrLSoHaGMzTR4uzsjMTERHC5XOTl5UGhUFD1hfE/JvLFLJPJkJubC2tra8TFxcHV1ZV6J3At2iU07Sx4fn4+jh07NuUaZGMxY5IvQ3nwwQfR3NxM9Zgg8L/C69TUVCq1jaNlnzUaDYqKitDV1YWEhATqdZaGYCYmX8aqdOjq6sKZM2cgEAiuyT4bomXZWHR2duL06dNYunQp9WgxIyMDSUlJeOmll6janS4zUhibm5sRHByMo0ePIikpiartsrIyiMVig2epxyvJ0SaEysvLERsbC4FAYDBfaDAThXE0GhoacOHCBURERIza+JWWOGqz0AEBAdSjxcOHD+Ouu+5CTU0NtWOZ+mLGLaUBwNPTE5s3bzbKIXQaS+qJ1ClyOBwEBQVh0aJFOHfuHCoqKmZ9x21ThxCC4uJiXLp0CYmJiWN2w6Y1JkG7hKbZmRsYXNU8/fTTePrpp2ecKAIzVBgB4Mknn8TFixfx008/UbWrzVJXVFQYJEs92eJtDw8PpKamQiQS4dy5c1TnYzP+h1KpxJkzZ9DS0oL09PQJNTwxtDgaKwsNAF999RVaWlrw2GOPUbWrL2asMDo4OOCZZ57BM888Qz1TbG9vj5CQEJw5c0avCZCpnmixs7NDWloa5HI5srOz0dPTozefGOPT3d2N7OxscDgcpKamTqojk6HEUSaT4ezZs1iwYAH1fUWVSoWtW7di27Zt487QMVVmrDACwKOPPorW1lZ8+eWX1G0HBgbCyckJBQUFehHm6R7zs7CwQFJSEgQCAbKysnRt8hmGQ6PRoLS0FDk5OfDz80N8fLzu2OZk0Lc4ak9LeXp6Uj3domXnzp3gcrm45557qNvWFzNaGPl8PrZt24atW7dSr+vjcDiIiYmBUqnElStXpnUtfZ195nK5CA0NxZIlS1BfX8+iRwPS3d2NrKwstLa2Ii0tDUFBQdNarupLHAkhuHDhAszMzKg3WgYGO4K/+uqr+M9//jOlLwlTYUYLIwDcc8894PF4ePPNN6nb1h7Xa2xsnPIgK0M0hHBwcEB6ejrc3d1Z9KhnNBoNysrKkJOTA29vb6SmpsLOzk4v19aHOFZVVaGjowPx8fFGOWHzn//8B97e3iY7FnWizMhyneHs27cPDz30ECorK43S205bJ5aUlDSpLjw0uuRIJBIUFRWBx+MhOjraZGseZ0K5jraHIofDQWxsrN4EcThTLeVpaWlBQUEBtTrb4XR0dCA4OBh79+5Feno6dfv6ZFYIIyEEGRkZCAoKwgcffGAUH+rr63HlyhWkpaVNaPOdZuswjUaD8vJyVFZWwsvLC6GhodRHNoyHKQtjb28vSkpK0Nraivnz5yMwMNDg0dhkxbGnpwfZ2dlGrWm9/fbboVQqsW/fPqPY1yczfikNDO73ffTRR/jmm2/wyy+/GMUHX19f+Pr64syZM+Pud9Lup6jde9T23zt+/DguX76s10mIE+k0M9OQyWS4cOECMjMzYWVlhRUrViA4OJjKEnUyy2qFQoH8/HwEBQUZTRS/++47HDt2DLt27TKKfX0zKyJGLTt37sRrr72Gy5cvG2VJTQhBXl4eeDwe4uLiRtyMN4Ums729vSgtLUVLSwuCgoIQGBg4rY3yqXZIH4opRYxKpRIVFRWoqamBp6enUSPs8SJHjUaD/Px8mJubG63HY0dHByIiIvD666/j7rvvpm7fEMyKiFHLww8/DD8/Pzz++ONGsc/hcBAXF4fe3l5cuHDhmoSHKYgiANja2iIuLg4pKSno6OjA0aNHUV5ePuUIklYLOEMjk8lQWlqKX3/9FT09PUhNTUVsbKxRtx3GihwJITh37hyUSqVRiri1PPDAA0hMTMRdd91lFPuGYObm00eAy+Xik08+QXR0NG6//XbccMMN1H0wNzdHcnIycnJycPnyZSxYsAAcDsdkRHEojo6OSE5ORnt7u+7ctbe3NwICAiblY0aQC8hhOi3gDEFXVxeqq6vR3NwMDw8PJCUlwdnZ2dhu6RhpwBYhBEVFRejt7UVKSorRSmO+/fZbHD9+HMXFxTNq7MR4zKqltJa3334br776qtGW1MDgjOPc3Fx4enrCysoKZWVlJiWKI9HX14fq6mrU1dXBzs4OQqEQ3t7eE/rQTWWmzlBoL6WVSiUaGhogEonQ398PoVCIgIAAk+4wrV1WL1iwAF1dXejs7ERKSgosLCyM4k97ezsWLFiA7du3z6poEZilwqjRaLB8+XLMmzcPH330kdH86O/vR2ZmJtRqNVJTU2fMYXqVSoWmpiaIRCJIpVLdnGh3d3eDjSelIYwKhQKtra26OdROTk4QCoXw9PQ0yr7mVGYWdXR04NSpU7CwsMDSpUthaWlpYC9H5ze/+Q3UajX27t07q6JFYJYtpbVwuVx8/PHHiIqKwvr1642ypAYG68qAweN6jY2NcHBwmBFvIB6PBz8/P/j5+aGnpwdNTU2oqqrCuXPn4OLiohNKUyv5GYne3l7drOvOzk44OjpCIBAgNDTUqCMirkpYHZ5YwooQgvr6elhaWkKpVKK1tZVKP8eR+Oabb3DixAmUlJTMiPf0ZJmVwggA/v7+ePnll/HAAw/g8uXL1D8E2j1F7VInNzcXarUakZGRM+qNZGdnh5CQEISEhEAmk+lEpri4GDY2NnB3d4eTkxMcHR1hZWVl1OdGCEF/fz8kEgm6urrQ0tKCgYEBuLu7w9fXF3FxcUaNsIYyNGFlxh1MWI0ljBqNBufPn0d3dzfS09PR19d31Z4jTdrb2/H444/j7bffhoeHB1XbtJiVS2kthBAsX74c/v7+VJfUIyVatG3uXVxcEB0dPaPEcSRUKhXa29vR1tYGiUSC7u5umJmZwcHBAY6OjnB0dISDgwOsra0n9Fwnu5QmhKCvrw/d3d2QSCQ6HwghOh/c3Nzg6upq9PKfkZhMiZNGo8G5c+fQ29uL5ORk3Z4i7U7gWtatWwdCCH744YcZ/z4ejVktjAAgEokQGRmJzz//HLfccovB7Y2VfZbL5Th9+jSsrKwQGxtrsP06Y0AIQU9PzzVCpdFoYGlpCT6ff9WP9jYul6sTh9OnT2Px4sW6f6vVasjlcshkMshksmv+fyQhtrW1nTEf1okkrBQKBQoKCqBWq5GUlHTNe4a2OH7yySfYsmULiouLZ220CMwBYQQG90Meeugh5ObmIiwszGB2JlKSo1Qqce7cOfT19SExMdFoWXMaEEIgl8uvErThIqfRaEAIgUaj0Y2H5XA44HA4MDMzu0pUhwushYXFjBHBqSCVSnHmzBk4OTkhJiZm1MiXljieOXMGK1aswNdff42bbrrJYHZMgTkhjADwzDPP4LvvvsOZM2cMkh2eTJ0iIQSlpaWora1FfHz8hLo9z3ZM6eSLKSAWi3Hu3DkEBwdPqKWZocVRLBYjPj4emzdvxl//+le9X9/UmDPCqNFosHbtWvT29uLXX3/V64dvqsXbjY2NOH/+PMLDw6kPKjI1mDAOop0nVFFRgUWLFk1quWoocVQoFEhNTUVwcDA+//zzWR2la5lVRwLHgsvl4ssvv4RYLNbrkcHpnGjx9vZGSkoKysvLceHCBeojGhimhVqtxrlz5yASiZCamjrpPTxDjUn4/e9/D41Ggw8++GBOiCIwh4QRGCw9+fHHH/HVV1/hvffem/b19HHMz9HREenp6ZBKpTh16pReO94wZg4DAwPIycmBXC5HWlralHs96lscX375ZRw7dgz79++fsfNbpsKcEkYACAgIwJ49e/CXv/wF2dnZU76OPs8+8/l8JCcnw8bGBllZWejqmj2tuxjj097ejpMnT+pEbbpH/PQljocOHcK//vUvHDhwAF5eXtPyaaYx54QRADIyMvDSSy/hjjvumNIbxxANIczMzBATE4OgoCCcOnUKxcXFbBTqLEelUuHixYs4c+YMwsPDERkZqbdej9MVx9LSUtxzzz3YtWsX4uPj9eLTTGLOJF+GQwjBgw8+iPz8fOTl5U14mUCjS05fXx+KioqgUCiwcOFCODlNvinDTGOuJV/a29tx/vx52NjYICYmxmDNK6aSkOnu7kZ8fDxuvfVWvPzyywbxy9SZs8IIDGbbli9fDjc3N3z//ffjflvTbB1GCEF1dTVKS0sxb948hISEzGrBmCvCqFKpUFJSgvr6ekRERMDPz8/gCY3JiKNarcYNN9wACwsLHDx4cFb/LcZiTi6ltVhYWOCHH35AQUEBnnrqqTHvS7ufIofDQWBgINLT09HZ2YmTJ0+yvccZTkdHBzIzM9Hb24uMjAwIhUIqWd7JLKsfeeQRNDQ04Ouvv56zogjM4iYSE8XNzQ2HDx9GWloabGxs8I9//OOa+xizyaytrS1SUlJQXV2NU6dOzYnocbahjRLr6uqwYMGCKUeJU2lTpmWkZrfD+fOf/4yDBw8iJyfHZKdJ0mLOCyMAhIeH49ixY8jIyICVldVVlf2m0HlbGz16eHigqKgImZmZiIiIgIeHx5ypK5uJEELQ1NSk60SUkZEx5VZtU2lTNpyxxPHpp5/Gl19+iZycnDl/2ABgwqgjOjoaR44cwYoVK2BpaYnNmzebhCgOxdbWFkuWLEFdXR0uXrwIKysrhIeHT2qWNYMOra2tKC4uhkqlQlhYGLy9vaf1JTbZNmWjMZI4bt26Fe+99x6ysrIQHBw8ZR9nE0wYhxAXF4effvoJK1euhEwmQ2RkpMmIohYOhwOhUAgfHx/U1NQgPz8fLi4uCAsLm/PLH1NAIpGguLgYUqkUISEhEAqFeinB0edcnaHi+MEHH+CNN95AZmYmwsPDp+3nbIEJ4zCSk5Nx8OBB3HzzzXjxxRdx4403GtulETEzM0NQUBCEQiEqKyuRnZ1NbdTndPa6Ziu9vb0oKSlBa2srgoKCkJCQoNcBVUlCJ+Q+mjKtuTpDcXZ2RkFBAbZv345jx44hOjpaT57ODuZ0uc5YnDx5EqtXr8a2bduMNo51MshkMpSVlaG+vh5CoRDz5883SLdqfcyQHomZWq4z9HX39/dHcHCwyXQJH4utW7dix44d+PXXXxEXF2dsd0wOFjGOQnp6On755RfceOONkMlkePLJJ43t0pjw+XxER0cjMDAQpaWlOHr0KHx9fREQEKDXsQ762uua6UilUlRXV6OhoQFeXl5YtmzZjJiBAwBPPfUU3n//fWRmZrJIcRSYMI7B4sWLcezYMVx33XWQyWR4/vnnje3SuNja2iIuLg5SqRQ1NTXIzMyEq6srAgIC4ObmNu0s9kyfIT0dCCFoaWlBVVUVJBIJ/Pz8sHTpUqMO1Zosf/rTn7B7925kZWWxPcUxYEvpCXDx4kUsX74c9957L1555RW9nWelgUKhgEgkQk1NDczMzCAUCuHr6zut5d50Z0iPhCkvpWUyGerq6iASiQAMNiLx8/ObUaMp1Go1HnzwQfz88884ceIEyz6PAxPGCVJaWoqbbroJERER+Prrr2fcSAKNRoOWlhaIRCK0t7dDIBBAKBTC1dXVJGohTU0YCSFobW2FSCRCa2sr3N3dIRQK4e7ubhKv12SQSCRYt24dxGIxfvrpJ/j7+xvbJZNn1i6l9+7di8zMTNx1111ISkqa9vVCQ0NRUFCA2267DYmJidi/fz8CAwP14CkduFwuPD094enpiYGBAYhEIhQVFYEQopsTbaoT9WihUqnQ1tYGsViMlpYWXYQdFRU1I3oRjlQtcOXKFaxduxahoaHIz8+fcp/HucasjRhzcnKwZMkSvV9XqVTiz3/+M7755hvs3r0by5cv17sNWhBC0NXVBbFYDLFYjP7+fri7u0MgEMDDw4NqdtVYEePAwIBuVnZ7eztsbGx0XxSOjo4zJjocqVqg5XwW7rvvPjz00EPYtm3btLaA3n//fZSWlmJgYACvvfaawboBmQqzVhiLi4uh0WhQVlYGgUCArKwsqNVqpKamIj09fdrXf++997Blyxa8+OKL2Lx5sx48Nj59fX06kezs7ISjoyM8PDwgEAh00/sMBS1hJIRAKpXqnqdUKoWrq6vuec6UzPJwXjpWied+KdNVC6wfyMaBT97CBx98gPXr10/7+q2trXBxcUFmZuaMDgYmyqxdSp89exb33nsvvvjiCzz99NNQqVTo6+vTiygCwB//+EeEhYXh1ltvxaVLl/DOO+/otaDXGNjY2CAwMBCBgYFQKBRobW2FWCxGRUUFuFzuVfObHR0dYWVlZdIRFSEE/f3918y61m4fBAcHw83NbUYlUUZDWy1gDhWC89/D8YrzyMzMxKJFi/RyfXd3d3z//fdYuXIlcnNz9R5omBoz+5M8BhERESgoKEBsbCzq6upgYWGB3Nxcvc7DTU1NRWFhIVavXo2MjAzs27dv1pxbtrCwgI+PD3x8fKDRaNDT06MTlsrKSnR3d4PH410llMYUS60IDhVAiUQCjUaj88/HxwcLFiwwePRrDJKETjh4RyD++oe7YcO3wLFz5yAQCPRq4+LFi7jtttsQGRmp90DD1Ji1wqit5tfW9Nnb2yM0NFTvdoRCIU6fPo0NGzYgPj4ee/funXVFs1wuFw4ODledGddoNOjt7dUJUVVVFbq7uwEAlpaW4PP54PP5V/3/0NssLCwmJE6EECgUCshkMt2PXC4f8d8cDkcn1L6+voiMjIStre2sE8GRyMvLwx9vuw3Lly/He++9Z5D94b6+PgAwWKBhSszaPUbaaDQabNu2Ddu3b8c777yDu+66y9guUYcQcpVgjSRi2tuAwYYYXC4XHA4HHA4HSqUS5ubmIISAEAKNRgNCCDgcDiwtLWFpaQkrK6trxHbov+eCCA7n/fffx5YtW7B161Y88cQTBn8NtIFGV1fXrB27wYRRz+zduxe///3vsWLFCuzatWvWLK31iTYK1AogIQRKpRKZmZnIyMgAj8fTiSWXy4W5ufmcFLzxEIvF2LRpE86ePYsvvvgC119/vbFdmjXMnCMck0T7wRrtx1DceuutKCkpgVwux4IFC/Ddd98ZzNZMRRsB8vl8WFlZwdraWneszsbGBtbW1rCysgKfz5/wknuu8cknnyAyMhL29vYoKSkxuCga6/NkLGatMA6NRr777jt8/PHHV91mSAQCAfbv349XX30Vf/zjH3HHHXegs7PToDYZcwOxWIxVq1bhb3/7G95//33s3r2byqrEmJ8nYzBrhVFLUVERoqKiqNvlcDj43e9+h+LiYvT392PBggX44YcfqPvBmD189tlnuoRSSUkJ1q5dS90HY32eaDNrs9Ja2traUFVVhaqqKqPY9/T0xMGDB/HFF19g06ZN+Pbbb7Fr1y44OjoaxR/GzKOlpQV/+MMfkJeXh3fffRfr1q0zmi/G/jzRYtZHjNdffz2USiV6e3uN5gOHw8GGDRtQXFyM3t5eREREYO/evUbzhzFz+OKLLxAZGQlra2uUlJQYVRQB0/g8UYEwqKLRaMinn35KHBwcyPr160l7e7uxXRqX07Wd5N9HK8jp2k6D2VCpVGTfvn1EpVIZzMZMorm5maxZs4a4urqSPXv2GNudOcesjxhNDQ6Hg3vuuUe39xgcHIxnn30W/f39xnZtRLTNCZ77pQwpO3ORJ+oytkuzGqlUii1btmD+/PmwsrIyiShxLsKE0Uh4eXnhwIED2LdvH44ePYqgoCBs374dKpXK2K5dxdBRBhzO4CgDhv6Ry+X497//jcDAQJw7dw7Hjh3D119/DVdXV2O7Nidhwmhk0tLScPr0abzzzjt47733EBoais8//xwajcbYrgH4v+YEZG6OMqCBRqPBu+++i/nz5+Obb77Bl19+iePHjyM+Pt7Yrs1tjL2WZ/wPlUpFPvroI+Lt7U1iYmLIoUOHjO0SIWRwj/GlY2yPUd98++23JCwsjMybN4/s3r2bqNVqY7vE+D+YMJogAwMD5NVXXyWOjo4kLS2NnD592tguGZy5JIwnTpwgiYmJxM3NjezcuZPI5XJju8QYBltKmyB8Ph9/+ctfUFtbiyVLluC6667DLbfcgpKSEmO7xpgGRUVFuOGGG7BmzRqsWrUK1dXVeOSRR2BhYWFs1xjDYMJowjg4OODFF19EeXk5vLy8EBsbi+uuuw6HDh0ymT1IxthoNBrs2bMH6enpSElJQXh4OKqrq/Hss8/OqLGrcw0mjDMAT09PvPPOO6ipqUFycjI2btyIBQsWYPv27SZb5jPXkUqleOmllzB//nw89thjuOGGG1BXV4ft27ezTPMMgLUdm4HI5XJ88803eP3119HQ0IA77rgDmzdvNkgjXlqY2vjUqXLhwgW88cYb2LNnD0JCQvDnP/8Z69atmxXjE+YSLGKcgVhaWuKee+5BUVER9u3bh66uLixcuBApKSn44IMPdI1gGXTo7+/Hzp07ER8fj+TkZKhUKhw5cgT5+flYv349E8UZCIsYZwkdHR347LPP8O6776K9vR233norHnzwQb0NQzI0My1i1Gg0yM/Px65du3DgwAH4+fnhwQcfxN13333VCAjGzIRFjLMEFxcX/OlPf0JJSQkOHjwIpVKJpUuXwt/fHxs3bsSBAwegUCgmfL08URdeOlbJjgAOQS6XY8+ePdiwYQP8/PywcuVK8Pl8HD16FBcuXMBDDz3ERHGWwCLGWYxCocDJkydx4MAB7N+/H1KpFKmpqVi1ahVuu+22URucjjS8PUlo2NkephoxtrS04Ntvv8VPP/2E3NxcuLi44NZbb8WaNWuQkpLClsmzFBYxzmIsLCxw3XXX4c0334RIJEJ2djYSExPx/vvvw8vLC8nJyfjnP/+J0tLSqx43189HX7p0Cc888wwSEhLg6+uLr776CkuXLkV+fj6qq6vx+uuvY+nSpUwUZzEsYpyjNDc349ChQ9i3bx+OHTsGX19fZGRkICUlBQ6BUVi3r2FORIwajQZVVVXIzs5Gbm4uMjMzIRaLcf3112Pt2rW46aab4ObmRs0fhmnAhJGB/v5+HDt2DD/99BPy8/Nx+fJl2NnbQxg4HxELFmB5ajKWLFmCgIAAcLmGWWTQEEaNRoPy8nLk5ubi7NmzuHz5sq79W1RUFBITE3HzzTdj6dKl4PP5BvGBMTNgwsi4BoVCgeLiYhQWFqKgoABnz57FpUuXYGdnh9DQUERGRiI+Ph6pqakIDAzUi1jqWxg1Gg3KysqQk5OjE8HS0lIMDAwgKioK8fHxiIuLw6JFixAWFgYeb9ZP+WBMAiaMjAmhVCpHFEtzc3O4urrCzc1N9+Pp6QkvLy/4+fnB19cXQqEQTk5OYwroRIVRo9Ggs7MTtbW1qKurQ0NDA5qamtDc3IzW1la0tbWhvb0dbW1tIIRcI4KhoaFMBBnjwoSRMWWUSiXq6urQ3Nys+2lsbERTU5NOrMRiMbq6usDn83XCaWtrCx6PBzMzM91/zczMMDAwACsrK6jVaqjVaqhUKqhUKqjVakilUrS3t6O9vR0ymQzOzs4QCATw8vK66kcryp6envDz8zOpDDdj5sCEkWFw5HI5xGKxTjylUilUKhWUSqVO/LQ/PB5P92Nubq77fwcHB53geXh4sI40DIPChJHBYDCGweoYGQwGYxhMGBkMBmMYTBgZDAZjGEwYGQwGYxhMGBkMBmMYTBgZDAZjGEwYGQwGYxhMGBkMBmMYTBgZDAZjGEwYGQwGYxiszQjDqBQUFEAqleLChQv405/+ZGx3GAwALGJkGJnS0lIkJyejurra2K4wGDpYEwmG0fnxxx/B5/NhZWWFrKwsqNVqpKamIj093diuMeYobCnNMCovvvginnnmGaxevRpffvklVCoV+vr6mCgyjApbSjOMyqJFi5Cbm4vY2FjU1dXBwsIC58+fN7ZbjDkOW0ozTAapVAp7e3t0dXXBycmwUwkZjLFgwshgMBjDYHuMDKPC4XDG/D373mYYA7bHyDAqhBAQQvDWW2+BEIK//OUvutuYKDKMBRNGhknw8MMPo7W1FUKh0NiuMBhMGBmmASEEx48fx7333mtsVxgMJowM02DHjh04deoUdu3aZWxXGAyWlWYwGIzhsIiRwWAwhsGEkcFgMIbBhJHBYDCGwYSRwWAwhsGEkcFgMIbBhJHBYDCGwYSRwWAwhsGEkcFgMIbBhJHBYDCGwYSRwWAwhsGEkcFgMIbBhJHBYDCG8f8BTUgQ6IIWS3kAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAF2CAYAAAASrTFdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA7EAAAOxAGVKw4bAAB+fUlEQVR4nO2deXjTVfb/30nTNt33Nl1TutCNLpRutLSlgIoKiIyKOoPiMI47OsPMOG7jIOM46k9hFBX3XdyQTRSRpXSBFlrK2n1L13RP0y37/f3RbzKldG9yk7b39Tx9lDT5nJM0eefce849h0MIIWAwGAyGDq6xHWAwGAxTgwkjg8FgDIMJI4PBYAyDCSODwWAMgwkjg8FgDIMJI4PBYAyDCSODwWAMgwkjg8FgDIMJI4PBYAyDCSODwWAMgwkjg8FgDIOqMLa2tuLhhx9GYmIili5dioSEBDz00EMQi8UGs3n48GHExMSAw+EYzIahaWlpwebNm5GcnIylS5ciOTkZy5cvx5tvvonu7u5xH//YY4/hscceG/F3s+H1YTD0DqFEU1MTEQqF5L///S/RaDSEEEI0Gg15/fXXibe3N6mrqzOY7RMnThB9PdXnn3+epKen6+VaE6Guro74+PiQN998U/e6EULIDz/8QMzNzcnPP/887jX6+vpIX1/fqL+f6utTW1tLnnjiCQKA/P73vyevv/76pK8xGkqlkmzbto288cYb5I033iD5+fmTvkZdXR3ZsmUL4fP55I033rjm9z09PSQ6OpokJSVN2/cff/yRfPHFF2THjh1k06ZNY77e0+XKlSvk3Llz4942m+jq6iIPPPAAiYmJoWKPmjCuW7eOrFq1asTfrVy5kqxevdpgtmeyMK5atYqsWbNmxN9t2rSJHD16dNo2pvP6HD9+nLi7u18l2vpg8+bNuuf2r3/9izz00ENTus6pU6fI3XffTR599NFrfvftt9+SkJAQcvLkyWn5KpFICJfLJRUVFYQQQlavXk22bt06rWuOxYYNG8jevXvHvW228eGHH5KHH36Yii0qwtjV1UXMzMzI+++/P+Lv3333XcLlcsk///lPIhQKdcJTVFREoqOjr/nQ/ve//yUZGRlk+fLlJCkpibz99ttX/b68vJykp6eTuLg4snr1arJ9+/arrvHBBx+QkJAQIhQKyRtvvEGuu+46YmlpST7++OMxr/32228ToVBIHBwcSHp6Olm2bBnZsWPHuD6PZU8sFpP169eTlJQUkpKSQh577DHS399PCCGko6ODcLlc8sEHH4z7Go9m480337zKv4m8PpPhueeeI3fccceUHjsa9fX1JCQkRPfv7u5u0tHRMaVrvfnmm+TAgQNk5cqVV91eWFhIsrKyiJWVFZHJZNPyV3s97ZfDqlWryPPPPz/ta46GUCgkXV1d494227jjjjvInj17qNji0Viul5eXQ61Ww8/Pb8TfC4VCaDQa3HjjjSCEIDMzEwAQExODHTt2ICMj46r7azQa/PTTT+Dz+ZDL5ViwYAGio6ORnJwMlUqF1atXY82aNXjllVegUqnwm9/85qrHb9q0CWZmZnjggQfg7e2NI0eOYO/eveDz+ZBIJKNe+6GHHkJLSwsyMzN1PgJAV1fXmD6PZs/CwgJr1qxBUlISvv76a6jVaqxbtw5PPvkk3njjDVRWVkKj0cDX13fc13is57Rx40adfxN5fSbDiRMn8Nvf/nbM+4jFYuzYsWPM+6SlpeGmm24CABw5cgQeHh749ttvoVQqceHCBTzzzDNT8k+pVCI0NBSVlZW62+RyOUQiERQKBRYvXgxLS8sp+6olNjYWACCRSFBSUoK333571Mc3Nzfjm2++QXFxMW644Qb09vYiNzcX//3vf2FlZQWZTIZ//OMfCAsLw8DAAPbt24cjR47g559/xsGDB8HlcrFz506sWbMGjY2N19wWFRUFlUqFV155Bc7OzgAAV1dXBAcHIycnB5988gnCwsLQ3t6O+fPn48knn8Q333yDU6dO4aGHHkJlZSXOnz+P3/zmN1i2bNlVvt9444246aabrtmzlslkeO655xAWFgalUolTp07hnXfewccff4yjR4/i3Xffhbu7Oz7++GO0tLTg73//u+5xIz1X7d/p+eefx/z58zEwMIDMzEzs2rVrzL+N3qChvvn5+QQA+eWXX0b8/eHDhwkAcvHixWuWqiMt844dO0ZWrlxJUlJSSHp6OnFwcCCvvPIKIYSQnJwcAkC3rCFkcMk0/Boff/wxsbe3v8aXsa5NyMhL6Yn4PJK9vLw8AoCUl5frbvv++++JlZUV0Wg0o75ub775JklPTychISFky5Yt4z6nof5N9PWZCH19fcTCwoKUlpZO+rFj8eKLLxJnZ2cikUgIIYS899575P7775/0dRQKBXnrrbeIQqEgfD6fqFQqQsjg81UoFOSBBx4g27Zt05vfBw4cIL///e/JV199Neb9PvjgA6JWq4mbmxupra0lhBDyt7/9jbz77ruEEEJuv/128s033xBCCPnmm2/ITTfddNVjn3jiiWuuN/y2DRs2kI8//pgQMrjX+v/+3/8jP//8M5HL5cTe3p6UlpYSiURCOjs7yXvvvUeUSiWxt7cneXl5hBBCDh48SB577LFrfD9y5AiprKy85vbbb7+dfPnll4QQQvbv30/S09PJl19+SWQyGYmMjCRlZWWEEELWrl1Lvv/++6seN9pzvfPOO3XX/OWXX0hcXNyYr6s+oZKVDg4OBpfLRV1d3Yi/r6urg5mZGQIDA8e9Vk1NDW666SbcfvvtyMnJQWZmJmJiYtDX1wcAaGhoAAC4u7vrHuPq6jritZycnCZ17eky3J5IJAIwGO0tXboUS5cuxauvvgp3d3e0tbXpXjft/bQ8+uijyMzMhEAgQHt7+5g2hjOZ12c8cnNz4eLigpCQkKtuLysrm9L1tNjZ2SEoKAgODg4AAD8/P+zbt2/S18nPz0dCQgLMzc0hEAggEolQXFyM+fPnw9zcHCdOnLhmNTIdVq9ejQ8//BD79+/H1q1bR73fbbfdhuLiYixYsABCoRAAUF9fj/b2dhQWFuLkyZO47bbbAABXrly5ysesrCwsXbr0qusNv62kpAT79u2DhYUFPv30U2RlZeGJJ57AypUrkZeXh8WLFyMkJAQODg5wcnLCHXfcgaKiIsTExCAxMREAcP78eYSFhV3j+3XXXXfN51Tr85133gkAuHz5MpYsWYLVq1ejoqICfD4f8+fPByEEOTk5Ol/Heq6FhYU4fvz4Vddcvnz5mK+/PqGylHZycsLNN9+MAwcO4A9/+MM1v9+3bx82bNgAa2trWFhYQCaT6X7X1dV11X0LCwshl8tx66236m5TKBS6/9cuO1tbW2Fvbw8A14jHaIx37dEYz+fR8Pf3BwDs3r0b3t7euttbW1t1wrVq1Srs2bMH999//4SuOR7TeX2Gk5mZeY2wVFZWori4+CqxnOzyNCoqChqNRvc7DocDlUo1af+KiorwyCOPAACCgoJQVlaG7u5u3HnnnWhqakJjYyMSEhKuesxUltLfffcdnnzySVRWVoLL5WLp0qX4y1/+gueff37Exzs4OGD37t1IT08HABBCkJ2djccffxyZmZlIT08HlzsYs5w8eRKvvfYaJBIJHB0dkZOTg+3bt0Mmk0GpVMLOzu6a2y5fvoxFixbh7rvvvsb28ePHrxFWBweHa74k9u7di/3796Orq2vcL9vhPp84cQJbtmyBnZ0d9u3bh7vuugsAcOnSJXh7e8Pe3h59fX1jPteRrrl582bd62BoqNUxvvXWWygqKsJbb72lu40QgjfeeAMikQgvvfQSgMHosqysDP39/QBwTaQQEhICDoeDrKwsAEBtbS0uXLig+31iYiLCwsLw3nvvAQDUajU+/fTTCfk43rWBwTdRT08PAOCJJ55AXl7euD6PRlxcHBITE/HOO+/objt+/DjWrl2r+/fOnTtx+fJlvPLKK1eJxeXLl1FfX69740yU6bw+wxn+YdLuMw3ffxMIBPjPf/4z5s/Qx6SkpECpVEIqlQIAiouLsX79+kn7p1Qqda9PYGAg3n33XaxZs0bne0pKCszNzaflKzD4Ph76Ia6trcWiRYsAAD///POIEXRubi4iIiIAAN9//z0SExORmJgIR0dHCAQCAIMrmMuXLyMqKgp79uxBR0cH+Hw+nJ2d8eGHH4LD4Yx4W1hYGPh8vs6WTCbDN998o3vew4Vx+O3l5eWwsrKCg4MDfvjhh6vud+zYMZSXl19121CfRSIR8vLykJycDABoamrSfUkePnwYqampOHz4sE7gRnuuQ39XX1+P3NxcLFmyRPc8DA61RTshRCwWk0cffZQsXryYpKWlkYULF5J//OMfpLOzU3cfhUJBbr/9dhISEkLWrVtHduzYQQCQ9PR00tDQQAghZMeOHcTPz4+sWLGC3H///SQqKooIhULy5ptvEkIIqaioIOnp6WTRokXk+uuvJ9u2bbvqGl9//TUJCQkhlpaWJD09nRQVFensj3ft2tpaEhkZSVJSUsiNN95IZDLZuD6PZU8sFpO77rqLLF68mGRkZJA1a9ZcU9MpFovJI488QuLj40laWhqJjo4mycnJZOfOnaSnp4cQQka1oc1KOzg4kNtuu21Crw8hhOzatYtER0eP+Hc8e/Ys+ctf/kK4XC75wx/+QLZt20b+9Kc/kYCAAL2VU5w7d448/vjj5OWXXyabN2/WPc/xfCNkMEN8zz33kICAAPLZZ58RQgh54403yK+//ko0Gg3Ztm0biYyMJPHx8bo9rOmg0WjIrl27yGuvvUb+85//kLvuuos0NjYSQgZL0R555JFrHjN//nyyc+dO8uGHH5ItW7boKhF6e3vJH/7wB7J7926ye/ducs8995DXXnuNNDY2EpVKRW6//Xby4YcfkpycHEIIGfE2Qgh5+eWXyVtvvUU+/fRT8v777+vqKqOioohSqbzGn5iYGDIwMEAIIaSlpYXcddddZMeOHdfUY65evfqamlCtz19++SX585//fNXf5vTp02Tz5s3k888/Jx999BG57777yEcffTTuc+3t7SX3338/2b17N/nyyy/Jww8/THbs2HHV3rgh4RBinCmBbW1tuP766/HRRx9h4cKFxnCBMQb33XcfnJ2d8dprrxnblWswZd9G4osvvsDvfvc73b+bmpqwZs0aFBQUGNErw7Bz506UlpZi586dxnZlWlDZYxwJNze3qzapP/zwQ2O5whjG8ePHUVxcjF9//dXYrlyDKfs2EiKR6KpEFwBkZ2frkhyzjbNnz+LGG280thvTxmgRI8N0GRgYAJfLvaq+z1QwZd9GIicnB0uWLNH9+8yZM3j44Ydhb2+PHTt2ICoqyoje6ZetW7filVdewW9/+1u8+uqruqqCmQgTRgaDwRgGazvGYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMNgwshgMBjDYMLIYDAYw2DCyGAwGMPgGdsBBgMAcnNzkZWVBbVajdTUVKSnpxvbJcYchgkjwySIjIyESqVCX18fE0WG0WFLaYZJUFdXBwsLC5w/f97YrjAY4BBCiLGdYDCkUins7e3R1dUFJycnY7vDmOMwYWQwGIxhsKU0g8FgDIMlXxgmAYfDueY2tphhGAsWMTJMgrfeeguEEPzlL38BIYSJIsOoMGFkmAQPP/wwWltbIRQKje0Kg8GEkWEaEEJw/Phx3HvvvcZ2hcFgwsgwDXbs2IFTp05h165dxnaFwWDlOgwGgzEcFjEyGAzGMJgwMhgMxjCYMDIYDMYwmDAyGAzGMJgwMhgMxjCYMDIYDMYwmDAyGAzGMJgwMhgMxjCYMDIYDMYwmDAyGAzGMJgwMhgMxjCYMDIYDMYwWAdvhkEghKC7uxvNzc1obm5GU1OT7r/d3d1QqVS6H6VSCaVSCbVaDR6PBx6PB3Nzc93/83g8ODo6wtvbG56envD09ISXlxc8PT1hZ2c3YvdvBmM6sO46jCkxMDCAixcvorS0VCd4DQ0NOiFsaWmBTCaDk5MT3Nzc4OrqCjc3N3h4eMDBweEa4ePxeGhpaYGHh8eIoimRSNDa2oq2tja0tbWhvb0dEokEVlZW8PDwgJeXl+5HK6BhYWGIjIyEpaWlsV8uxgyDCSNjXPr7+3HhwgUUFhaioKAABQUFKCsrg5ubGwIDA+Hu7q4TJ29vb/j6+kIoFMLX1xd8Pn9CNtRqNX788UesWrUKZmZmE3qMTCaDSCSCSCRCfX09GhsbdaLc2tqKyspKdHZ2IiwsDHFxcYiPj8eiRYsQGRk5Yb8YcxMmjIyr6Ovr04ng2bNnUVBQgPLycggEAoSFhSEqKgqJiYlISUmBt7e33uxORRgnQn19PbKzs3HmzBlcvHgRJSUlaG9vR2ho6FViGRUVBSsrK73ZZcxsmDDOcdRqNU6fPo39+/fj0KFDKC8v1y1Do6OjkZCQgNTUVAgEAoP7YQhhHImGhgbk5uYiPz8fFy9eRHFxMdra2hAWFoZVq1bhlltuQXx8PLhclpucqzBhnIP09PTgyJEj2LdvHw4dOgRLS0ssXboUq1evxvLly+Hh4YE8URdOVHYgI8gFSUIng/tEUxhHorGxEcePH8fBgweRmZkJAFi1ahXWrl2LFStWwNramrpPDOPBhHGOUFdXh4MHD2Lfvn3IyspCcHAwVqxYgdtuuw3JyclXRUd5oi6k7MwFh8MBIQS5j6YYXByNLYzDfTl58iT27NmDY8eOQSQSISMjA7feeitWrVoFT09Po/rHMDysXGeWQghBYWEhDhw4gH379qG8vByJiYm44YYbsGvXLgQGBo762BOVHeBwOFBrCMy4HGRWdVCJGk0FMzMzLFu2DMuWLQMAlJWV4ZtvvsEnn3yCRx99FAsWLMAtt9yCW265BVFRUaxcaBbCIsZZRktLCz755BO89957kEgkSE9Px+rVq7Fu3To4ODhM6BpzPWIci87OTuzZswcHDx5EdnY2PDw88MADD+Cee+6Bi4uLsd1j6AkmjLMAjUaDX3/9Fe+++y5+/vlnJCUlYdOmTbjzzjvB401tUZAn6kJmVQeWBs6NPcapIJfL8cUXX+Djjz9GYWEh1q5diwceeADp6eksipzhMGGcwXR0dOC9997DO++8A41GgzvuuAOPPPLImMtkU2UmCuNQSktL8eabb2LPnj2wsbHBI488gk2bNk04SmeYFqweYQZy+fJlbNq0CX5+fjh8+DBee+01iEQivP766zNSFGcDoaGheOutt9DQ0IB//vOf+O677+Dj44NHH30U5eXlxnaPMUmYMM4QNBoNDhw4gKVLl2Lx4sVQKBTIy8vDyZMncfvtt8/IKGs2wuPxsGHDBpw+fRonTpxAa2srYmJisHLlSvzyyy9gC7SZARNGE4cQgp9++gnR0dF45JFHkJaWhtraWnz++eeIjIw0tnuMMYiLi8O3336LmpoaREdHY+PGjUhISMCJEyeM7RpjHJgwmjCnT59GWloa7rvvPmzYsAFVVVV44YUXWPZzhuHh4YGXX34ZNTU1uPnmm3Hbbbfh+uuvR1FRkbFdY4wCE0YTpLi4GGvWrMHKlSuRnJyMqqoq/O1vf4OFhYWxXWNMAz6fj3/+85+oqKhAaGgo0tLSsH79elRVVRnbNcYwmDCaEPX19di4cSPi4+Ph4eGByspKvPzyy7C1tTW2aww94uzsjDfeeAMlJSWwsLBAVFQUHn74YYjFYmO7xvg/mDCaAB0dHdiyZQtCQ0PR19eHixcv4v3334ebm5uxXQMwWNP40rFK5Im6jO3KrMLHxweff/45CgoKUF9fj+DgYDz77LOQSqXGdm3Ow4TRiPT19eHFF19EQEAALl26hOzsbHz33XcmVXKjPQXz3C9lSNmZy8TRAISFheHgwYM4fPgwsrKy4O/vj9dffx0ymczYrs1ZZq0wFhQU4Pjx49i+fbuxXRmRI0eOICQkBPv378cPP/yAI0eOIDY21thuXcPQc9MczuC5aYZhSElJQVZWFj777DN8+umniIiIQHZ2trHdmpPMWmEsLS1FcnIyqqurje3KVUilUmzatAnr16/H3//+d+Tl5WH58uXGdmtUMoJcQMhgMwlCCJYGsoy4oVm1ahWKiorwxz/+ETfffDMef/xx9Pf3G9stAEBubi5eeukl/Otf/8LJkyeN7Y7BmNVHAn/88Ufw+XxYWVkhKysLarUaqampSE9PN4o/v/76K+677z7Mnz8fH330Efz9/Y3ix2ShcW56ph8JNBRlZWW499570d7ejk8//RQpKSlG9UcqlaKoqAh9fX246aabjOqLIZm1EeOLL76IVatW4b///S8iIyORnJyM2NhYo4iiVCrF/fffj9tvvx1PPvkkjh49OmNEEQCShE74+7KgOdV6zFQICQnBqVOnsGnTJtx444144oknjBo91tXVwcLCAufPnzeaDzSYtcK4aNEi5ObmIjY21qh/zKNHjyIiIgKVlZU4f/48HnvsMdYynzEpuFwunnrqKZw9exanT59GVFQUTp06ZRRf/Pz8sHjxYjz00ENGsU8NMgfo7u4mhBDS2dlJzaZUKiV//OMfiYODA/nvf/9L1Go1NdszEZVKRfbt20dUKpWxXTFp1Go1efHFF4mdnR154oknSH9/v7FdmpXMidDF3t4eAODkRGcpeOzYMURERKCsrAxFRUXYvHkzixIZeoHL5eLpp5/GmTNncOrUKURFReH06dPGdmvWMWtHG4zXKJQYIOekVqvx5JNP4oMPPsDWrVvZsnkYKpUKcrkcMpkMCoUCGo0GhBAQQqBSqQAMnv4xMzMDh8MBh8MBl8uFhYUF+Hw++Hw+S8z8H6GhoTh9+jT+85//4IYbbsCWLVvw3HPPGfz9NtLnyhCfJWMzq7PSWr7//nv09vZi48aNBrMhkUiwfv161NfXY//+/QgODjaYLVNErVZDKpWir68PMpkMMplMJ4LaH5VKBR6PBz6fDwsLC3C5XHC5XN2HraWlBR4eHgCgE02NRgOFQqF7vLm5OSwtLXVCqf2xtLSEra0t7O3t59yX0YULF7Bu3TrExMTgs88+g42NjUHt0fg8GZtZGzFqKSoqMvhmdVlZGVatWoXAwEDk5eXplu6zFbVaje7ubnR3d0MikaC7uxtSqRR8Ph+2trY6sXJ0dLxGvEYbtaAt14mPjx81KlSpVCMKrkQigUwmQ29vLxQKBezs7ODo6Kj7sbOzm9WRZnR0NM6cOYNbb70VixcvxsGDByEUCg1ii8bnyRSY9cLY1taGqqoqg3Uw+eWXX7B+/Xps2rQJr7766qyLVgghkEql6Ojo0AlhT0+PTvgcHBzg5eUFR0dHWFpaGtQXHo8HW1vbMZtqaIWyu7sbLS0tKCsrg1wuh729vc5fFxcX2NnZzaq5LC4uLjh+/DgeeeQRxMXFYe/evViyZIne7Rj682QqzHphvP7667F792709vbq9bqEELz++uvYunUr3njjjVm1rFCr1Whvb4dYLEZLSwvUajVcXFzg6OgIb29vODg4GFwEpwqfz4dAIIBAINDdJpPJdKLe2tqKkpISmJub6+7n4uIyK77QChp74H/HX/GA/3zceOONeP3113H//ffr1YahPk+mxpzYY9Q3MpkMf/zjH3H8+HHs2bMHiYmJxnZp2sjlcrS0tEAsFqO1tRVWVlY64XB2djZ4dEXz5ItGo0FnZyfEYjHEYjHkcjk8PDwgEAjg7u4+I/teDh95+048wbOPDh493b59+5SnRc5V2Ks1SZqbm7F27VpoNBqcPXsWnp6exnZpyvT19aGpqQlisRgSiQTOzs7w8PBAeHj4rO4ByeVy4erqCldXV0RERKC3txdisRg1NTUoKiqCs7MzBAIBvLy8YGVlZWx3J8TQZh9mXA46XUORn5+PNWvW4Prrr8d3333HOr9PAiaMk6CgoABr1qxBRkYGPvroI5NdTo6FWq2GWCxGbW0turq64OHhAX9/f3h4eMzISGm6cDgc2NnZwc7ODsHBwVdFziUlJXB1dYVQKISHh4dJL7czglxADl/d7GOe0Al5eXm48847ER8fj4MHDyIiIsLYrs4I2FJ6gvzwww+499578dRTT+Hpp582tjuTpq+vD7W1tairqwOfz4dQKISvry/Mzc2N7RoA02wiIZfLUV9fD5FIBKVSCT8/P/j7+8Pa2trYro3IaM0+NBoNnnnmGbz99tv47rvvcP311xvRy5kBE8YJ8NVXX+HBBx/EJ598gnXr1hnbnQlDCEFbWxuqq6vR3t4Ob29v+Pv7w9HR0eQysqYojFoIIejs7ERtbS2am5vh7u6OwMBAKnuv+uSTTz7BY489hq+++gqrV682tjsmDVtKj8NHH32EJ554At9++y1WrlxpbHcmhFqtRn19Paqrq6FUKhEQEIDY2Fi9LZXzRF04UdmBjCDDtSEzJTgcDlxcXODi4gKZTIba2lqcPXsWfD4fAQEB8PHxMelltpaNGzfC2toad999Nz755BP85je/MbZLJgsTxjF455138NRTT2Hv3r0m3UxWCyEEDQ0NKC0thYWFBUJCQuDp6anXD+1V2c/DBLmPpswJcdTC5/MRGhqK4OBgNDU1obKyEhUVFQgLC4Onp6fJR5B33HEHLC0tsWHDBsjlctx9993GdskkYcI4Ctu3b8e2bdtw8OBBpKamGtudMSGEoKWlBSUlJdBoNIiIiDDYh3R49jOzqmNOCaMWMzMz+Pr6wsfHBw0NDbhy5QoqKioQHh5uMkPMRuOWW27Bt99+izvuuAP9/f34wx/+YGyXTA4mjCOwY8cObNu2DZ9//rnJi2JnZyeKi4vR19eH0NBQ+Pr6GnRZN1L2cy7D4XDg6+sLb29v1NbWorCwEPb29ggPD4ejo6NebelzC2PlypV477338MADD4DD4WDTpk168nJ2wIRxGO+88w5eeOEFfPvtt1AoFKivr4evr6+x3boGqVSKkpISdHR0IDg4GAEBAVSSFklCJ+Q+mmLwUQczDS6Xi4CAAPj6+qK6uhq5ubnw8PBAaGioXmpC9b2FUVNTAwcHB3zxxRf47W9/CysrK7asHgITxiF89NFHeOqpp3TL587OTuTl5QGAyYijTCZDSUkJGhsbdUkV2iU3SUInJoijYG5ujpCQEPj7+6O8vByZmZnw9fVFWFjYtJJf+tzCqKmp0Q2Lc3BwwNdff40777wTlpaWLCHzf5h+Ko0SX331FZ544gns2bNHt3x2dnZGUlISLl26hPr6eqP6RwhBY2MjTpw4AUIIli9fjvDwcJOpQ2RcjaWlJSIjI7Fs2TIoFAocP34cYrF4ytfT17TG4aIIADfddBM+/fRTbNy4ET/++OOUfZxV0GoVbsrs3buX2NnZkUOHDo34+46ODnLo0CFSV1dH2bNBZDIZyc/PJ4cPHyZisdgoPhia2T7aoLGxkfz000+ksLCQyOXyKV3jdG0neelYBTldO7URHdXV1eSnn34iEolkxN9//fXXxNbWlvz6669Tuv5sYs4XeBcVFSEtLQ0fffQRbr/99lHvp11WR0ZGUl1WNzY24uLFixAIBFiwYMGsjRBNucBbX8jlcly8eBGdnZ2Ijo6+qgOQoRkpUhyJDz/8EFu2bMGZM2cwf/58av6ZGnN6j7GlpQWrV6/GX//61zFFEfjfsprWnuPQD1FsbKyuszVj5mJpaYn4+Hg0NTWhqKgIHh4eiIyMNPiX3URFEQA2bdqEy5cvY9WqVThz5ozeM+szhTkbMcrlcixduhS+vr74+uuvJ1ziQiNy1EaJtD44psBciBiHMvSLLyYmxmBffJMRRS0ajQY33ngjAOCnn36aE3+P4czJ5AshBA8++CAUCgU+++yzSdX9GTIho1KpUFBQgMuXLyM2NtYoGWcGHbTR44IFC3Du3DmcP38earVarzamIorAYOnRd999h7q6Ojz55JN69WmmMCeF8Y033sCRI0ewf/9+8Pn8ST/eEOLY39+P7OxsqFQqZGRksKXzHMHb2xvLli1DX18fcnNzIZPJ9HLdqYqiFnt7exw4cACffPIJPv30U734NJOYc8L466+/4rnnnsO3334LHx+fKV9Hn+LY0dGBrKwsuLu7IzExcU72RZzLWFpaYvHixXBwcMDJkychkUimdb3piqKW4OBgfPnll3j00Ud1e+tzhTkljBUVFbjjjjuwfft2pKSkTPt6+hBHkUiEvLw8REREICIiwuSbEDAMA5fLRXR0NObPn4/c3Fw0NjZO6Tr6EkUtN9xwA/7xj3/glltumbJPM5E5k5Xu7u7G6tWrcc899+j1XOhUs9UajQaXL19Gc3MzkpOT4eTETpIwgHnz5sHOzg5nz56FVCpFaGjohL8s9S2KWv7617/i8uXLWLNmDXJycmbMuIfpMCey0mq1GqtXr4ZKpcLhw4cN0mRhMtlqhUKBs2fPQqVSISEhYU680UZCo9GAEAKNRgOVSoUjR47g+uuvB4/HA5fLBZfLnbMRdF9fH/Lz82FjYzOhJJyhRFGLQqFAeno6hEIhdu/ePev/LnNCGJ966in88MMPOHPmjEHeNFomIo5SqRRnzpyBk5MTYmJiZm0phFqtRk9PD/r7+yGTya76kcvlkMlkUCgU417HwsICfD5f92Npaan7fxsbG9jZ2c2IJrFTQalU4ty5c+jr60NiYiJsbGxGvJ+hRVFLS0sLEhIS8PDDD8/6bPWsF8bs7GzcfPPNyM/PR1hYmMHtjSWOXV1dOH36NIKDgxEUFDRrvnXVajWkUqludrNEIoFUKoWlpSVsbGxGFTZLS0uYmZmBw+FAo9Hg0KFDuPnmm8HlckEIgVqtvkpIhwtrb28vlEol7O3t4ejoCEdHRzg4OMDe3n7WiCUhBKWlpRCJREhOToa9vf1Vv6clilrOnDmDZcuWIScnBzExMQa3Zyxm9R5jf38/Nm7ciGeeeYaKKAKj7zl2dHQgPz8fEREREAqFVHwxFOT/ZqCIxWK0tbXpRFArTgKBAI6OjpMqhdJ+P3M4HJ2omZmZjZmhJ4RAJpNBIpGgu7sbzc3NKCkp0Ymlm5sbBAIBnJycTPJLaCL9FTkcjq4zT25uLhYvXqw7jUJbFAEgISEBjzzyCO655x4UFBTM2gqKWR0xPv744zh79ixycnKoRxBDI0c+n48zZ84gOjp6WiVCxkSpVKKtrQ1isRgtLS0wMzPTDah3cnKa9ihZfZ58kclk6Orq0o1BBQAPDw8IBAK4ubmZxPD5q/orkon1V6ypqUFJSQkWL14MiURCXRS1qFQqxMbG4tZbb8XWrVup2qaF8d8hBiI7Oxsff/wxCgsLjbKs0kaOp06dAiEEixYtgpeXF3U/poNSqURjYyOam5vR3t4Oe3t7CAQC3ZLOFKMwYHAui6enJzw9PUEIgUQigVgsRllZGQoLC+Hq6govLy94eXkZTSSn0l9x3rx5MDMzQ27uoKAuWbKEuigCAI/HwyeffIK0tDTceuuts3JJPSuFsa+vD/feey+effZZBAcHG80P7REvDoej9+NehoIQgq6uLohEIjQ2NsLR0RE+Pj6IiYmZkdlzDocDJycnODk5ISwsDP39/RCLxaitrcWlS5fg4+MDf39/6gIz1RERQ99HGo3GUO6NS2xsLB577DFs2LABhYWFs25JPSuX0ps3b0ZhYSGys7ONtgnf0dGBvLw8LFy4EHw+3ygtyyaDWq1GU1MTqqqqMDAwAD8/P/j5+cHOzo6afdpNJKRSKWpra9HQ0AA7OzsEBATofariWOSJuiY1ImLonqJEIsGVK1eQkpJilKgRGFxSL1q0CLfccgteeOEFo/hgKGadMJ48eRKrV69GYWGh0aJFbfY5KipKt6dorH6O46FUKlFdXY2amhrdnGRvb+9Ji9N0BzUZs7uOSqVCQ0ODbg53YGAg/P39TWIvUstIiRbtbSkpKddkq2lRVFSE1NRUZGdnY+HChUbxwRDMKmHs6+vDggUL8PDDD+Ovf/2rUXzo6elBTk4OwsPDr8k+m5I4qtVq1NbWory8HI6Ojpg/fz6cnZ2ntG84lUTCSP4Yu+0YIQRtbW0oLy9HX18fQkJC4OfnZ/TSn7Gyz1VVVaioqEBaWhqsra2N4t/TTz+NgwcPzqol9ewo9vo/nnzySXh7e2PLli1Gsa9QKJCfn4/AwMARS3JMYYYMIQT19fU4fvw4GhsbER8fj8WLF8PFxWXKyZShiQQOZzCRMBPhcDhwd3dHSkoKYmJiUFNTgxMnTqCpqQnGih/GK8kJDAyEr68vzpw5A5VKZQQPgRdeeAFmZmbYtm2bUewbAtNZK0yTzMxMfPbZZ0bLQms0GhQWFsLR0XHMJTztTuBaCCFobW1FcXExNBoNIiIi4OnpqZfM8mybNc3hcODh4QF3d3c0NjbiypUrqKioQHh4ONzc3Kj5MdE6xfDwcOTn56OoqAhxcXHUqwV4PB4+/vhjpKam4tZbb0VsbCxV+4ZgViyl5XI5QkNDjbqEvnz5Mtrb25GamjqhpSDNZXV/fz/Onz+Pnp4ehIaGwtfXV+9fHpNNJAzHFJbSo6HRaHTbDk5OToiKijJ4hn6yxdtKpRJZWVnw8fFBSEiIQX0bjWeffRYHDhxAUVGRyf0NJ8usWEq//fbbsLe3N9oSuq6uDg0NDUhMTJzwG4LGspoQolsOOjg4YMWKFRAKhQaJqJOETvj7sqBZOW+ay+UiICAAy5cvB5/Px4kTJ1BfX2+w5fVUTrSYm5sjMTERVVVVaGpqMohf4/HPf/4TfX19+OKLL4xiX5/MeGGUSqX417/+hW3bthllCd3Z2YlLly5NqUuOIcWxv78fp06dQlVVFRYvXoyIiIgZ/y1ubMzNzREdHY34+HiUlJTgzJkzeuu4rWU6x/xsbW0RFxeHoqIiSKVSvfo1EXg8Hp577jk8++yzen9daDPjhfHVV19FeHg41qxZQ932wMAAzpw5g8jISDg7O0/pGvoWR0IIamtrdVFiRkbGlH1jjIybmxsyMjLA5/Nx/PhxvUWP+jj77O7ujtDQUOTn50Mul0/bp8lyzz33wMXFBW+//TZ12/pkRu8xtrS0ICgoCIcPH9ZLR+7JoFKpkJOTA1dXVyxYsGDa19PHnqNMJsO5c+fQ39+P2NjYGSWIprzHOBZtbW0oKiqCg4MDFi5cOOVyFX02hCCE4Pz58+jr60NycjL1ldShQ4ewYcMG1NbWGq2+crrM6Ihx27ZtSE9Ppy6KAHDx4kVYWloiIiJCL9ebbuQokUiQlZUFa2trFiVSRBs98ng8ZGVloaenZ9LX0HeXHA6Hg6ioKBBCcOXKlWlfb7LcfPPNiIiIwKuvvkrdtr6YscJYXV2Njz/+GC+//DJ122KxGK2trYiNjdVracRUxbGxsRG5ubkIDg6e1c1vTRVzc3PExsZCKBQiOzsbLS0tE36soVqHmZmZIS4uDvX19Whvb9fbdSfKK6+8gh07dkzqtTAlZqwwPvPMM7j11lv1FrFNFIVCgfPnzyMqKmrarbZGYjLiSAhBSUkJLl68iISEBMybN0/v/jAmBofDQXBwMGJjY1FYWIiKiopx9x0N3U/RysoKERERKCoqol78vXjxYixdunTGnqGekXuM58+fR2pqKoqLi6kfrSssLAQhBHFxcQa1M96e40Tb3s8UZuoe40hMZHwFrSazhBDk5eXBxsYGUVFRBrMzEiUlJYiLi8PFixcRGBhI1fZ0mZER45NPPol7772Xuig2Nzejra2NyhtsrMhxYGAA2dnZAIDU1NQZL4qzDXt7e6SlpUEulyMnJ+ea7DDNztscDgcxMTFoaGigvqQOCwvDunXr8Mwzz1C1qw9mnDBmZmbi7Nmz1EN0hUKBCxcuIDo6mtpB+ZHEsb+/Hzk5OXBzc0NCQsK40+MYhiNP1IWXjlUiT9R1ze8sLCyQlJQEe3t75Obm6ur6jDGOwJhL6n//+984dOgQioqKqNqdLjNqKU0IQUJCAm688Ua88MIL0251NRkKCwsBAIsWLTKonZHQLqvnz5+P6upq+Pj4ICwszGQ7aE+FmbaUnmhHIUIILl68iPb2dvj6+qKqqsoo4wgIIcjPz4e1tTX1JfVjjz2GsrIyHDlyhKrd6TCjIsbMzEyIRCL8/e9/170xn/ulDCk7c0f81tYX2iV0ZGSkwWyMhbOzM6Kjo3HlyhU4OjrOOlGciUy0o5C2dIbP56OkpASLFi0ySmNZDoeD6Ohooyypt27diry8PJw/f56q3ekwo4Rx+/bt+N3vfgdra2tqra6MsYQeTn9/P65cuQI/Pz+0t7ejoaHBKH4w/kdGkAsImVhHodraWnR3d8PHxweXLl0y2nE5KysrLFiwgPqS2tnZGbfddhu2b99OzeZ0mTHCWF1djaNHj+oaRUzmjTkdSktL4erqCk9PT4NcfzwGBgZw6tQp3dwVY/dzZAySJHRC7qMp+NfKkDEb8w7tsh0bGwtXV1ecOnXKKMf1gME2d7a2tqioqKBq929/+xu+++47tLa2UrU7VWbMHuOf/vQniEQi/PDDD7rbptvqajz6+vpw4sQJZGRkGCXzq1KpkJ2drTt2qF0+m1In8Imi0WjQ09ODgYEByGSyq37UajU0Gg06Ozvh7OwMLpcLHo8HPp8PS0tL8Pl88Pl8WFtbw9bW1ugdtSfKSIkWQgiKiop0x/WMsZ8qlUqRnZ2t6xZEi+XLlyM9PR3/+Mc/qNmcKjNCGHt6euDt7Y1ffvkFixcvntI1ppKo0bZqN8beIiEEZ8+ehUajQWJi4jV7iqYsjoQQ9PT0oLOzE93d3ZBIJJBKpTA3N4e1tbVO6LTCZ25uDkIICgoKdI1WlUolZDIZ5HK5TkD7+vqgVqthb28PR0dHODg4wNnZGba2tia35zpW9lmj0eDUqVOwsbFBTEyMUXwvLCyEubk51UTMgQMHcP/996O+vt7kRyDMiA7en332GUJCQqYliroM4uGJzSTp7u6GWCzGihUrpmRzupSXl6OnpwdpaWkjfnCM1Ql8NNRqNTo6OtDc3IyWlhao1Wo4OTnB0dERISEhcHBwGLMtm3YsqEAgGDWKIoRAJpNBIpFAIpGgqakJV65cgbm5OQQCAQQCAVxcXIweUY5XksPlchEfH4+TJ0+ipqYGAQEB1H0MDQ3FiRMnEBgYSG01tGrVKjg5OeHbb7/F7373Oyo2p4rJCyMhBDt37pxWE9qpDDcvLi5GYGCgQY79jUdTUxOqq6uRmpo6Zp2iscVROzyqrq4OYrEYVlZWEAgEWLRo0ZQHa40Fh8OBlZUVrKysdHu+Go0GHR0daGlpwYULFyCXyyEQCCAUCqc1x2aqTLRO0dLSEomJicjJyYGtrS3c3d0pegnY2NhAKBTqTqfQgMvl4ve//z3eeustJozTJS8vD21tbdiwYcOUrzHZmSTt7e2QSCTU3jBD6e7uRlFRERISEmBrazvu/Y0hjgqFAiKRCLW1tSCEQCgUIjQ0dEL+6hsulws3Nze4ubkhIiICvb29aGhoQGFhIczMzDBv3jz4+flRKYSfbPG2tlVZQUEB0tLSqL9+8+fPx9GjRyGRSODo6EjF5h//+Ee88MILKC4uRnh4OBWbU8Hk9xg3btwIc3NzvP/++9O6zkQTNYQQ3ewM2uc75XI5Tp48iaCgoEkvr2jsOcrlcpSXl0MkEsHV1RXz5s2Du7u7XqIyfRd4azQatLS0oLq6GhKJBP7+/ggODjbY3tZ0TrSUlZWhoaEBaWlp1E8ylZaWoqura8rbVFPh9ttvh4+Pj0mX75i0MHZ3d8PLywunTp1CdHQ0FZvafatly5ZRzRhqTyZYWlpOeUPeUOKoVCpRVVWFqqoqCAQCzJ8/H3Z2dhN67ESTXoY8+SKVSlFaWor29nYEBwdj3rx54PH0t1ia7jE/baLNzMyM+skqpVKJo0ePIi4ujtoExOPHj+O2225Dc3OzUbaqJoJJ1z189dVXCA8PpyaKGo0GJSUlCA0NpV5GUV9fj56eHkRGRk45AtP3mASNRqOrH+3q6sKSJUuwaNGiSYkirdNJY2Fvb4+EhAQkJSWhpaUFx44dg0gkMplxBNpGD21tbWhubp62T5PB3NwcISEhKC4upjY7e+nSpXB3d8fevXup2JsKJi2Mu3btwr333kvNXlNTEzgcDnx8fKjZBAaLuC9fvoyFCxdOO5LRlzhqa93q6uoQHx+PxYsXT/qDT+t00kRxdnZGSkoKYmJiUFVVhdzcXPT29k75evpsCGFhYYHo6GhcuHABCoViWteaLP7+/pDL5dSKr7lcLu6++27s2rWLir2pYLLCWFFRgcrKStx3333UbFZXVyMwMHDUiG2sbipThRCCCxcuwMfHB66urnq55nTEUaPRoLy8HNnZ2fD09ERaWtqU/aJ1OmkycDgceHh4ID09Hc7Ozjh58iSqqqomHS0ZokuOp6cn3NzccOnSJb1cb6Jox8NWV1dTs/nQQw/h1KlTJnsSxmSF8eDBg0hOTqZWY9XZ2Ym+vr5Ro0VDLQu1S2h9Z+imIo49PT3Izs5GU1MTUlNTMX/+/GnVBE702JwxMDMzQ3h4OJKTkyESiZCbm4v+/v4JPdaQrcMiIyONsqQWCoXo6OiY0syaqeDm5oaYmBgcOnSIir3JYrLCuHfvXtx0003U7FVXV8Pf33/UvUVDLAv1uYQeicmIY0tLC7Kzs+Hh4YG0tDS9TXdLEjrh78uCTEoUh+Lk5IT09HQ4OTnh5MmT6OgY++9q6H6KQ5fUNM9Tm5ubw9fXl2rUeMMNN2Dfvn3U7E0GkxTGzs5O5Ofn44477qBib2BgAGKxGP7+/qPexxDLwosXL+p1CT0S44kjIQSVlZUoLCxEbGwsQkNDjX5yhDZmZmaIiIhAZGQk8vLyUFtbO+L9aDWZ1S6pL1++bDAbIxEQEID6+npqe5zr16/H0aNHjdZtaCxM8hPw888/IyIiAt7e3lTs1dXVwcPDY8wja/peFra3t6OzsxNhYWHTus5EGE0c1Wo1ioqKUFNTgyVLlkAgEBjcF1PGx8cHycnJKCsrw8WLF6HRaHS/o915e8GCBRCLxZBIJAa3pcXOzg7Ozs7UOjctWLAAnp6eOH78OBV7k8EkhXHfvn24/vrrqdgihEAkEo0ZLWrR17KQEILi4mLMnz+fWkHvcHFUqVTIy8vDwMAA0tPTZ+xgdH2jXVp3dXXh7NmzUKvVRhlHYGlpicDAQJSUlFCxp8Xf319vpUwTYdmyZdi/fz8VW5PB5IRRoVDgl19+wfr166nYa21tBYfDMehydjjNzc2Qy+UTEmN9ohXHixcvIjMzEzweD0lJSSbf6cRQjFZlwOfzkZKSApVKhZMnT6KkpMQo4wgCAwMhkUjQ1tZGzaZAIIBCoUBXF52a09/85jc4cOAANSGeKCYnjFlZWXByckJsbCwVeyKRCEKhkFqzAWMWkQODxc7W1tbo7+8fs5PNbGe8KgMejweBQIDe3l7Y2dkZ5Ry4MYqvuVwufH19IRKJqNhbsWIFFAoFzp07R8XeRDE5Ydy/fz8yMjKo2JLJZGhpaYGfnx8Ve8BgeQ6Xy6VeRA4M7ilqByIlJyfjypUrc7YT+HhVBjU1NSgvL8eSJUvA5XJRUFBw1Z4jLfz9/aFQKKiW7wiFQjQ2NkKpVBrclpmZGdLS0kxuOW1SwkgIwf79+7Fu3Toq9sRiMVxcXKh1MVar1SgtLUV4eDj1dljaaXWEEMTFxcHV1XVOj0kYq8pg6J6is7MzEhMTMTAwgOLiYup+crlchIaGoqSkhJow29rawt7enlrx9Zo1a5gwjsXly5fR3d2NlStXUrEnFoupznKpra2FjY0N9d57wGCdZnt7O+Lj43XLZ32frZ5JjFZlMFKihcfjITExEQ0NDairq6Puq4+PD7hcLtUhaAKBAGKxmIqtdevWoayszKTegyYljPv370dqaiqVZIBKpUJbWxu1EhVCCKqrqxEcHDxitGiI44ZaWltbUVpaisTExGu6mcx1cRxaZTBW9tnKygoJCQm4dOkSOjs7qfrJ4XAQHBw8paOLU0UgEKClpYVKlOrg4ICEhAQcPHjQ4LYmikkJ488//0wtWmxra4Odnd2YtYv6RCwWg8PhjBgtGrILTV9fHwoKChAbGztqSc5cFkctEynJcXZ2RmRkJM6cOYOBgQGq/nl5eUEul497Mkdf2NnZwdzcnNqXwHXXXYeff/6Ziq2JYDLCqFarcf78eWqJF7FYTLWgubq6GgEBASNGi4bqQkMIwblz5+Dv7z/ulsFcFsfJ1Cn6+fnB09MT58+fp1piwuVyMW/ePFRVVVGxp222QWs5nZaWhoKCAiq2JoLJCGN5eTl4PB6VkyCEELS0tFATRqlUColEMmrzWEN1oamqqoJKpUJoaOiE7j8XxXEqxdvaEQq09xv9/f3R1tZGLVrV7jPS+AKIj49He3s7NSEeD5MRxnPnzlE7p9vV1QUOh0OtYLeurg7e3t6jnnIxRBeanp4elJWVYeHChZN6TeeSOE71RAuPx8PChQtx5coVqktqS0tLeHh4UBNkV1dXyOXyafWsnCjW1tYIDg5GYWGhwW1NBJMRxoKCAixYsICKLe0ymkbJjFqtRn19/binXPTZhUY71D0wMHBKQ47mgjhO95ifq6srfH19qS+phUIhtSN7XC4X7u7u1KK48PBwk1lOm4wwnj17FvHx8VRs0dxf1I4VpTWFDRiMUFUqFebPnz/laxhaHAkh6O/vR3NzM2pra3XtrmpqalBbWwuxWGywaExfZ5/DwsLQ29tLtfjazc0NHA6H2jFBmmU7sbGxJiOMJjE+VaPR4MKFC3jnnXcMbqu/vx/9/f3UzkY3NTVR6xIE/K+IPCYmZtrbEvoczarRaNDe3o729nZ0d3dDIpFArVbD3t4eVlZWuuhdIpFAo9FgYGAAUqkU5ubmcHR0hIODA1xdXeHq6jqtSF+fDSG0e+IlJSUQCARUtoE4HA68vb3R3NxMpR7Ww8MD58+fh0KhMHgZXVJSEnbu3GlQGxPFJISxoqICHA4HERERBrfV2dkJJycnKmeENRoNWltbJ5z80AfV1dV6LSKfrjj29/ejpqYG9fX14PF4cHd3h8zSESVmdlgc5oXF/s4ABgW9sbERCxcu1P1tNBoNenp6IJFIIJFIUFRUpPPB399/0qVWhuiS4+3tjYqKCtTX10MoFOrlmuMhEAhw9uxZREVFGXw7yMLCAnZ2dujq6oKHh4dBbSUlJaGtrQ0tLS0GtzUeJiGMhYWFCAsLo/KNS3O4eHt7OywtLSc8VW+6KJVKVFRUICkpSa8fmKmIo1QqRXl5OcRiMby8vBAfHw9nZ2fk10mwYmcuOBwOyK+1YyabuFwuHBwc4ODgAKFQCEII2tvbIRKJcOzYMXh5eSEkJGRC4y8M1TqMw+EgPDwc58+fh4+PD5UvXCcnJxBC0N3dTeW97ODgAIlEYnCxsra2RlBQEAoLC6l27x8Jk9hjLCgooBItAoOzqmllo2mWBAGDkbeLiwucnZ31fu2J7jlqh2llZWXBysoKK1asQGxsLFxcXMDhcKZVs8nhcODm5oa4uDgsW7YM5ubmyMzMHPdEiKH7Kbq7u8PGxobaWADaNYaOjo7o7u6mYis8PNwkOu2YhDDSSrwQQqhFjIQQqkkelUqF2tpahISEXPM7fR03HE8ctSNXm5qakJaWhoiIiGsadOirZtPa2hqRkZFXDbPq6+u75n40msxyOByEhISgurqaWqMHmkkRR0dHap3EFy5ciDNnzlCxNRZGF0Zt4iU5OdngtrQfHBqTB3t6eqBUKg0SvY1EfX097O3trxF9fR83HEkcCSGoqqpCdnY2BALBmMO09F2zqe247ezsjMzMzKvmtdDsvO3q6goLCws0NTUZ1I4WNzc39PT0UKmjtLe3h0wmozKca/HixSZRy2j0PUbtMohGDaNEIoGDgwOV+kWxWAwPDw8q+6aEENTU1IwYLQ5duppxB5eu0xWjoXuOhBBIpVI0NTVhyZIlExKgJKGTXqcGnm2Q4kSzBZbMW4DS0hLI5XKYm5ujrKyMWudtDoeDefPmoba2lkqvTR6PBzc3N4jFYsybN8+gtszMzGBnZ4fu7m6DZ8KTkpLQ2tqK1tZWo3Sh0mJ0YSwvLx9zbKk+obVZDQw2qaDVALerqwsKhWLE89AZQS4gh/V/3FDbp/DUqVOwsLBAWloatYYcQ9FGxBzO4PM7eX8sqirPQ61WIzU1leo4Ah8fH1y5cgU9PT1UEm7u7u5oa2szuDAC/1tOG1qsbGxsdJl+Ywqj0ZfSzc3NcHNzo2KL5v4iTRGuq6uDr6/viNGpoYbea/dQLS0toVKp0N7erpfrTpbhyZzL1YM9C83Nzak1WtXC4/Hg7e1N7cgezaSINjNNA1dXV6pF8yNhEsJI45tBm3ihEUH09/dDo9FQmROiFSgvL69R72OIofc1NTVobGxEamoqFi9ebLTjg0OTOdd7qOGlakNKSgqWLFmC6upq6j55eXlR+1Db29tjYGCAyhxomgkYd3d3JoyNjY1UMrf9/f0AQEWstJEpjb1MbUMMmkcOe3t7UVJSgoSEBFhZWRn1bLU2It65zA0PhpghPXVwn9PW1hZxcXG4dOkS1UYP2sYLPT09BrfF4/Fga2tLRbAcHBwgk8moiLC7uzsaGxsNbmcsTEIYx4p29EVfXx9sbGyoiBWtyBSg2xAD+F+DioCAgKvE2Jji6KGRQEg6dKKoxdXVFT4+Prhw4QLVKXs0Gy/QWk6bmZnByspqxJIofSMQCKhl90fD6MLY3NxM5SyxTCajNvSK5v6iNvtNi+rqaiiVyhEbVBhDHMcryQkPD0dPTw9VsdaOBaABzSUun8+HTCYzuB0vLy8mjE1NTVSyt7SEkeZe5sDAAPr7+6klr/r6+lBaWorY2NhRqwhoiuNE6hS1vRMvX75M5UMNDDZe6OzspDJ+lKYwWlpaUqll9PX1ndt7jBqNhlpZi1wuv2YQlCEYGBiARqOhUq7R1dUFBwcHKqVOwOCRQ19fX5R2kzFP0tAQx8kUb7u6usLDw4PaWAALCwvY2NhQESxtAoaGCNOKGP38/IzeyduowtjR0QFCCJWCWFoRY39/P6ytrWfdXqZMJkNDQwN6+K4TOkljSHGcyomWoKAg1NbWUhEQgF4kx+PxYGlpqUsuGhJawigUCtHZ2Ukl0TMaRhXG5uZmODs7U4l4aAkjzb1Mmp2CRCIR3N3dkVXfP+EmEIYQx6ke83NwcICjoyO1vUaaNYa0BIuWHWdnZ/D5fKNGjUYVxqamJmr7Y7NNGGkWkRNCdP0GJ9sEYiLimCfqwqsnxl/mTvfss1AopCqMsy0pQssOl8uFm5ubUfcZjXokkNapF0II5HI5NWGksZcpk8mgUqmo1GV2dXVBpVLB3d0dHhwOch9NQWZVB5YGukyoaHysfo7aI32WZsDuxcCZui4snndtd3V9NITw9PTEhQsXqBzZc3BwQF9fH5RK5ahD0PQFLcGilXwBjH/6ZU4Io0qlglqtpiJYcrmcShQ3MDAAKysrKk0qOjs7dbNGgKk1gRhNHP93pG+wXVdWdadOGPNEXThR2YFERznkrXXTbghhZmYGFxcXdHZ2GlwYeTweLCwsMDAwYHBhpCVYWgEmhBh8D93YwmjUpXRvby+ViEcmk8HCwoKKiMy2JTugv73MkZbVQ5fmAJAWMNimTRtJ5lwoQWNNJWz9F+gl0UTzzC+fz6cqWIbGwsICHA6HynOytbWlMrZ1NIwqjEqlEjye4YNWGoN8tMxWYdRX9ru8h4Nyng+KLlxEfX297kjf89cNFown+A1GoicqO7DSk+BOPw22XjFDbrN+PowsKTJ1OBwOLCwsqGSLeTwetQqCEe0bzTIGl7g0hJEQQiVaBOjVS9ISRqVSif7+fr0I49AWYfNtNfgPLgIAkoS+iPexx48/lujum+goh8//iWJNL/TWLk0rjBqNxuDvidm496dt72ZozMzMoFKpDG5nNIwqjLQiRhp7IlpofOCAQQGmsQ0hlUphbW2tl32yoS3Cynu5qLH0Be/SJQC46rx8TU0N5K118I+IxR+c5RNO8kwEPp8Pc3Nz9Pb2jtplXF/QEiwul0ttpAKXy6UijDweb+4Ko0qlgrW1tcHtaDQaqk0WaAgjrWhbn9n84U1zE+f7Yr6dD/Ly8nQf7NraWpSXl+sSLalhg4/VJmIygqYmkkMfb2lpqdfl4Gi+8Xg8vXX2Gev56yuKm8hrzOFwJizCk/2bDb2/voRRKpXi9ddfR2JiImpra/HQQw9N6HGT+mQ1Njbiv//9Lzo6Bot6nZ2dsXnz5ikPYlcqlTAzM4NarZ7S4yeKWq0ejFQMbAcYFEaNRmNwWxqNBoQQg9tRqVTgcrl6sRPvY4+ch5OQVd2JtABnxPsMRmzx8fG6AUilpaVYvHgxbG1tdTbP1HVh2a7T4HA4eOEIwfEHF+v2IifC8Md/l8GHQqHQy3MayzeNRgOlUjltO+M9f0LItO1M9DVWq9W6H31cb7T7L+3o0ksU/Mknn2DRokW48cYbcdttt+G3v/3thFYKHDKJr5pLly4hICAAOTk5aG9vx29/+9tpOb1x40aYmZlhzZo107oOg8GYXfzmN7+BWq2ediT82GOPYePGjVi0aBEeeeQRbNy4cUITSScVMUZGRuLjjz/G2rVrsWvXrik7qzPO48HR0RGrVq2a9rXGoqWlBZWVlUhJSTGoHQA4dOgQVqxYYfAETEFBAdzc3CAUCg1qp6mpCXV1dUhKSjKYjdraWpSWluq2BxYsWHDV+fmh0QQh04sYCSH4frk1FkVF6KWGdizfKisr0dfXh+joaIPZAAbL3k6dOoXrr7/eYDa0ZGZmIioqatzpl5P9mw2//213/Ra+gul39tdoNLojx2q1esLHjye9SZWbm4v77rsPRUVFk33oNZibm0/K2anC4/EGa+UonMnmcDjgcDgGt6W9Po3Xbuiba7oM33eqqalBeXk5Fi9ejOzsbCQkJODs2bPgcrm6LZrF81xx4uElkzptM5Thj++vKgKPx9PLcxrPNzMzs2nbGc+GPt5zE32NCSETeu0m+zcbfv9dz+/RS4ldREQEmpubERMTg/r6egQEBEzocZMWxq1btwIA/t//+3+Tfei1xinVKtEqMaBpi1bWzsrKSm+dW66a6HeY4Nc75+lOtGgz7KOdkJnuyFXt4wkhOHSpX68TDUfzTZ8JsrGev74SfhN5jSeTyJzs32zo/d9Sq/Xy2v3ud7/Djh07oNFosHTp0gkfVJi0ZW23bX30UDQ3N6fSLmkymbTpQqv+ilaNnJ2dHeRyuV7qJoeW69zkRdDVWIMV6YMjTodu5mvFMefUaRy40oJFYYF6K9fp7e0Fl8ulUg0hk8moHA9Vq9XU6nRpVV3oq5TP3t4e//jHPwAAN99884QfZ9STL7SiHpp1XrPtGJiZmRns7e31clpEe/zvJq/BEy3uwdGjFo6X93Dw93MaOPY14qlvskft+zhZtKd4aJRvzcZTULRK39R6ihinilGF0dzcnIow0jwZMNuOgQH6a6GVJHTCr3fOw++DOPCPiEVq2OAyeaS2YycqO1Dey8W2y1z8IZDgXKl+um/TnMcz24RRo9FAoVBQOdlF6/DHaBhVGJ2cnNDVpZ9IYCy0Q+FnkwjTFHt9CaP2RMuK9NSrRDFlZy5eOFoOYDA7Cfwvuqzs4+LFK1z4KFv00kuRZnNfmi3oaAijXC4Hl8s1eLcgYPALbLzMtyEx6skXT09PtLe3G9wOj8cDj8eDXC43+LcQrUjOxsYGAwMDVLL6rq6uuHz58rSSCaP1Uxyt7Zi2uYQ2SznfjozYz3EyyOVydHV1IS4ubkqPn6wttVqt1yTPWLZodani8/lUltLt7e3w9PQ0uJ3RMGrESEsYgdm3xLWwsACfz6fSKcbW1hYODg66kZZ5oq4xh2ENZ6wms6O1HQMGl95/XxaEJKGTXsYkNDQ0wM3NjUp0JZFIYG9vP6vGdtBqkAIYXxiNHjG2tbVRsTXbhBH43xKXxpLDz88PIpEITcTuqpKb3EdTxswYj9d5WxsZnqxsA3pLxiwCHqsT+HgQQiASiRAaGjrhx0wH2oPKZtNeplqtNrowGjVi9PLyQldX16wSLNrCSKu3oLe3N3p7e5FXVj/hYVgTHUeQJHTCX5YGTsiPqUaOra2tUKlUEAgEE37MdKC9lzmbhLG5uRkajYbaPKiRMKow2tvbg8/nUxlQRHPvr7+/n0rDCpoDl3g8HubNm4cQ8+4JDcPSx4yW0ZisOBJCUFFRgcDAQGr1frSy3wqFAkqlklpdJg1h1E6kpDUvfSSMKowcDgceHh4QiUQGt0UzW8zn8yGVSg1uy9HREb29vdTm7wYGBoKr6Mex383Hv1aGjLqMNqQoapmMOIpEIshkMoOfK9fS19cHhUJh8H6PwGBkamdnR0VEaO0xNjQ0UIvsR8OowggMLqfr6uoMbofmEpfWXBELCws4OTmhpaXF4LaAwbrTmJgYDDRV4U8pvkYTRS0TEcf+/n5cuXIFCxcupFYXJxaL4ebmRkWsZuNeZl1dnVH3FwETEcbGxkaD25mte38CgYDqYHIPDw8IBAJcuHDhmjPhNEVRy1jiSAjB+fPnIRQK4eKin9EIE0EsFrO9zGnQ3NysO3psLExCGGmMSdROHZtte38CgQCtra1UnpeWBQsWoKur66ovNGOIopbRxLG2thb9/f0ICwuj5otSqURnZyc8PDyo2KO5lymXy2FjY2NwW2Kx+KpRF8bAJISRxlKQz+fD0tISPT09Brfl4OAAqVRKRaxsbW3B5/N1XdVpYG5ujtjYWFy4cAHt7e1GFUVgsK7y3aJO2PqH68SxpaUFxcXFWLRoEdVN/NbWVjg4OFCJrBQKBQYGBqjtZdra2lLZjmhrazO6MBq1jhEYFEZatYzaSM7Q37BDRZjGt7mnpycaGhrg7j79xp4Txc3NDTExMcjLywOHw8GSJUuMJoq6ukpCcOK+BbplfkJCApyc9NOVZ6I0NDRQ+1DTFCuaZ8zb2trYHiOtiBEYjORo7f05Ojqis7OTii2hUIimpqZRe1tO9qTKRBmaDTfWDOChrcw4HA4uNgw+Rw6HQy1br2VgYACtra1TPrI4Wbq6uqiJFc0kT2trKxPGiIiIweYCFEppaO79ubu7o7W1lYotGxsbODs7j5jd10ZUz/1ShpSduXoTR+3yOTU1FQsXLkR+fj5EIhG1hsBatEcKeVzgRoEafvJGJCQkIDk5eVrHB6dCXV0dBAIBtWNzLS0ts24vs62tDa2trVT3hUfC6MLo6ekJJycn3ZQ4Q+Lo6AipVEqlN6NAIEBbWxu12bjz5s1DTU3NNcI0PKIa66TKRBm+p+jl5YWkpCRUVFQgLy9PbyNDJ0KS0Akn74/Fp2mWeCDCCmmpS+Du7q6Xs9WTQaPRoKamBvPmzTO4LWAwQ9zd3U1l+0SpVKK/v59KxJiTk4PAwEAqTTHGwujCCACxsbE4ffq0we1oh63TKL62srKCnZ0dtahRIBCAEHLNtsTQJg1jnVSZKKMlWlxcXLB06VLY2trixIkTY0aP+lraE0JQXV2N7ooixAR448YVy66KamiKY2NjI/h8PrWyoJaWFjg7O1NpAUZzLzM/P59K96PxMHryBRicK1xYWEjFlrbGkMayQCAQoKWlhcpmPIfDQXBwMEpLS+Hh4aFrDTW8fdd0RgSMl33m8XiIjIyEp6cnioqKUFdXh6CgIAgEAp0/w+e+jNeEYiQ0Gg2am5tRWVkJtVqN5OTkUZMs02k8MRl/ysrKEBYWRqUlF0C/VpLW/uKFCxemNe1QX5hExBgXF4fi4mIqtmjXGIrFYmr7bn5+flCpVNcUzA9t3zVVJlOS4+rqioyMDPj4+ODKlSs4duwYKioqMDAwMK2lfX9/P8rKynDs2DGUlpbC398f6enp42aeDR05ikQi8Hg8atlotVqNtrY2asJIMyOtLbEyNiYRMS5atAjl5eVUzmI6ODigvLzcoDaG2uJyuejq6qLSGozL5SIsLAwlJSXw8vLSW8OEqdQpaptO+Pv7o6WlBXV1dSgrK0OUBR8PBapR3cdBZQ9B+ryRRU2lUkEqlUIikUAikaC7uxt9fX0QCASIjo6Gm5vbpKIzQ0WOKpUKZWVliI2NpRYttrW1wdramkqxNTAYMdLYO21vb0dDQwMWLlxocFvjYRLC6OXlBQcHB5w9exZLliwxqC0XFxdIpVIoFAq9zK0dCw6HA4FAgObmZmpt2r28vFBRUQGRSKSXN/N0i7e1r4FAIIBCoUBXVxcsHcRobu+AI0eBtku5OFxmoRPxY8eO6WaLWFlZwdHREQ4ODvDx8YGTk9O09tQMIY7V1dWws7OjWkNKcxnd398PmUxGZSmdm5uLgIAA2NnZGdzWeJiEMHI4HF0CxtDCOLTxAo16M29vbxQWFiI8PJxKRMHhcBAREYGCggJ4eXlNKwLX94kWCwsLeHh4XFViIpfLda2zsrOzERcXB3Nzc1haWhrki0uf4tjf34+KigokJyfry71xUavVaGpqQkpKChV72oYYNBIveXl5JpF4AUxkjxGgm4Ch2XjBxcUFZmZm1IrYgcFTKR4eHrh48eKUr0HrmJ+lpSXs7Ox0NhwcHGBnZ2fQaF4fe47aBhV+fn5UT9c0NTXBxsaGWjKEZnR6/vx5xMfHU7E1HiYjjIsWLUJJSQkVWzQbL3A4HAiFQio9J4cSGRmJzs5O3ZyWyWDss880mK44ikQi6g0qtHZp9ZVUKpXo6OigVkReWlpqEokXwMSEsby8nMoxLtqNF3x9fdHW1jZm4bO+j+1peydeuHBhUqeK5oIoapmqOBqjxyMA9PT0QCKRUGvJRbMhRmdnJ+rr600i8QKYkDD6+PjAxsZmVi6n+Xw+PD09UVNTM+LvDXVsT7ufd/78+QmVDM0lUdQyWXHUaDQoKiqi3uMRGEz0+Pn5USnqBuguo3NycuDv70+lU9BEMBlh5HA4SEhIwLFjx6jYo11jGBAQAJFINOLy3RDH9rRERkair68PZWVlY95vLoqilsmI45UrV6BSqagvoRUKBerr66kdOdRoNGhpaaEmjCdPnkRiYiIVWxPBZIQRAFavXo1ffvmFii0nJyddrRwtezY2NmhoaLjmd/o+tjcUc3NzJCYmoqamZtT9xrksilomIo4ikQiNjYNNKmgPaqqrq4OLiwu1UpbOzk6Ym5tTs3f06FGsXr2aiq2JYHLCePbsWSqtwbhcLjw8PKiOBQgKCkJFRcU1TSy0x/bGGjA1HWxsbBAXF4eioqJrXlsmiv9jLHHs6OjA5cuXkZCQACsrK6p+qVQqVFZWIigoiJpN7TKaRolZfX09SkpKsHLlSoPbmigmJYw+Pj4IDQ3Fnj17qNjTFl/TwtPTEzweb8QMtT6O7Y2Fm5sbwsLCkJ+fr0sCzXVRHCnhNZI49vb24uzZs4iKiqJWqD+Uqqoq2NnZUZuzTAiBWCymlo3++uuvkZKSQu3Y4UQwKWEEgFtuuQUHDhygYsvDwwN9fX3UltMcDgfh4eEoKyuj1o5sKPPmzYO3tzdyc3NRXl4+50VxtITXUHGsrKzUncig1YB2KAqFApWVlQgPD6dms7OzEyqVCq6urlTs/fzzz1i7di0VWxPFJIUxKyuLinDweDz4+PhQrTF0d3eHvb09qqqqqNnUohVmPp+PkpISLFq0aE6KIjB+wsvZ2RkxMTG4cuUKHB0dMX/+fKP4WV5eDnd3d6pF5CKRCH5+fno7az8WfX19yMvLM6n9RcAEhXHhwoXg8/nUstNCoRD19fVUp+yFh4ejsrKSStfy4dTW1kIqlcLb2xsXL16k2lTWlBgv4dXb24tLly7Bz88P7e3tVDuBa+nv70dtbS31KYdNTU3Uisj37dsHf39/BAQEULE3UUxOGDkcDtasWYPvv/+eij1HR0dYW1tP6YTIdGy6u7ujoqKCmk3gf3uKKSkpWLRoETw9PZGVlYWuLv3OgpkJjJXwam9vR3Z2NubNm4eFCxdi8eLF1MckAEBZWRl8fX2pdrOur6/XVVDQYP/+/bjllluo2JoMJieMwOBy+vjx49Ts+fv7T2g5rc/TKWFhYbq5xzQYnmjRNpsICQnBqVOnRiwjmu2MlPCqra1Ffn4+IiMjdctn2mMSAEAqlaKxsZHqEp4QApFIBH9/fyr2NBoNMjMzmTBOlIyMDIjFYly6dImKPR8fH0il0jHLhPR9OsXW1hb+/v4TPpUyHcbKPvv7+yMxMRGXLl1CcXEx9WFWpoJGo8HFixdRVlaG5ORk+Pj4XPV7muKobVARHBxMtTSoo6MDcrmc2oS+rKws3ZhbU8MkhZHP5+O6667DN998Q8Uej8eDn58fqqurR72PIU6nhIaGor+/36DJn4mU5Li6uiI9PR0tLS04ffr0nNt37OvrQ25uLiQSyZgdwWmJY2VlJTQaDYKDgw1mYySqqqowb948KkkXAPjuu++watUqavYmg+l59H+sXbuW2ikYYPDIXmNj46gJEUOcTuHxeFi4cCGuXLlikCX1ZOoUra2tkZqaOqFhVrMF7TCtzMxMuLi4ICUlZdyGCYYWx56eHpSXl2PhwoVUBaOvrw9tbW3UltHAYFNiUyvT0cIhJvrub2trg7e3N0QiEbXQPj8/H46OjggJCRnx93miLr0MlRrO5cuXIZVKsXjxYr2dNJhO8XZ7ezuKiopgZ2eH6OjoaS3n8kRdOFHZgYygsV8ztVqNH3/8EatWraJy3K6vrw9FRUWQy+WIjY2ddDlMZ2cn8vLyEBkZqbf6Ro1Gg+zsbAgEglHfg4bi8uXLUCqV1LrblJSUYOHChejo6KCW6JkMJhsxurm5ISMjA2+99RY1m4GBgaipqRm1htJQp1P0vaSe7okW7TAra2trHD9+fMoF6YbqGjQdlEoliouLkZmZCScnJyxdunRKNYKGiBwrKytBCKG+hFYoFBCJRFRLZnbu3Im1a9eapCgCJiyMAPDggw9i9+7d15wtNhSurq5GKb7W55JaX8f8eDweoqKikJKSgo6ODhw9ehQ1NTWT+lsYsmvQZFGr1aisrMSvv/6Knp4epKamIiIiYlrRqT7FUSqVoqKiArGxsdT33LRF5LSK/VUqFfbs2YMHHniAir2pYNLCuGrVKvT09ODIkSPUbBqr+NrFxQX+/v4oKCiYcrG5Ic4+Ozo6Ijk5GYsWLUJdXR2OHTs2avu04Riya9BEUalUqKmpwdGjR9Hc3IzExEQkJibqre+fPsRRpVKhsLAQQUFB1PsRGqOI/Ouvv4a1tTWWLl1KzeZkMdk9Ri1///vfUVJSgv3791OzefbsWVhZWWHBggXUbAKDe0ynT5+GlZUVFi5cOKn9RhoNIQghaG5uRkVFBfr7++Hv7w+hUAhra+tRHzPRfVl97zH29vZCJBJBJBLB3t4eQUFB8PDwMFi3mKnuORJCcPbsWV3ZCq0RrFrOnTsHMzMzREdHU7OZkZGBlStX4sknn6Rmc7KYvDBWVVUhMjISdXV10zrUPtEkADD4ocrMzMSyZcvG/NAbArlcjqysLAQEBCAwMHBCjzFGl5zOzk7U1NSgubkZLi4u8PLygkAgmPJUQn0I48DAAFpaWtDY2Iiuri54e3tj3rx51Lq2TEUcS0tL0dTUhNTUVGqdubVIpVJkZWVh+fLl1Oolq6qqsGDBAtTW1lLr3jMVTF4YgcFvmKVLl+L555+f0uO1SQAOZ3BJN5GehxcuXIBarUZsbOyUbE4HqVSK7OxsxMfHjzuv2NitwxQKBRoaGtDc3IzOzk44ODjo5kjb2dlNOAKaijASQiCVSiEWiyEWiyGVSuHq6gpPT094e3tTFxpgcuLY2NiIixcvIi0tzShJiPz8fNjZ2VHt3PPEE0+grq4OP/zwAzWbU8Ek5kqPx2OPPYYtW7bg2WefnVI0MTQJYMYdTAKMJ4whISE4evSoUfZ97O3tERsbi4KCAqSlpY16VtbYoggMzooOCAhAQEAAlEolWlpaIBaLUVFRAQ6HAwcHBzg6OsLR0REODg6wtraeUnJBo9Ggr68P3d3dkEgkkEgk6O7u1jUcDg4Ohpubm1HEcCgTnVstkUhw/vx5JCQkGEUUOzo60NHRQfWLXy6XY/fu3di9ezc1m1NlRkSMarUa8+bNw6uvvor169dP+vFTiRgBoLi4GD09PUabRVFWVoaGhgakpaVd84E3BVEcC0IIent7dQKm/a9KpYKlpSUsLS3B5/PB5/N1k/aqq6t1JSNKpRJyuRwymQwymQwKhQI8Hu8qkXV0dISNjQ31fbmJMFbkKJPJkJWVheDgYGozXIZCCEFOTg48PT2pdgV/66238NZbb+HKlSsm+TcbyowQRgB49dVXsX//fuTk5Ezp8VMpzlYqlfj111+RmJhIfSIcMPgGLiwshEwmQ1JSkk5ATF0UR4MQAqVSqRM7rfCp1WpdOU1QUBDMzMxgZmamE86hAmrqH6ihjCSOSqUSubm5cHJyQlRUlFGej1gsxoULF7BixQqqs2uioqLw+OOPY9OmTdRsTpUZI4xdXV3w9fVFVlaWLvyfTEJlqlRWVqKxsRGpqalGOdOpVqtx5swZEEKQmJiIurq6GSmK40H75AsthoqjQCDA6dOnYW1tjUWLFhlFFNVqNTIzMxEUFESt5yIwOOzqjjvuQGNjI/WZOVPBpOsYh+Lk5IQNGzbg1VdfBUDvVEVAQAAIIUbpuA0AZmZmSEhIACEEJ0+eRElJyawTxZnKRNrQafccL168iKysLFhaWiI2NtZokW9paSn4fD78/Pyo2n399dfx4IMPzghRBGaQMALA448/jgMHDqCxsZHaqQoul4vY2FiUl5dTmw0zHDMzMwgEAvT29sLOzo5q41LGyEzmi9nOzg7W1tbo6+uDQCAwWjeZzs5O1NbWIiYmhqowl5WVITMzE4888gg1m9NlRgljaGgobrrpJjz99NNUT1VoC4SLioqoHU8cSk1NDcrLy7FkyRKYmZkhPz/fKMO0GP9jol/MSqUSp0+fho2NDZKTk3HlyhWjjElQq9UoKipCWFgY9Sz43/72N2zYsAHe3t5U7U6HGSWMAPDvf/8b33//PRwHWgw6i3k4wcHBIISgsrLSoHaGMzTR4uzsjMTERHC5XOTl5UGhUFD1hfE/JvLFLJPJkJubC2tra8TFxcHV1ZV6J3At2iU07Sx4fn4+jh07NuUaZGMxY5IvQ3nwwQfR3NxM9Zgg8L/C69TUVCq1jaNlnzUaDYqKitDV1YWEhATqdZaGYCYmX8aqdOjq6sKZM2cgEAiuyT4bomXZWHR2duL06dNYunQp9WgxIyMDSUlJeOmll6janS4zUhibm5sRHByMo0ePIikpiartsrIyiMVig2epxyvJ0SaEysvLERsbC4FAYDBfaDAThXE0GhoacOHCBURERIza+JWWOGqz0AEBAdSjxcOHD+Ouu+5CTU0NtWOZ+mLGLaUBwNPTE5s3bzbKIXQaS+qJ1ClyOBwEBQVh0aJFOHfuHCoqKmZ9x21ThxCC4uJiXLp0CYmJiWN2w6Y1JkG7hKbZmRsYXNU8/fTTePrpp2ecKAIzVBgB4Mknn8TFixfx008/UbWrzVJXVFQYJEs92eJtDw8PpKamQiQS4dy5c1TnYzP+h1KpxJkzZ9DS0oL09PQJNTwxtDgaKwsNAF999RVaWlrw2GOPUbWrL2asMDo4OOCZZ57BM888Qz1TbG9vj5CQEJw5c0avCZCpnmixs7NDWloa5HI5srOz0dPTozefGOPT3d2N7OxscDgcpKamTqojk6HEUSaT4ezZs1iwYAH1fUWVSoWtW7di27Zt487QMVVmrDACwKOPPorW1lZ8+eWX1G0HBgbCyckJBQUFehHm6R7zs7CwQFJSEgQCAbKysnRt8hmGQ6PRoLS0FDk5OfDz80N8fLzu2OZk0Lc4ak9LeXp6Uj3domXnzp3gcrm45557qNvWFzNaGPl8PrZt24atW7dSr+vjcDiIiYmBUqnElStXpnUtfZ195nK5CA0NxZIlS1BfX8+iRwPS3d2NrKwstLa2Ii0tDUFBQdNarupLHAkhuHDhAszMzKg3WgYGO4K/+uqr+M9//jOlLwlTYUYLIwDcc8894PF4ePPNN6nb1h7Xa2xsnPIgK0M0hHBwcEB6ejrc3d1Z9KhnNBoNysrKkJOTA29vb6SmpsLOzk4v19aHOFZVVaGjowPx8fFGOWHzn//8B97e3iY7FnWizMhyneHs27cPDz30ECorK43S205bJ5aUlDSpLjw0uuRIJBIUFRWBx+MhOjraZGseZ0K5jraHIofDQWxsrN4EcThTLeVpaWlBQUEBtTrb4XR0dCA4OBh79+5Feno6dfv6ZFYIIyEEGRkZCAoKwgcffGAUH+rr63HlyhWkpaVNaPOdZuswjUaD8vJyVFZWwsvLC6GhodRHNoyHKQtjb28vSkpK0Nraivnz5yMwMNDg0dhkxbGnpwfZ2dlGrWm9/fbboVQqsW/fPqPY1yczfikNDO73ffTRR/jmm2/wyy+/GMUHX19f+Pr64syZM+Pud9Lup6jde9T23zt+/DguX76s10mIE+k0M9OQyWS4cOECMjMzYWVlhRUrViA4OJjKEnUyy2qFQoH8/HwEBQUZTRS/++47HDt2DLt27TKKfX0zKyJGLTt37sRrr72Gy5cvG2VJTQhBXl4eeDwe4uLiRtyMN4Ums729vSgtLUVLSwuCgoIQGBg4rY3yqXZIH4opRYxKpRIVFRWoqamBp6enUSPs8SJHjUaD/Px8mJubG63HY0dHByIiIvD666/j7rvvpm7fEMyKiFHLww8/DD8/Pzz++ONGsc/hcBAXF4fe3l5cuHDhmoSHKYgiANja2iIuLg4pKSno6OjA0aNHUV5ePuUIklYLOEMjk8lQWlqKX3/9FT09PUhNTUVsbKxRtx3GihwJITh37hyUSqVRiri1PPDAA0hMTMRdd91lFPuGYObm00eAy+Xik08+QXR0NG6//XbccMMN1H0wNzdHcnIycnJycPnyZSxYsAAcDsdkRHEojo6OSE5ORnt7u+7ctbe3NwICAiblY0aQC8hhOi3gDEFXVxeqq6vR3NwMDw8PJCUlwdnZ2dhu6RhpwBYhBEVFRejt7UVKSorRSmO+/fZbHD9+HMXFxTNq7MR4zKqltJa3334br776qtGW1MDgjOPc3Fx4enrCysoKZWVlJiWKI9HX14fq6mrU1dXBzs4OQqEQ3t7eE/rQTWWmzlBoL6WVSiUaGhogEonQ398PoVCIgIAAk+4wrV1WL1iwAF1dXejs7ERKSgosLCyM4k97ezsWLFiA7du3z6poEZilwqjRaLB8+XLMmzcPH330kdH86O/vR2ZmJtRqNVJTU2fMYXqVSoWmpiaIRCJIpVLdnGh3d3eDjSelIYwKhQKtra26OdROTk4QCoXw9PQ0yr7mVGYWdXR04NSpU7CwsMDSpUthaWlpYC9H5ze/+Q3UajX27t07q6JFYJYtpbVwuVx8/PHHiIqKwvr1642ypAYG68qAweN6jY2NcHBwmBFvIB6PBz8/P/j5+aGnpwdNTU2oqqrCuXPn4OLiohNKUyv5GYne3l7drOvOzk44OjpCIBAgNDTUqCMirkpYHZ5YwooQgvr6elhaWkKpVKK1tZVKP8eR+Oabb3DixAmUlJTMiPf0ZJmVwggA/v7+ePnll/HAAw/g8uXL1D8E2j1F7VInNzcXarUakZGRM+qNZGdnh5CQEISEhEAmk+lEpri4GDY2NnB3d4eTkxMcHR1hZWVl1OdGCEF/fz8kEgm6urrQ0tKCgYEBuLu7w9fXF3FxcUaNsIYyNGFlxh1MWI0ljBqNBufPn0d3dzfS09PR19d31Z4jTdrb2/H444/j7bffhoeHB1XbtJiVS2kthBAsX74c/v7+VJfUIyVatG3uXVxcEB0dPaPEcSRUKhXa29vR1tYGiUSC7u5umJmZwcHBAY6OjnB0dISDgwOsra0n9Fwnu5QmhKCvrw/d3d2QSCQ6HwghOh/c3Nzg6upq9PKfkZhMiZNGo8G5c+fQ29uL5ORk3Z4i7U7gWtatWwdCCH744YcZ/z4ejVktjAAgEokQGRmJzz//HLfccovB7Y2VfZbL5Th9+jSsrKwQGxtrsP06Y0AIQU9PzzVCpdFoYGlpCT6ff9WP9jYul6sTh9OnT2Px4sW6f6vVasjlcshkMshksmv+fyQhtrW1nTEf1okkrBQKBQoKCqBWq5GUlHTNe4a2OH7yySfYsmULiouLZ220CMwBYQQG90Meeugh5ObmIiwszGB2JlKSo1Qqce7cOfT19SExMdFoWXMaEEIgl8uvErThIqfRaEAIgUaj0Y2H5XA44HA4MDMzu0pUhwushYXFjBHBqSCVSnHmzBk4OTkhJiZm1MiXljieOXMGK1aswNdff42bbrrJYHZMgTkhjADwzDPP4LvvvsOZM2cMkh2eTJ0iIQSlpaWora1FfHz8hLo9z3ZM6eSLKSAWi3Hu3DkEBwdPqKWZocVRLBYjPj4emzdvxl//+le9X9/UmDPCqNFosHbtWvT29uLXX3/V64dvqsXbjY2NOH/+PMLDw6kPKjI1mDAOop0nVFFRgUWLFk1quWoocVQoFEhNTUVwcDA+//zzWR2la5lVRwLHgsvl4ssvv4RYLNbrkcHpnGjx9vZGSkoKysvLceHCBeojGhimhVqtxrlz5yASiZCamjrpPTxDjUn4/e9/D41Ggw8++GBOiCIwh4QRGCw9+fHHH/HVV1/hvffem/b19HHMz9HREenp6ZBKpTh16pReO94wZg4DAwPIycmBXC5HWlralHs96lscX375ZRw7dgz79++fsfNbpsKcEkYACAgIwJ49e/CXv/wF2dnZU76OPs8+8/l8JCcnw8bGBllZWejqmj2tuxjj097ejpMnT+pEbbpH/PQljocOHcK//vUvHDhwAF5eXtPyaaYx54QRADIyMvDSSy/hjjvumNIbxxANIczMzBATE4OgoCCcOnUKxcXFbBTqLEelUuHixYs4c+YMwsPDERkZqbdej9MVx9LSUtxzzz3YtWsX4uPj9eLTTGLOJF+GQwjBgw8+iPz8fOTl5U14mUCjS05fXx+KioqgUCiwcOFCODlNvinDTGOuJV/a29tx/vx52NjYICYmxmDNK6aSkOnu7kZ8fDxuvfVWvPzyywbxy9SZs8IIDGbbli9fDjc3N3z//ffjflvTbB1GCEF1dTVKS0sxb948hISEzGrBmCvCqFKpUFJSgvr6ekRERMDPz8/gCY3JiKNarcYNN9wACwsLHDx4cFb/LcZiTi6ltVhYWOCHH35AQUEBnnrqqTHvS7ufIofDQWBgINLT09HZ2YmTJ0+yvccZTkdHBzIzM9Hb24uMjAwIhUIqWd7JLKsfeeQRNDQ04Ouvv56zogjM4iYSE8XNzQ2HDx9GWloabGxs8I9//OOa+xizyaytrS1SUlJQXV2NU6dOzYnocbahjRLr6uqwYMGCKUeJU2lTpmWkZrfD+fOf/4yDBw8iJyfHZKdJ0mLOCyMAhIeH49ixY8jIyICVldVVlf2m0HlbGz16eHigqKgImZmZiIiIgIeHx5ypK5uJEELQ1NSk60SUkZEx5VZtU2lTNpyxxPHpp5/Gl19+iZycnDl/2ABgwqgjOjoaR44cwYoVK2BpaYnNmzebhCgOxdbWFkuWLEFdXR0uXrwIKysrhIeHT2qWNYMOra2tKC4uhkqlQlhYGLy9vaf1JTbZNmWjMZI4bt26Fe+99x6ysrIQHBw8ZR9nE0wYhxAXF4effvoJK1euhEwmQ2RkpMmIohYOhwOhUAgfHx/U1NQgPz8fLi4uCAsLm/PLH1NAIpGguLgYUqkUISEhEAqFeinB0edcnaHi+MEHH+CNN95AZmYmwsPDp+3nbIEJ4zCSk5Nx8OBB3HzzzXjxxRdx4403GtulETEzM0NQUBCEQiEqKyuRnZ1NbdTndPa6Ziu9vb0oKSlBa2srgoKCkJCQoNcBVUlCJ+Q+mjKtuTpDcXZ2RkFBAbZv345jx44hOjpaT57ODuZ0uc5YnDx5EqtXr8a2bduMNo51MshkMpSVlaG+vh5CoRDz5883SLdqfcyQHomZWq4z9HX39/dHcHCwyXQJH4utW7dix44d+PXXXxEXF2dsd0wOFjGOQnp6On755RfceOONkMlkePLJJ43t0pjw+XxER0cjMDAQpaWlOHr0KHx9fREQEKDXsQ762uua6UilUlRXV6OhoQFeXl5YtmzZjJiBAwBPPfUU3n//fWRmZrJIcRSYMI7B4sWLcezYMVx33XWQyWR4/vnnje3SuNja2iIuLg5SqRQ1NTXIzMyEq6srAgIC4ObmNu0s9kyfIT0dCCFoaWlBVVUVJBIJ/Pz8sHTpUqMO1Zosf/rTn7B7925kZWWxPcUxYEvpCXDx4kUsX74c9957L1555RW9nWelgUKhgEgkQk1NDczMzCAUCuHr6zut5d50Z0iPhCkvpWUyGerq6iASiQAMNiLx8/ObUaMp1Go1HnzwQfz88884ceIEyz6PAxPGCVJaWoqbbroJERER+Prrr2fcSAKNRoOWlhaIRCK0t7dDIBBAKBTC1dXVJGohTU0YCSFobW2FSCRCa2sr3N3dIRQK4e7ubhKv12SQSCRYt24dxGIxfvrpJ/j7+xvbJZNn1i6l9+7di8zMTNx1111ISkqa9vVCQ0NRUFCA2267DYmJidi/fz8CAwP14CkduFwuPD094enpiYGBAYhEIhQVFYEQopsTbaoT9WihUqnQ1tYGsViMlpYWXYQdFRU1I3oRjlQtcOXKFaxduxahoaHIz8+fcp/HucasjRhzcnKwZMkSvV9XqVTiz3/+M7755hvs3r0by5cv17sNWhBC0NXVBbFYDLFYjP7+fri7u0MgEMDDw4NqdtVYEePAwIBuVnZ7eztsbGx0XxSOjo4zJjocqVqg5XwW7rvvPjz00EPYtm3btLaA3n//fZSWlmJgYACvvfaawboBmQqzVhiLi4uh0WhQVlYGgUCArKwsqNVqpKamIj09fdrXf++997Blyxa8+OKL2Lx5sx48Nj59fX06kezs7ISjoyM8PDwgEAh00/sMBS1hJIRAKpXqnqdUKoWrq6vuec6UzPJwXjpWied+KdNVC6wfyMaBT97CBx98gPXr10/7+q2trXBxcUFmZuaMDgYmyqxdSp89exb33nsvvvjiCzz99NNQqVTo6+vTiygCwB//+EeEhYXh1ltvxaVLl/DOO+/otaDXGNjY2CAwMBCBgYFQKBRobW2FWCxGRUUFuFzuVfObHR0dYWVlZdIRFSEE/f3918y61m4fBAcHw83NbUYlUUZDWy1gDhWC89/D8YrzyMzMxKJFi/RyfXd3d3z//fdYuXIlcnNz9R5omBoz+5M8BhERESgoKEBsbCzq6upgYWGB3Nxcvc7DTU1NRWFhIVavXo2MjAzs27dv1pxbtrCwgI+PD3x8fKDRaNDT06MTlsrKSnR3d4PH410llMYUS60IDhVAiUQCjUaj88/HxwcLFiwwePRrDJKETjh4RyD++oe7YcO3wLFz5yAQCPRq4+LFi7jtttsQGRmp90DD1Ji1wqit5tfW9Nnb2yM0NFTvdoRCIU6fPo0NGzYgPj4ee/funXVFs1wuFw4ODledGddoNOjt7dUJUVVVFbq7uwEAlpaW4PP54PP5V/3/0NssLCwmJE6EECgUCshkMt2PXC4f8d8cDkcn1L6+voiMjIStre2sE8GRyMvLwx9vuw3Lly/He++9Z5D94b6+PgAwWKBhSszaPUbaaDQabNu2Ddu3b8c777yDu+66y9guUYcQcpVgjSRi2tuAwYYYXC4XHA4HHA4HSqUS5ubmIISAEAKNRgNCCDgcDiwtLWFpaQkrK6trxHbov+eCCA7n/fffx5YtW7B161Y88cQTBn8NtIFGV1fXrB27wYRRz+zduxe///3vsWLFCuzatWvWLK31iTYK1AogIQRKpRKZmZnIyMgAj8fTiSWXy4W5ufmcFLzxEIvF2LRpE86ePYsvvvgC119/vbFdmjXMnCMck0T7wRrtx1DceuutKCkpgVwux4IFC/Ddd98ZzNZMRRsB8vl8WFlZwdraWneszsbGBtbW1rCysgKfz5/wknuu8cknnyAyMhL29vYoKSkxuCga6/NkLGatMA6NRr777jt8/PHHV91mSAQCAfbv349XX30Vf/zjH3HHHXegs7PToDYZcwOxWIxVq1bhb3/7G95//33s3r2byqrEmJ8nYzBrhVFLUVERoqKiqNvlcDj43e9+h+LiYvT392PBggX44YcfqPvBmD189tlnuoRSSUkJ1q5dS90HY32eaDNrs9Ja2traUFVVhaqqKqPY9/T0xMGDB/HFF19g06ZN+Pbbb7Fr1y44OjoaxR/GzKOlpQV/+MMfkJeXh3fffRfr1q0zmi/G/jzRYtZHjNdffz2USiV6e3uN5gOHw8GGDRtQXFyM3t5eREREYO/evUbzhzFz+OKLLxAZGQlra2uUlJQYVRQB0/g8UYEwqKLRaMinn35KHBwcyPr160l7e7uxXRqX07Wd5N9HK8jp2k6D2VCpVGTfvn1EpVIZzMZMorm5maxZs4a4urqSPXv2GNudOcesjxhNDQ6Hg3vuuUe39xgcHIxnn30W/f39xnZtRLTNCZ77pQwpO3ORJ+oytkuzGqlUii1btmD+/PmwsrIyiShxLsKE0Uh4eXnhwIED2LdvH44ePYqgoCBs374dKpXK2K5dxdBRBhzO4CgDhv6Ry+X497//jcDAQJw7dw7Hjh3D119/DVdXV2O7Nidhwmhk0tLScPr0abzzzjt47733EBoais8//xwajcbYrgH4v+YEZG6OMqCBRqPBu+++i/nz5+Obb77Bl19+iePHjyM+Pt7Yrs1tjL2WZ/wPlUpFPvroI+Lt7U1iYmLIoUOHjO0SIWRwj/GlY2yPUd98++23JCwsjMybN4/s3r2bqNVqY7vE+D+YMJogAwMD5NVXXyWOjo4kLS2NnD592tguGZy5JIwnTpwgiYmJxM3NjezcuZPI5XJju8QYBltKmyB8Ph9/+ctfUFtbiyVLluC6667DLbfcgpKSEmO7xpgGRUVFuOGGG7BmzRqsWrUK1dXVeOSRR2BhYWFs1xjDYMJowjg4OODFF19EeXk5vLy8EBsbi+uuuw6HDh0ymT1IxthoNBrs2bMH6enpSElJQXh4OKqrq/Hss8/OqLGrcw0mjDMAT09PvPPOO6ipqUFycjI2btyIBQsWYPv27SZb5jPXkUqleOmllzB//nw89thjuOGGG1BXV4ft27ezTPMMgLUdm4HI5XJ88803eP3119HQ0IA77rgDmzdvNkgjXlqY2vjUqXLhwgW88cYb2LNnD0JCQvDnP/8Z69atmxXjE+YSLGKcgVhaWuKee+5BUVER9u3bh66uLixcuBApKSn44IMPdI1gGXTo7+/Hzp07ER8fj+TkZKhUKhw5cgT5+flYv349E8UZCIsYZwkdHR347LPP8O6776K9vR233norHnzwQb0NQzI0My1i1Gg0yM/Px65du3DgwAH4+fnhwQcfxN13333VCAjGzIRFjLMEFxcX/OlPf0JJSQkOHjwIpVKJpUuXwt/fHxs3bsSBAwegUCgmfL08URdeOlbJjgAOQS6XY8+ePdiwYQP8/PywcuVK8Pl8HD16FBcuXMBDDz3ERHGWwCLGWYxCocDJkydx4MAB7N+/H1KpFKmpqVi1ahVuu+22URucjjS8PUlo2NkephoxtrS04Ntvv8VPP/2E3NxcuLi44NZbb8WaNWuQkpLClsmzFBYxzmIsLCxw3XXX4c0334RIJEJ2djYSExPx/vvvw8vLC8nJyfjnP/+J0tLSqx43189HX7p0Cc888wwSEhLg6+uLr776CkuXLkV+fj6qq6vx+uuvY+nSpUwUZzEsYpyjNDc349ChQ9i3bx+OHTsGX19fZGRkICUlBQ6BUVi3r2FORIwajQZVVVXIzs5Gbm4uMjMzIRaLcf3112Pt2rW46aab4ObmRs0fhmnAhJGB/v5+HDt2DD/99BPy8/Nx+fJl2NnbQxg4HxELFmB5ajKWLFmCgIAAcLmGWWTQEEaNRoPy8nLk5ubi7NmzuHz5sq79W1RUFBITE3HzzTdj6dKl4PP5BvGBMTNgwsi4BoVCgeLiYhQWFqKgoABnz57FpUuXYGdnh9DQUERGRiI+Ph6pqakIDAzUi1jqWxg1Gg3KysqQk5OjE8HS0lIMDAwgKioK8fHxiIuLw6JFixAWFgYeb9ZP+WBMAiaMjAmhVCpHFEtzc3O4urrCzc1N9+Pp6QkvLy/4+fnB19cXQqEQTk5OYwroRIVRo9Ggs7MTtbW1qKurQ0NDA5qamtDc3IzW1la0tbWhvb0dbW1tIIRcI4KhoaFMBBnjwoSRMWWUSiXq6urQ3Nys+2lsbERTU5NOrMRiMbq6usDn83XCaWtrCx6PBzMzM91/zczMMDAwACsrK6jVaqjVaqhUKqhUKqjVakilUrS3t6O9vR0ymQzOzs4QCATw8vK66kcryp6envDz8zOpDDdj5sCEkWFw5HI5xGKxTjylUilUKhWUSqVO/LQ/PB5P92Nubq77fwcHB53geXh4sI40DIPChJHBYDCGweoYGQwGYxhMGBkMBmMYTBgZDAZjGEwYGQwGYxhMGBkMBmMYTBgZDAZjGEwYGQwGYxhMGBkMBmMYTBgZDAZjGEwYGQwGYxiszQjDqBQUFEAqleLChQv405/+ZGx3GAwALGJkGJnS0lIkJyejurra2K4wGDpYEwmG0fnxxx/B5/NhZWWFrKwsqNVqpKamIj093diuMeYobCnNMCovvvginnnmGaxevRpffvklVCoV+vr6mCgyjApbSjOMyqJFi5Cbm4vY2FjU1dXBwsIC58+fN7ZbjDkOW0ozTAapVAp7e3t0dXXBycmwUwkZjLFgwshgMBjDYHuMDKPC4XDG/D373mYYA7bHyDAqhBAQQvDWW2+BEIK//OUvutuYKDKMBRNGhknw8MMPo7W1FUKh0NiuMBhMGBmmASEEx48fx7333mtsVxgMJowM02DHjh04deoUdu3aZWxXGAyWlWYwGIzhsIiRwWAwhsGEkcFgMIbBhJHBYDCGwYSRwWAwhsGEkcFgMIbBhJHBYDCGwYSRwWAwhsGEkcFgMIbBhJHBYDCGwYSRwWAwhsGEkcFgMIbBhJHBYDCG8f8BTUgQ6IIWS3kAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -123,7 +123,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAF2CAYAAAASrTFdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAB2XElEQVR4nO2dd1yb1/X/PxICxBQbMYUZNsNgG8wwm9hxnMQzSeOkaVbdJG52f2m/aZI2aZrmm9XGaaYzmtUMN44TjzjD8cAMGzAYjG32ElNsIRBIQtL9/eGvVBtjpnQfAff9eullrPGcI+l5Prr33HPP4RFCCBgMBoNhhM+1AwwGg2FpMGFkMBiMMTBhZDAYjDEwYWQwGIwxMGFkMBiMMTBhZDAYjDEwYWQwGIwxMGFkMBiMMTBhZDAYjDEwYWQwGIwxMGFkMBiMMVisMLa3t2P79u1ITk5GRkYGkpKScPPNN2PPnj3QarVcu2cWHnroITz00EPTek1nZycefvhhJCcnIzMzE8nJyVi9ejXeeOMNDAwMzMrmjz/+iOXLl4PH403LJ4Zl8ve//x0bN26kYuuvf/0rgoKCkJmZecXnzOR8pwaxQJqamoivry955513jPdptVryt7/9jQAgjY2N3Dk3DZ555hmSkZEx5ecrlUqiVCqn/Pzm5mbi7+9P3njjDaLX6433f/PNN8Ta2pr88MMPs7Z57NgxMpPTpLm5mTz22GNEKBSS119//bLHBwcHybJly0hSUhJ59dVXp338i/nuu+/IZ599Rl577TWybdu2aX2GpmC873m63z0N1Go1GRgYoGZvss9guuc7TQRcC/N4PPjgg1i5ciW2b99uvM/KygpPPfUUvv76aw49My/29vbTev7999+P2NhYPPjgg5fcv2XLFtxxxx2wtrY2uc2pEhAQgBtvvBEdHR2oqam57PEffvgBKpUKr7/+OtLT02dsZ2BgABs3bkR1dTVCQ0OxceNG/P3vf8fTTz89G/fnJTY2NrCxseHaDSPmOvdMgcVNpfv6+vD9999fccifm5uLwMBAABemkbfeeitSU1ORkpKC++67DwqFAgDwr3/9C+Hh4QgKCsIbb7yBq6++GsHBwfj000+Nx5LJZLj11luRkpKCjIwMXHfddTh58qTx8c7OTtxyyy1ITU1FamoqHn74YYyMjEzp+O+88w4+/vhjlJWVITMzE6tXrx73dWvXroVQKMSbb7552dRjIv8m+5w++OADrF69+or2Pv7443Ft1tbWIjMzE/Hx8di4cSPKysqm8e1dSklJCW655RbU1dVdcv/p06chFovR3NyMxMTEGR8fAEQiEU6dOoWQkBAAACEEer1+Sq81TPfS0tLw6KOPIisrC5GRkXjxxRcved7rr7+Oq666CmvWrMGqVavwzjvvGB8b73u+0nc/nfPp4u9pKufyZHzxxRdYvnw5goKCpvS+gInPv4muvbH86U9/wlVXXXXJZzveuWdRcD1kHUtBQQEBQH766acJn6fT6UhCQgJ59NFHCSGE6PV6cuutt5JNmzYZn/PRRx8RGxsb47G++OIL4uzsTLRaLdHpdGTlypXG1xNCyPPPP08eeeSRS47/8MMPE0IuTOU3btxIHnrooSkdn5ArTyUMr9uzZw8h5MLU9/vvv7/k+ZP5V1hYOKXPaSJ7Y30cHR0lS5YsIX/4wx+M/9+4ceOMptKEEPLqq6+SmpoaEhoaarxPpVKRb775huzatYtcddVVlzy/o6ODPP744xPeDh48eEV7/f39JCQkhDQ3N0/Zx2eeeYbw+Xxy8uRJQgghLS0txMXFhXzxxRfG5+zYsYOMjIwY/Q8NDSX5+fmXHGOyqfR0zqfxvqfJzrU33niDBAYGEpVKdcX3euzYMSKRSKb0viY6/6Zy7Rk+A1tb2yt+tpYYbjBgccJYVFREAJBDhw5N+DyDgNbU1Bjvy8nJIQCIVColhFw4mUQikfHxyspKAoC0t7eP+3q5XE5Onz59xeN//fXXxM7OzhjPm+j4hEwsjM7Ozpfdf/HzJ/PvSsL4xhtvkIyMDLJkyRLy2GOPTWhvrM28vDwCgNTW1hof/+qrr2YkjBqNhrz11ltEo9EQoVBovIC/+uorotFoyH333Ueee+65aR/3Suzfv5/8+te/vkTQpsIzzzxDoqKiLrnvtttuI1dffbXx/0eOHCHr1q0jKSkpJCMjg4hEIvLyyy9fcozJhHGq59OVvqfJzrWvv/6arF271vg5j8dYYZzofU10/k3l2jN8BhN9tpYsjBYXY1y8eDGsrKzQ3Nw84fOkUikAwNvb23if4W+pVGqcbru4uBgfFwqFAAC1Wj3u60UiEVasWHHJ8bdt2wY+/0LEQaVSwcvLC93d3fDy8prw+JPh6uo67fd3sX9hYWHg8/nG5xl48MEH8eCDDyIzMxM9PT1TtgcAra2tAGB8bwDg4eEx6evGo7CwEAkJCbC2toZYLIZUKoVKpcLixYthbW2NY8eO4cMPP5zRscdjw4YN2LBhA2655RbU1NTgmWeemfJrx75HLy8vnD59GgDQ2NiI6667Dm+//TZ+/etfAwAyMzOhVCqn5d9Uz6eJvqeJzrUbb7wRN95445T9mex9TXT+ffXVV5c9Nt61B0z82VoyFieMIpEImzdvxv79+7Ft27ZLHtNoNNi4cSNee+01SCQSABdiHc7Ozsa/ARgfm4jxXj84OIimpiZER0cbYzFffvkl/Pz8jK/r6uq6RDjMxWT+ubq6Yv369dizZw/uuecek9gMCAgAcOE9GmxeLK7TobS0FA888AAAIDQ0FNXV1RgYGMAtt9yC9vZ2tLW1ISEh4ZLXyGQyvPbaaxMeNz09Hdddd53x/7t378bjjz+Ouro68Pl8ZGZm4ve///20hLG3t/eS/3d1dcHf3x/AhTipWq3Gli1bjI9rNJopH9sA1+fTWCZ7XxOdf9O59ib6bC0Zi1t8AYA33ngDZ86cwbvvvmu8T61W49FHH4W1tTXCw8MRHx+PlStX4u233wZwIej+zjvvYMOGDZf8Yl2Jsa8HgBdeeAHffvstAGDlypVITEy8JCB99OhRbN68ecrvQyQSYXBwEADw6KOPoqCgYMqvncw/4EIA+9y5c3j55ZcvWXA4d+4cWlpajCOTqZKYmIiIiAi89957AACdTodPPvlkWscwMDo6arQfEhKCd99917hQdOzYMaSkpFy2ai4Wi/Hiiy9OeLtYFIEL33tGRobRVlNTE+Li4qbla21trfG7aWtrw8GDB3H33XcDAJYsWQIej4ecnBzj8c+cOXPJ68f7nsfep9VqZ30+TcSePXtwzTXXTHnhabL3NdH5N51rr6Ki4oqfrUXD8VT+ishkMnLPPfeQhIQEkpGRQRITE8nTTz99SXC5o6ODbN26laSkpJBVq1aR3/zmN0QulxNCCNm1axdZsmQJsbW1JVu3biUdHR0kMTGRACCJiYmktrbW+Prk5GSSkpJCfvvb3xKNRnOJD7feeitZtWoVycrKIhs3bjQG9qdy/KamJhIdHU1SUlLItddeS1Qq1SWvy8jIIKWlpYSQC7FBiURCRCIRuemmmy55f1fyz+DjAw88QOLj40l6ejpZtmwZSU5OJm+++SYZHBy8or0r2aytrSUZGRkkLi6OrF27ljz33HMEAMnIyCCtra2EEEJ27txJli1bNu73VlJSQu644w4SHBxMPv30U0IIIa+//jr5+eefiV6vJ8899xyJjo4m8fHx5PPPP5/h2fFf9Ho92blzJ/nHP/5BXnzxRXLrrbeStrY24+MT+UrIf+NcTzzxBMnKyiIRERHkhRdeuOQ5r732GgkMDCRr1qwh99xzD4mJiSESiYS88cYbhBAy7vc83n1TPZ/Gfk9TOddmsvgy2fua6Pyb6NojhJBnn32WSCQSkpqaSh566CGSkZFxyWc73rlnSfAIYV0CGdPj7rvvhpubG/7xj39w7cqkTObrX/7yF2RnZyM7O5uuYxxw7Ngx/OY3v0F9fT3Xrlg8FhdjZFg2R48eRUVFBX7++WeuXZmUueSrucjNzUVubi6efPJJVFRUIDw8nGuX5gRsxMiYFiMjI+Dz+bC1teXalUmZzNe//vWv+PDDDyGXy7Fu3Trs2rWLsofmp76+Hrfccgvs7e1BCMF7773HxHEKMGFkMBiMMVjkqjSDwWBwCRNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGIOAawcYDADIz89HTk4OdDod0tLSkJGRwbVLjAUME0aGRRAdHQ2tVgulUslEkcE5bCrNsAiam5thY2ODsrIyrl1hMMAjhBCunWAwFAoFnJ2d0d/fD1dXV67dYSxwmDAyGAzGGNhUmsFgMMbAFl8YFgGPx7vsPjaZYXAFGzEyLIK33noLhBD8/ve/ByGEiSKDU5gwMiyC+++/H11dXZBIJFy7wmAwYWRYBoQQHD16FHfeeSfXrjAYTBgZlsFrr72GEydOYOfOnVy7wmCwdB0Gg8EYCxsxMhgMxhiYMDIYDMYYmDAyGAzGGJgwMhgMxhiYMDIYDMYYmDAyGAzGGJgwMhgMxhiYMDIYDMYYmDAyGAzGGJgwMhgMxhiYMDIYDMYYmDAyGAzGGFgFb4ZZIIRgYGAAHR0d6OjoQHt7u/HfgYEBaLVa4210dBSjo6PQ6XQQCAQQCASwtrY2/i0QCODi4gI/Pz/4+PjAx8cHvr6+8PHxgZOT07jVvxmM2cCq6zBmxMjICMrLy1FVVWUUvNbWVqMQdnZ2QqVSwdXVFZ6envDw8ICnpye8vb0hEokuEz6BQIDOzk54e3uPK5pyuRxdXV3o7u5Gd3c3enp6IJfLYWdnB29vb/j6+hpvBgGNiIhAdHQ0bG1tuf64GHMMJoyMSRkeHsaZM2dQUlKC4uJiFBcXo7q6Gp6enggJCYGXl5dRnPz8/BAQEACJRIKAgAAIhcIp2dDpdPjuu++wfv16WFlZTek1KpUKUqkUUqkULS0taGtrM4pyV1cX6urq0NfXh4iICKxcuRLx8fGIi4tDdHT0lP1iLEyYMDIuQalUGkXw1KlTKC4uRk1NDcRiMSIiIhATE4PExESkpKTAz8/PZHZnIoxToaWlBbm5uSgqKkJ5eTkqKyvR09OD8PDwS8QyJiYGdnZ2JrPLmNswYVzg6HQ6nDx5Evv27cPBgwdRU1NjnIYuW7YMCQkJSEtLg1gsNrsf5hDG8WhtbUV+fj4KCwtRXl6OiooKdHd3IyIiAuvXr8emTZsQHx8PPp+tTS5UmDAuQAYHB3Ho0CHs3bsXBw8ehK2tLTIzM7FhwwasXr0a3t7e1H2iKYzj0dbWhqNHj+LAgQPIzs4GAKxfvx6bN2/GmjVrYG9vT90nBncwYVwgNDc348CBA9i7dy9ycnIQFhaGNWvW4KabbkJycjLnoyOuhXGsL8ePH8eePXtw5MgRSKVSZGVlYcuWLVi/fj18fHw49Y9hfpgwzlMIISgpKcH+/fuxd+9e1NTUIDExEddccw22bt2KkJAQrl28BEsSxrFUV1fjP//5D3766ScUFxdj6dKl2LRpEzZt2oSYmBiWLjQPYcI4z+js7MTHH3+M9957D3K5HBkZGdiwYQNuuOEGiEQirt27IpYsjBfT19eHPXv24MCBA8jNzYW3tzfuu+8+3HHHHXB3d+faPYaJYMI4D9Dr9fj555/x7rvv4ocffkBSUhK2bduGW265BQLBzHP4C6T9OFbXi6xQdyRJXE3o8eXMFWG8GLVajc8++wwfffQRSkpKsHnzZtx3333IyMhgo8g5Dlt2m8P09vbihRdeQFBQELZt24agoCCcO3cOx44dw69+9atZi2LKm/n480/VSHkzHwXSfhN6Pj+wtbXFtm3bkJeXh9LSUri5ueGWW25BaGgoXn31VQwMDHDtImOGMGGcg5w7dw7btm1DYGAgfvzxR/zjH/+AVCrFq6++arLY4bG6XvB4POj0BDweD9n1vSY57nwlPDwcb731FlpbW/GXv/wFu3fvhr+/Px588EHU1NRw7R5jmjBhnCPo9Xrs378fmZmZWLVqFTQaDQoKCnD8+HH84he/MPn0MyvUHYQQWPF5IIQgM4TFz6aCQCDA7bffjpMnT+LYsWPo6urC8uXLsW7dOvz0009gkau5AYsxWjiEEPzwww94/PHHIZfLcffdd+ORRx6hEugvkPYju74XmSEsxjgbOjs78eqrr+LTTz+Fv78/Xn75ZWRlZXHtFmMiCMNiOXHiBElNTSVeXl7kpZdeImq1mmuXzIZWqyV79+4lWq2Wa1fMxsjICHnmmWeIm5sbufrqq8np06e5dolxBdhU2gKpqKjAxo0bsW7dOiQnJ6O+vh7/8z//AxsbG65dY8wCoVCIv/zlL6itrUV4eDjS09OxdetW1NfXc+0aYwxMGC2IlpYW3HXXXYiPj4e3tzfq6urw0ksvwdHRkWvXGCbEzc0Nr7/+OiorK2FjY4OYmBjcf//9kMlkXLvG+D+YMFoAvb29eOyxxxAeHg6lUony8nK8//778PT05No1hhnx9/fHv//9bxQXF6OlpQVhYWH405/+BIVCwbVrCx4mjByiVCrx/PPPIzg4GGfPnkVubi52795tcdv1GOYlIiICBw4cwI8//oicnBwEBQXh1VdfhUql4tq1Bcu8Fcbi4mIcPXoUO3bs4NqVcTl06BCWLFmCffv24ZtvvsGhQ4cQGxvLtVsMDklJSUFOTg4+/fRTfPLJJ4iKikJubi7Xbi1I5q0wVlVVITk5GQ0NDVy7cgkKhQLbtm3D1q1b8cc//hEFBQVYvXo1124xLIj169ejtLQU9957L66//no88sgjGB4e5totAEB+fj5eeOEF/O1vf8Px48e5dsdszOs8xu+++w5CoRB2dnbIycmBTqdDWloaMjIyOPHn559/xt13343Fixfjww8/RFBQECd+WCLzOY9xNlRXV+POO+9ET08PPvnkE6SkpHDqj0KhQGlpKZRKJa677jpOfTEn83bE+Pzzz2P9+vX45z//iejoaCQnJyM2NpYTUVQoFLjnnnvwi1/8Ao8//jgOHz7MRJExJZYsWYITJ05g27ZtuPbaa/Hoo49yOnpsbm6GjY0NysrKOPOBBvNWGOPi4pCfn4/Y2FhOv8zDhw8jKioKdXV1KCsrw0MPPcR5UVjG3ILP5+OJJ57AqVOncPLkScTExODEiROc+BIYGIhVq1bht7/9LSf2qcF1hjkNBgYGCCGE9PX1UbOpUCjIvffeS0QiEfnnP/9JdDodNdtzkYWw88UU6HQ68vzzzxMnJyfy6KOPkuHhYa5dmpcsiKGLs7MzAMDV1bz7fQ0cOXIEUVFRqK6uRmlpKR5++GE2SmSYBD6fjyeffBJFRUU4ceIEYmJicPLkSa7dmnfMvGCfhTNZoVBihjUnnU6Hxx9/HB988AGeffZZNm0eg1arhVqthkqlgkajgV6vByEEhBBotVoAF3b/WFlZgcfjgcfjgc/nw8bGBkKhEEKhkC3M/B/h4eE4efIkXnzxRVxzzTV47LHH8Oc//9ns59t415U5riWumder0ga+/vprDA0N4a677jKbDblcjq1bt6KlpQX79u1DWFiY2WxZIjqdDgqFAkqlEiqVCiqVyiiChptWq4VAIIBQKISNjQ34fD74fL7xYuvs7DR2KDSIpl6vh0ajMb7e2toatra2RqE03GxtbeHo6AhnZ+cF92N05swZ3HDDDVi+fDk+/fRTODg4mNUejeuJa+btiNFAaWmp2YPV1dXVWL9+PUJCQlBQUGCcus9XdDodBgYGMDAwALlcjoGBASgUCgiFQjg6OhrFysXF5TLxulJVcUO6Tnx8/BVHhVqtdlzBlcvlUKlUGBoagkajgZOTE1xcXIw3JyeneT3SXLZsGYqKirBlyxasWrUKBw4cgEQiMYstGteTJTDvhbG7uxv19fVmq2Dy008/YevWrdi2bRteeeWVeTdaIYRAoVCgt7fXKISDg4NG4ROJRPD19YWLiwtsbW3N6otAIICjo+OERTUMQjkwMIDOzk5UV1dDrVbD2dnZ6K+7uzucnJzmVV8Wd3d3HD16FA888ABWrlyJb7/9FqmpqSa3Y+7ryVKY98K4du1afPnllxgaGjLpcQkhePXVV/Hss8/i9ddfn1fTCp1Oh56eHshkMnR2dkKn08Hd3R0uLi7w8/ODSCQyuwjOFKFQCLFYDLFYbLxPpVIZRb2rqwuVlZWwtrY2Ps/d3X1e/KAJBAK8++67iI6OxrXXXotXX30V99xzj0ltmOt6sjQWRIzR1KhUKtx77704evQo9uzZg8TERK5dmjVqtRqdnZ2QyWTo6uqCnZ2dUTjc3NzMPrqiufNFr9ejr68PMpkMMpkMarUa3t7eEIvF8PLymhd1L48cOYJbb70VW7duxY4dO2bVGG0hwoRxmnR0dGDz5s3GHiw+Pj5cuzRjlEol2tvbIZPJIJfL4ebmZhQI2jUgudoSSAjB0NCQUSQNn4NYLIavry/s7Oyo+WJqGhsbsXHjRnh6emL37t2s7/U0YMI4DYqLi7Fx40ZkZWXhww8/tNjp5ETodDrIZDI0NTWhv7/fKITe3t6cjpQsZa/02JGzh4cHJBIJvL29LXK6PVnvb6VSiVtuuQXnz5/HgQMHEBUVxYGXcw8mjFPkm2++wZ133oknnngCTz75JNfuTBulUommpiY0NzdDKBRCIpEgICAA1tbWXLsGwHKE8WLUajVaWloglUoxOjqKwMBABAUFwd7enmvXAPy39zePd6GTY/6DKeOKo16vx1NPPYW3334bu3fvxtq1aznwdm7BAg9T4IsvvsD27dvxySef4IYbbuDanSlDCEF3dzcaGhrQ09MDPz8/JCUlwcXFZV6tyJoLW1tbhIaGIiQkBH19fWhqasLRo0fh5eWFkJAQKrHXibi497cV/0Lv7/GEkc/n44UXXsCSJUtw44034osvvsCGDRs48HjuwIRxEj788EM8+uij+Oqrr7Bu3Tqu3ZkSOp0OLS0taGhowOjoKIKDgxEbGzsvFhW4gMfjwd3dHe7u7lCpVGhqasKpU6cgFAoRHBwMf39/TqbZWaHuID9Ovff3XXfdBXt7e/zyl7/Exx9/jBtvvJGSp3MPJowT8M477+CJJ57At99+OyeKyRJC0NraiqqqKtjY2GDJkiXw8fGxyNjYXEUoFCI8PBxhYWFob29HXV0damtrERERAR8fH6ojyCSJK/IfTJlW7++bb74Ztra2uP3226FWq/HLX/6SgqdzDyaMV2DHjh147rnncODAAaSlpXHtzoQQQtDZ2YnKykro9XpERUVRv0gXGlZWVggICIC/vz9aW1tx/vx51NbWIjIykmoTsySJ65QE8WI2bdqEr776CjfffDOGh4fxm9/8xkzezV2YMI7Da6+9hueeew7//ve/LV4U+/r6UFFRAaVSifDwcAQEBLARIkV4PB4CAgLg5+eHpqYmlJSUwNnZGZGRkXBxceHavSuybt06vPfee7jvvvvA4/Gwbds2rl2yKJgwjuGdd97BX//6V3z11VfQaDRoaWlBQEAA125dhkKhQGVlJXp7exEWFobg4GCLWc2dS0yW7jJV+Hw+goODERAQgIaGBuTn58Pb2xvh4eEW2Re8sbERIpEIn332GW677TbY2dmxafVFMGG8iA8//BBPPPGEcfrc19eHgoICALAYcVSpVKisrERbW5txUcVSUm7mGpeku/x45XSX6WBtbY0lS5YgKCgINTU1yM7ORkBAACIiIixm8auxsdHYLE4kEmHXrl245ZZbYGtryxZk/g825/o/vvjiCzz66KPYs2ePcfrs5uaGpKQknD17Fi0tLZz6RwhBW1sbjh07BkIIVq9ejcjISCaKs+DidBce70K6i6mwtbVFdHQ0rrrqKmg0Ghw9ehQymcxkx58pY0URAK677jp88sknuOuuu/Ddd99x7KFlwIQRwN69e7F9+3bs2rXrstVnSxBHtVqNU6dO4dy5c4iNjUVsbOyc3qpmKWSFuoOQqae7zAR7e3vEx8cjJiYGpaWlOH36NDQajcntTIXxRNHAli1b8MEHH+DWW2/F4cOHOfHPkljwO19KS0uRnp6ODz/8EL/4xS+u+DzDtDo6OprqtLqtrQ3l5eUQi8VYunTpvB0hcrXzpUDaP610l9mgVqtRXl6Ovr4+LFu27JIKQOZmIlG8mH/961947LHHUFRUhMWLF1Pzz9JY0MLY2dmJuLg43HvvvXj66acnfT5Ncbz4Ilq+fLmxsvV8xRK3BJqL9vZ2nDlzBt7e3oiOjjb7j91URdHA7373Oxw8eBBFRUUWvbJuThasMKrVamRmZiIgIAC7du2acooLDXE0jBJpXTiWwEISRoDeD990RRG4sLf62muvBQB8//33C+L7GMuCjDESQrB9+3ZoNBp8+umn08r7M2fMUavVori4+JJY4kIQxYWIra0t4uPjsXTpUpw+fRplZWXQ6XQmtTETUQQupB7t3r0bzc3NePzxx03q01xhQQrj66+/jkOHDmHfvn0QCoXTfr05xHF4eBi5ubnQarXIysqa91NnxgX8/Pxw1VVXQalUIj8/HyqVyiTHnakoGnB2dsb+/fvx8ccf45NPPjGJT3OJBSeMP//8M/785z/jq6++gr+//4yPY0px7O3tRU5ODry8vJCYmGgx+W4MOtja2mLVqlUQiUQ4fvw45HL5rI43W1E0EBYWhs8//xwPPvigMZ93obCghLG2thY333wzduzYgZSUlFkfzxTiKJVKUVBQgKioKERFRbH9zQsUPp+PZcuWYfHixcjPz0dbW9uMjmMqUTRwzTXX4Omnn8amTZtm7NNcZMHsfBkYGMCGDRtwxx13mHRfqEEcp7tDRq/X49y5c+jo6EBycjJcXc2bKsKYGyxatAhOTk44deoUFAoFwsPDp/xjaWpRNPCHP/wB586dw8aNG5GXl7cgcmgXxKq0TqfDhg0boNVq8eOPP5qlyMJ0Vqs1Gg1OnToFrVaLhISEBXGijYderwchBHq9HlqtFocOHcLatWshEAjA5/PB5/MX7AhaqVSisLAQDg4OU1qEM5coGtBoNMjIyIBEIsGXX34577+XBSGMTzzxBL755hsUFRWZ5aQxMBVxVCgUKCoqgqurK5YvXz5vUyF0Oh0GBwcxPDwMlUp1yU2tVkOlUk1pB4iNjQ2EQqHxZmtra/zbwcEBTk5O87aa0OjoKE6fPg2lUonExEQ4ODiM+zxzi6KBzs5OJCQk4P7775/3q9XzXhhzc3Nx/fXXo7CwEBEREWa3N5E49vf34+TJkwgLC0NoaOi8+dXV6XRQKBTG3s1yuRwKhQK2trZwcHC4orDZ2trCysoKPB4Per0eBw8exPXXXw8+nw9CCHQ63SVCOlZYh4aGMDo6CmdnZ7i4uMDFxQUikQjOzs7zRiwJIaiqqoJUKkVycjKcnZ0veZyWKBooKirCVVddhby8PCxfvtzs9rhiXscYh4eHcdddd+Gpp56iIorAlWOOvb29KCwsRFRUFCQSCRVfzAUhxNiXubu72yiCBnESi8VwcXGZViqU4feZx+MZRc3KymrCFXpCCFQqFeRyOQYGBtDR0YHKykqjWHp6ekIsFsPV1XXO/gjxeDxjZZ78/HysWrXKuBuFtigCQEJCAh544AHccccdKC4unrcZFPN6xPjII4/g1KlTyMvLoz6CuHjkKBQKUVRUhGXLls0qRYhLRkdH0d3dDZlMhs7OTlhZWRkb1Lu6us66lawpd76oVCr09/cb26ACMLaJ9fT0nLPN5xsbG1FZWYlVq1ZBLpdTF0UDWq0WsbGx2LJlC5599lmqtmkxb4XRMIUuKSlBWFgYJz709fXhxIkTIIQgLi4Ovr6+nPgxU0ZHR9HW1oaOjg709PTA2dkZYrEYYrEYzs7OJh2FmWtLICEEcrncKOhDQ0Pw8PCAr68vfH1955xINjc3o7y8HDweD6mpqdRF0cDp06eRnp4+b6fUc+usmCJKpRJ33nkn/vSnP3EmigCMW7x4PJ7Jt3uZC0II+vv7IZVK0dbWBhcXF/j7+2P58uVzcvWcx+PB1dUVrq6uiIiIwPDwMGQyGZqamnD27Fn4+/sjKCiIM4GZLhefR3q9njM/YmNj8dBDD+H2229HSUnJvJtSz8sR48MPP4ySkhLk5uZyFoTv7e1FQUEBVqxYAaFQyEnJsumg0+nQ3t6O+vp6jIyMIDAwEIGBgXBycqJmn3YRCYVCgaamJrS2tsLJyQnBwcEW3VXx4piiXC7H+fPnkZKSwpmoa7VaxMXFYdOmTfjrX//KiQ/mYt4J4/Hjx7FhwwZOp9CG1eeYmBhjTJGreo6TMTo6ioaGBjQ2Nhr7JPv5+VFPI+Kyuo5Wq0Vra6uxD3dISAiCgoIsapo93kKL4b6UlJTLVqtpUVpairS0NOTm5mLFihWc+GAO5pUwKpVKLF26FPfffz/+8Ic/cOLD4OAg8vLyEBkZednqsyWJo06nQ1NTE2pqauDi4oLFixfDzc2Ns9VbSyg7RghBd3c3ampqoFQqsWTJEgQGBnI+gpxo9bm+vh61tbVIT0+Hvb09J/49+eSTOHDgwLyaUs8rYXzwwQdRVlaGnJwcTk5mjUaDnJwcBAYGXrH6MdfiSAhBa2srqqqqYGtri8jISHh4eFD3YyyWIIwGCCHo6upCRUUF9Ho9IiIiOOvTPZWUnPPnz6O7uxupqamcjHK1Wi1WrlyJDRs24LnnnqNu3xzMG2HMzs7Gxo0bOZtC6/V6FBYWwtraGnFxcRNeRFyIoyVd7ONhScJowNCArLKyEjY2NoiMjISnpyc1+1PNUySEoLCwEFZWVli5ciUn36lhSp2Tk4PY2Fjq9k2NZUaZp4larcbdd9+NP//5z5zFFSsqKqBWq7FixYpJT0zaDbaGh4dx8uRJlJWVITg4GFlZWfD19bUYUbRUeDwe/P39sXr1agQEBKCkpASFhYUYGRkxu+3pJG/zeDzExcVBoVCgpqbG7L6Nx4oVK/Doo4/irrvumjMZGBMxL4Tx7bffhrOzMx577DFO7Dc3N6O1tRWJiYlTHu3QEEdCCBobG3Hs2DGIRCKsWbMGEomE85jZXIPP5yM4OBirV6+GUCjEsWPH0NLSAnNNtmayo8Xa2hqJiYmor69He3u7WfyajL/85S9QKpX47LPPOLFvSub8FaJQKPC3v/0Nzz33HCcXfF9fH86ePTujKjnmFMfh4WGcOHEC9fX1WLVqFaKioixmijpXsba2xrJlyxAfH4/KykoUFRWZrOK2gdls83N0dMTKlStRWloKhUJhUr+mgkAgwJ///Gf86U9/MvnnQps5L4yvvPIKIiMjsXHjRuq2R0ZGUFRUhOjoaLi5uc3oGKYWR0IImpqajKPErKysGfvGGB9PT09kZWVBKBTi6NGjJhs9mmLvs5eXF8LDw1FYWAi1Wj1rn6bLHXfcAXd3d7z99tvUbZuSOb340tnZidDQUPz4448mqcg9HbRaLfLy8uDh4YGlS5fO+nimWJBRqVQ4ffo0hoeHERsbO6cE0RIXX6ZCd3c3SktLIRKJsGLFihmnq5iyIAQhBGVlZVAqlUhOTqY+kzp48CBuv/12NDU1cZZfOVvm9IjxueeeQ0ZGBnVRBIDy8nLY2toiKirKJMeb7chRLpcjJycH9vb2bJRIEcPoUSAQICcnB4ODg9M+hqmr5PB4PMTExIAQgvPnz8/6eNPl+uuvR1RUFF555RXqtk3FnBXGhoYGfPTRR3jppZeo25bJZOjq6kJsbKxJV3ZnKo5tbW3Iz89HWFjYvC5+a6lYW1sjNjYWEokEubm56OzsnPJrzVU6zJC609LSgp6eHpMdd6q8/PLLeO2116b1WVgSc1YYn3rqKWzZssVkI7apotFoUFZWhpiYmFmX2hqP6YgjIQSVlZUoLy9HQkICFi1aZHJ/GFODx+MhLCwMsbGxKCkpQW1t7aRxR3PXU7Szs0NUVBRKS0uh1WpNfvyJWLVqFTIzM+fsHuo5GWMsKytDWloaKioqqO8eKSkpASEEK1euNKudyWKOUy17P1eYqzHG8ZhK+wpaRWYJISgoKICDgwNiYmLMZmc8KisrsXLlSpSXlyMkJISq7dkyJ0eMjz/+OO68807qotjR0YHu7m4qJ9hEI8eRkRHk5uYCANLS0ua8KM43nJ2dkZ6eDrVajby8vMtWh2lW3ubxeFi+fDlaW1upT6kjIiJwww034KmnnqJq1xTMOWHMzs7GqVOnqA/RNRoNzpw5g2XLlk1p5bFA2o8XjtShQNo/Y5vjiePw8DDy8vLg6emJhISESbvHMbjBxsYGSUlJcHZ2Rn5+vjGvj4t2BFxOqf/3f/8XBw8eRGlpKVW7s2VOTaUJIUhISMC1115LXRhLSkoAAHFxcZM+t0Daj5Q388Hj8UAIQf6DKUiSzLxvtGFavXjxYjQ0NMDf3x8RERHzakvffJpKXwwhBOXl5ejp6UFAQADq6+s5aUdg2E9tb29PfUr90EMPobq6GocOHaJqdzbMqRFjdnY2pFIp/vjHP1K1a5hCR0dHT+n5x+p6L1Tt1hPweDxk1/fOyr6bmxuWLVuG8+fPw8XFZd6J4nzGkDojFApRWVmJuLg4TgrL8ng8LFu2jJMp9bPPPouCggKUlZVRtTsb5pQw7tixA7/61a+uWHfOFNPXsUx3Cg0AWaHuIITAin9hxJgZ4j4rH4aHh3H+/HkEBgaip6cHra2tszoegy5NTU0YGBiAv78/zp49y9l2OTs7OyxdupT6lNrNzQ033XQTduzYQc3mbJkzU+mGhgYsXboUtbW18PPzu+xxU09fDZSXl0Oj0Ux7FbpA2o/s+l5khrjPyo+RkRHk5+fD19cXERER6O/vt5hit6Zkvk6lL44pOjs7o7y8HL29vUhJSTFLutdkGFapDTMPWlRVVSE2NhZNTU3w8vKiZnemWE7t9kl44403sG7dunFFEbh0+mrFvzB9na0wKpVKNDc3Iysra9qvTZK4ztq+VqtFQUEBvL29jdPnK/WttnT0ej0GBwcxMjIClUp1yU2n0xkbO504cQJ8Ph8CgQBCoRC2trYQCoUQCoWwt7eHo6PjnKkONN5CS0xMDEpLS1FUVITk5GTqPwI8Hg9RUVHIzc3FokWLptX7ezaEh4dj1apV2LlzJ55++mkqNmfDnBgxDg4Ows/PDz/99BNWrVo17nPMMWI0lGqfamzRlBBCcOrUKej1eiQmJl4WU+S6EvhEEEIwODiIvr4+DAwMQC6XQ6FQwNraGvb29kahMwiftbU1CCEoLi42FlodHR2FSqWCWq02CqhSqYROp4OzszNcXFwgEong5uYGR0dHi4u5TrT6rNfrceLECTg4OGD58uWc+F5SUgJra2uqCzH79+/HPffcg5aWFotvgTAnRoyffvoplixZckVRBC6M0PIfTDHJ9BUABgYGIJPJsGbNmlkdZ6bU1NRgcHAQ6enp4144ljZy1Ol06O3tRUdHBzo7O6HT6eDq6goXFxcsWbIEIpFowrJshuKmYrH4iqMoQghUKhXkcjnkcjna29tx/vx5WFtbG/tdu7u7cz6inCwlh8/nIz4+HsePH0djYyOCg4Op+xgeHo5jx44hJCSEWh7s+vXr4erqiq+++gq/+tWvqNicKRY/YiSEIDIyEo899hh+85vfULN78uRJuLq6Ijw8nJpNA+3t7Thz5gzS0tLg6Og44XO5HDkamkc1NzdDJpPBzs7OKFDTbaw10xijXq9Hb28vOjs7IZPJoFarIRaLIZFI4O7uTn00Np08xYGBAeTl5SE+Pp6TuNvZs2ehVqvNvovrYl5++WV8++23OHnyJDWbM8HihfHkyZPYsGED2traqAWre3p6cOrUKaxZs4Z6ArXhYklISJhyfxFziWOBtB/H6nqRFXrpCFyj0UAqlaKpqQmEEEgkEvj5+U0q4hNhisUXQgiGhobQ2tqK5uZmWFlZYdGiRQgMDKTyPc4kebu9vR1lZWVIT0+f1ec3E9RqNQ4fPoyUlBS4uLhQsSmXy+Hv74+ioiJERkZSsTkTLF4Y77rrLlhbW+P999+nYo8QgpycHPj7+1Pf36lWq3H8+HGEhoZOe3planEcL2a7QmyPmpoaSKVSeHh4YNGiRfDy8jLJqMzUq9J6vR6dnZ1oaGiAXC5HUFAQwsLCzBbbms2OlurqarS2tiI9PZ36D3FVVRX6+/snDFOZml/84hfw9/e36PQdi17eGxgYwO7du/Hggw9Ss9nR0QGNRoOgoCBqNoELglxaWgpPT88ZVckxdSXwi1f57QTAuYpKHD58GBqNBhkZGUhKSoK3t7fFLXoY4PP58PHxQUpKCtLS0qBUKnH48GHU1taaPIdvttv8Fi9eDCcnJ5SXl5vUr6kQEhICuVyO7u5uajZ/+9vf4pNPPuGkwvhUsWhh/OKLLxAZGYlly5ZRsafX61FZWYnw8HDqaRQtLS0YHBxEdHT0jMXGlOKYFeoOHtFjvR/B27E6+NlqkZqairi4ODg5Oc3q2LRxdnZGQkICkpKS0NnZiSNHjkAqlVpMOwJDoYfu7m50dHTM2qfpYG1tjSVLlqCiosJszb3GkpmZCS8vL3z77bdU7M0EixbGnTt34s4776Rmr7293dgykyYjIyM4d+4cVqxYMeuG6aYSx0hXK+y92h63hdogKCIG116VzslWNlPi5uaGlJQULF++HPX19cjPz8fQ0NCMj2fKghA2NjZYtmwZzpw5A41GM6tjTZegoCCo1Wp0dXVRscfn8/HLX/4SO3fupGJvJlhsjLG2thbLly9HV1cXtXSCnJwcSCQSSCQSKvYA823un2nMUa/Xo66uDrW1tQgLC0NoaCiV9BfaO190Oh2qq6vR2NiI8PBwBAcHT2ukbq4qOdMpVmJK6urq0N3dTS3W2N3dDT8/P7S2tlrkThiLHTEeOHAAycnJ1ESxr68PSqWS+mjRMIU29QrdTEaOg4ODyM3NRXt7O9LS0rB48WLOcwLNhZWVFSIjI5GcnAypVIr8/HwMDw9P6bXmLB0WHR3NyZRaIpGgt7d3Rj1rZoKnpyeWL1+OgwcPUrE3XSz2rP/2229x3XXXUbPX0NCAoKAgqrFFU06hx2M64tjZ2Ync3Fx4e3sjPT19znZ3my6urq7IyMiAq6srjh8/jt7eiSshmbue4sVTapqLE9bW1ggICEBDQwM1m9dccw327t1Lzd50sEhh7OvrQ2FhIW6++WYq9kZGRiCTyaivRJeXl8Pf3x8eHh5mszGZOBJCUFdXh5KSEsTGxiI8PHzejhKvhJWVFaKiohAdHY2CggI0NTWN+zxaRWZ9fHzg6emJc+fOmc3GeAQHB6OlpYVajHPr1q04fPgwZ9WGJsIir4AffvgBUVFRVywYYWqam5vh7e094ZY1U9PT04O+vj4qFU6uJI46nQ6lpaVobGxEamoqxGKx2X2xZPz9/ZGcnIzq6mqUl5cbC1sA9CtvL126FDKZDHK53Oy2DDg5OcHNzc0k6V5TYenSpfDx8cHRo0ep2JsOFimMe/fuxdq1a6nYIoRAKpVSHS0SQlBRUYHFixdTS+gdK46Gyj0jIyPIyMhYMFPnyTBMrfv7+3Hq1CnodDpO2hHY2toiJCQElZWVVOwZCAoKMlkq01S46qqrsG/fPiq2poPFCaNGo8FPP/2ErVu3UrHX1dUFHo9n1unsWDo6OqBWq6lP3Q3iWF5ejuzsbAgEAiQlJVl8pRPaCIVCpKSkQKvV4vjx46isrOSkHQEXyddisRgajQb9/aYr9jwRN954I/bv309NiKeKxQljTk4OXF1dERsbS8WeVCqFRCKhtoODyyRy4EKys729PYaHhyesZLPQEQgEEIvFGBoagpOTE/V9zAA3ydd8Ph8BAQGQSqVU7K1ZswYajQanT5+mYm+qWJww7tu3b0aFYWeCSqVCZ2cnAgMDqdgDLqTn8Pl86mlBwIWYoiFnMjk5GefPn6cWT5prNDY2oqamBqmpqeDz+SguLr4k5kiLoKAgaDQaquk7EokEbW1tGB0dNbstKysrpKenW9x02qKEkRCCffv24YYbbqBiTyaTwd3dnVoVY51Oh6qqKkRGRlLfY2zoVkcIwcqVK+Hh4WHSvdXziYtjim5ubkhMTMTIyAgqKiqo+8Ln8xEeHo7Kykpqwuzo6AhnZ2dqO2E2btzIhHEizp07h4GBAaxbt46KPZlMBh8fHyq2gAtNkRwcHDjJ9G9oaEBPTw/i4+ON02dTF56YD4y30CIQCJCYmGgsZ0Ybf39/8Pl8qk3QxGIxZDIZFVs33HADqqurLeoctChh3LdvH9LS0qgsBmi1WnR3d1NLUSGEoKGhAWFhYdRHi11dXaiqqkJiYuJlNS2ZOP6XiVaf7ezskJCQgLNnz6Kvr4+qXzweD2FhYaivr6cWaxSLxejs7KQyShWJREhISMCBAwfMbmuqWJQw/vDDD9RGi93d3XBycqKWuyiTycDj8aiPFpVKJYqLixEbG3vFlBwmjlPLU3Rzc0N0dDSKioowMjJC1T9fX1+o1epJd+aYCicnJ1hbW1P7Ebj66qvxww8/ULE1FSxGGHU6HcrKyqgtvMhkMqoJzQ0NDdMuVDBbCCE4ffo0goKCJg0ZLGRxnE6eYmBgIHx8fFBWVkY1xYTP52PRokWor6+nYo/H48Hb25vadDo9PR3FxcVUbE0FixHGmpoaCAQCKjtBCCHo7OykJowKhQJyuZx6T5b6+npotdop961ZiOI4k+TtqKgoDA0NUY83BgUFobu7m9po1RBnpPEDEB8fj56eHmpCPBkWI4ynT5+mtk+3v78fPB6PWsJuc3Mz/Pz8qJatHxwcRHV1NVasWDGtz3QhieNMd7QIBAKsWLEC58+fpzqltrW1hbe3NzVB9vDwgFqtnlXNyqlib2+PsLAwY9k1rrEYYSwuLsbSpUup2DJMo2lMa3U6HVpaWqhvOSwtLUVISMiMmhwtBHGc7TY/Dw8PBAQEUJ9SSyQSalv2+Hw+vLy8qI3iIiMjLWY6bTHCeOrUKcTHx1OxRTO+aGgrSqsLG3BhhKrVarF48eIZH8Pc4kgIwfDwMDo6OtDU1GQsd9XY2IimpibIZDKzjcZMtfc5IiICQ0NDVJOvPT09wePxqG0TpJm2ExsbazHCaPoigDNAr9fjzJkzeOedd8xua3h4GMPDw9T2Rre3t1OrEgT8N4l8+fLlsw5LGMSxoKAAAGYVI9Xr9ejp6UFPTw8GBgYgl8uh0+ng7OwMOzs74+hdLpdDr9djZGQECoUC1tbWcHFxgUgkgoeHBzw8PGY10jdlQQhDTLyyshJisZhKGIjH48HPzw8dHR1UMhy8vb1RVlYGjUZj9jS6pKQkvPnmm2a1MVUsQhhra2vB4/EQFRVldlt9fX1wdXWlskdYr9ejq6tryosfpqChocGkSeSzFcfh4WE0NjaipaUFAoEAXl5e8PPzQ1RUFBwdHY1iotPp0NbWhhUrVhi/G71ej8HBQcjlcsjlcpSWlhp9CAoKmnaqlTmq5Pj5+aG2thYtLS3UWmKIxWKcOnUKMTExZg8H2djYwMnJCf39/fD29jarraSkJHR3d6Ozs9PstibDIoSxpKQEERERVH5x5XI5tWltT08PbG1tqXXVGx0dRW1tLZKSkkx6wcxEHBUKBWpqaiCTyeDr64v4+Hi4ublNyy8+nw+RSASRSASJRAJCCHp6eiCVSnHkyBH4+vpiyZIlU2p/Ya7SYTweD5GRkSgrK4O/vz+VH1xXV1cQQjAwMEDlXBaJRJDL5WYXK3t7e4SGhqKkpIRq9f7xsIgYY3FxMZXRInChVzWt1WiaKUHAhZG3u7s73NzcTH7sqcYc9Xo9ampqkJOTAzs7O6xZswaxsbFwd3eftVjzeDx4enpi5cqVuOqqq2BtbY3s7OxJd4SYu56il5cXHBwcqLUFoJ1j6OLigoGBASq2IiMjLaLSjkUII62FF0IItREjIYTqIo9Wq0VTUxOWLFliNhuTiaNCoTA200pPT0dUVJTZCnTY29sjOjr6kmZWSqXysufRKDLL4/GwZMkSNDQ0UCv0QHNRxMXFhVol8RUrVqCoqIiKrYngXBgNCy/Jyclmt2W4cGh0HhwcHMTo6KhZRm/j0dLSAmdnZ7OL/njiSAhBfX09cnNzIRaLqTbTMlTcdnNzQ3Z29iX9WmhW3vbw8ICNjQ3a29vNaseAp6cnBgcHqeRROjs7Q6VSUWnOtWrVKovIZeQ8xmiYBtHIYZTL5RCJRFTyF2UyGby9vanETQkhaGxsNOto8WIujjkSQqBQKNDe3o7U1FTqVa6B/7ZCFYvFKCoqglqthrW1Naqrq6lV3ubxeFi0aBGampqo1NoUCATw9PSETCbDokWLzGrLysoKTk5OGBgYMPtKeFJSErq6utDV1cVpv2nOR4w1NTXU2pbSClYDF4pU0Ppi+/v7odFoqJZQM9QpPHPmDNra2pCWlsaJKI71KTU1FfX19Th//jxWrVpF1Sd/f38MDAxQ683s5eVFLZ+R1nTawcHBuNLPJZwLY0dHBzw9PanYohlfpCnCzc3NCAgIoNr21BBDtbW1hVarRU9PDzXbE2EQCmtra2qFVg0IBAL4+flR27JHc1HEsDJNAw8PD6pJ8+NhEcJIY2RlWHihMYIYHh6GXq+n0ifEIFC+vr5mt3UxjY2NxpHiqlWrLGL7oCGmmJKSgtTUVDQ0NFD3ydfXl9pF7ezsjJGRESp9oGkuwHh5eTFhbGtro7JyOzw8DABUxMowMqURyzQUxKC55XBoaAiVlZVISEiAnZ2dReytHrvQ4ujoiJUrV+Ls2bNUCz0YCi/QmE4LBAI4OjpSESyRSASVSkVFhL28vNDW1mZ2OxNhEcJIY7SjVCrh4OBARaxojUwBugUxgP8WqAgODr5EjLkUxyutPnt4eMDf3x9nzpyh2mWPZuEFWtNpKysr2NnZjZsSZWrEYjG11f0rwbkwdnR0UNlLrFKpqDW9ohlfNKx+06KhoQGjo6PjFqjgQhwnS8mJjIzE4OAgVbE2tAWgAc0prlAohEqlMrsdX19fJozt7e1U2pfSEkaascyRkREMDw9TW7xSKpWoqqpCbGzsFbMIaIrjVPIUDbUTz507R+WiBi4UXujr66PSfpSmMNra2lLJZQwICFjYMUa9Xo/u7m4qwqhWqy9rBGUORkZGoNfrqeyP7u/vh0gkopLqBFzYchgQEDDpaJiGOE4nedvDwwPe3t7U2gLY2NjAwcGBimAZFmBoiDCtEWNgYCDnlbw5Fcbe3l4QQqgkxNIaMQ4PD8Pe3n7exTJVKhVaW1sREhIypeebUxxnsqMlNDQUTU1NVAQEoDeSEwgEsLW1NS4umhNawiiRSNDX10dloedKcCqMHR0dcHNzozLioSWMNGOZNCsFSaVSY7GEqWIOcZzpNj+RSAQXFxdqsUaaOYa0BIuWHTc3NwiFQk5HjZwKY3t7O7X42HwTRppJ5ISQGdcbNKU4znbvs0QioSqM821RhJYdPp8PT09PTuOMnI8YaQgjIQRqtZqaMNKIZapUKmi1Wip5mf39/dBqtTNOxDeFOJqiIISPjw+Ghoao5BiKRCIolcp5FfujtfgCcL/7ZUEIo1arhU6noyJYtAR4ZGQEdnZ2VLYB9vX1GXuNzJTZiKOpquRYWVnB3d2dShN5gUAAGxsbKsnltATLIMA0ckIXtDAODQ1RGfGoVCrY2NhQEZH5NmUHTBfLnIk4mrp0GM09v0KhkKpgmRsbGxvweDwq78nR0ZFK29Yrwakwjo6OQiAwf+UzGo18DMxXYTTV6vd0xNEc9RTZosjM4fF4sLGxobJaLBAIqGUQjAenwqjVaqkIIyGEWuUZWvmStIRxdHQUw8PDJk0Lmoo4mqvIrEEYaVTano+xPx6PR2UqbWVlBa1Wa3Y7V2JBjBgJIdT2Euv1eioiTEuAFQoF7O3tYW1tbdLjTiSO5qy8LRQKYW1tTWWaRkuw+Hw+tZYKfD6fijAKBIKFK4xardbkF9x46PV6qkUWaAgjrdG2OReTLhbH1tZWAEBTU9OsRbFA2o8XjtShQNp/2WM8Hg+2trbUpoM6nW5Cf0yBKUZxU/WRx+OZTIQnsmkqYVQoFPjLX/6CH374YVp966d1ZbW1teGf//wnent7AVw4sR9++OEZN2IfHR2FlZUVdDrdjF4/VXQ6HXg8ntntABeEUa/Xm92WXq8HIcTsdrRaLfh8vtnsiEQixMfHGxsgVVVVYdWqVXB0dJyRzaLmfly18yR4PB7+eojg6PZVSAh0veQ5hBBoNBoq31GHXIktX+RN6M9sIYRgdHR0xu9nKp+ZAZ1OZ7zNhslsKhQKkwjwxx9/jLi4OFx77bW46aabcNttt02pHxGPTOOn5uzZswgODkZeXh56enpw2223zcrpu+66C1ZWVti4ceOsjsNgMOYXN954I3Q63axHwg899BDuuusuxMXF4YEHHsBdd901pY6k0xoxRkdH46OPPsLmzZuxc+fOGTtrNC4QwMXFBevXr5/1sSais7MTdXV1SElJMasdADh48CDWrFlj9vhfcXExPD09Z7QbZTq0t7ejubkZSUlJZrNhmD4bwgNLly6d8f75i0cihIw/+snNzUV4eLjZc2jr6urQ1NWPzd91T+jPbBkaGsKJEyewdu3aGb1+Kp+ZgezsbMTExMy6++VkNu+8806TdNjU6/XGLcc6nW7K24+nHaTKz8/H3XffjdLS0um+9DKsra2n5exMEQgEIIRQ2ZPN4/HA4/HMbstwfBqf3cUnl6lpbGxETU0NVq1ahdzcXCQkJODUqVPg8/kzCtGsWuSBY/enIru+F5kh7kiSXH6B6/V6CAQCKueD2NluUn9my2zPual8ZgYIISb57CazqdPpTJJiFxUVhY6ODixfvhwtLS0IDg6e0uumLYzPPvssAODvf//7dF96uXFKuUq0Ugxo2qK1amdnZ2e2yi0Xrz4bEv0vbs0KYEbimCRxveLFTQjB8PAw7OzsZu74FDGMgCfyxxSYYsFvqj6aciFzIps6nc4ki4u/+tWv8Nprr0Gv1yMzM3PKGxWmbdlQbdsUNRStra2plEsy5UraZNDKv6KVI+fk5AS1Wm3yvMmxKTkXB/NNIY5XYmhoCHw+H/b29iY75pVQqVRUinzodDpqebq0si5Mlcrn7OyMp59+GgBw/fXXT/l1nKbr0Br10Mzzmm/bwKysrODs7GzS3SJTyVM0Vz1Hwy4eGulb83EXFK3UN1ONGGcKp8JobW1NRRhp7gyYb9vAANOW0JpO8rY5xJFmP575Jox6vR4ajYbKxgJamz+uBKfC6Orqiv5+8yS9XoyhKfx8EmGaYm8qYZzJjhZTiyPN4r40S9DREEa1Wg0+n09lU8bAwIBJVqVnCqfC6OPjg56eHrPbEQgEEAgE82qK6+DggJGRESpJ6x4eHuju7p7VD8tstvmZShzVajX6+/vh7u4+42NMx5ZOp6OyyEN7fz6NqXRPTw98fHzMbudKLAhhBObfFNfGxgZCoZBKpRhHR0eIRKIZt7Q0xd5nU4hja2srPD09qYyu5HI5nJ2d51XbDloCDDBhRHd3NxVb800YAbrl8wMDAyGVSqf9OlMWhJiNOBJCIJVKqXSkBOg3KptPsUydTrewhdHX1xf9/f3zSrBoCyOt2oJ+fn4YGhqaVvVrc1TJmak4dnV1QavVQiwWm8SPyaAdy5xPwtjR0QG9Xk+tH9R4cCqMzs7OEAqFVBoU0Yz9DQ8PU4n90RwxCgQCLFq0CDU1NVN6vjlLh01XHAkhqK2tRUhICLV8P1qr3xqNBqOjo9TyMmkIo6EjJa1+6ePBqTDyeDx4e3vPaIo2XWiuFguFQigUCrPbcnFxwdDQELX+uyEhIRgYGEBbW9uEzzOnKBqYjjhKpVKoVCqz7ys3oFQqodFoplTFZbbI5XI4OTlRERFaMcbW1lZqI/srwakwAhem083NzWa3Q3OKS6uviI2NDVxdXdHZ2Wl2W8CFvNPly5ejvLz8ij8yNETRwFTEcXh4GOfPn8eKFSuo5cXJZDJ4enpSEav5GMtsbm7mNL4IWIgwTjYCMQXzNfYnFoupNib39vaGWCzGmTNnLtsTTlMUDUwkjoQQlJWVQSKRUEnRMSCTyVgscxZ0dHQYtx5zhUUII402iYauY/Mt9icWi9HV1UXlfRlYunQp+vv7L/lB40IUDVxJHJuamjA8PIyIiAhqvoyOjqKvrw/e3t5U7NGMZarVajg4OJjdlkwmg6+vr9ntTIRFCCONqaBQKIStrS21ZusKhYKKWDk6OkIoFBqrqtPA2toasbGxOHPmDHp6ejgVRQNjxbGzsxMVFRWIi4ujGsTv6uqCSCSiMrLSaDQYGRmhFst0dHSkEo7o7u7mXBi524z4f/j6+lLLZTSM5Mz9C3uxCNP4Nffx8UFrayu8vLzMbsuAp6cnli9fjoKCAvB4PKSmpnImigYM4njixAkQQpCQkABXV/OV+xqP1tZWahc1TbGiuce8u7ubxRhpjRiBCyM5WrE/FxeXaeX8zQaJRIL29nbqfXgvXg3nsgfwxRh84vF41FbrDYyMjKCrq8ukZdImor+/n5pY0Vzk6erqYsIYFRWFxsZGKqk0NGN/Xl5e6OrqomLLwcEBbm5uVFb3DRimz2lpaVixYgUKCwshlUqpFQQeCyEE9fX1KCkpQUJCApKTk01esmwympubIRaLqW2b6+zsnHexzO7ubnR1dVGNC48H58Lo4+MDV1dXY5c4c+Li4mKy7mOTIRaLZ114YTosWrQIjY2NVIRpbEzR19cXSUlJqK2tRUFBAUZGRszuw8UolUrk5+dDKpUiJSUFXl5eZqvneCX0ej0aGxuxaNEis9sCLqwQDwwMUAmfjI6OYnh4mMqIMS8vDyEhIcaK7lzBuTACQGxsLE6ePGl2O4Zm6zSSr+3s7ODk5ERt1CgWi0EIMXtY4koLLe7u7sjMzISjoyOOHTtGZfRICEFDQwOys7Ph5uaGjIyMS0Y1NMWxra0NQqGQWlpQZ2cn3NzcqJQAoxnLLCwsxMqVK81uZzIsQhjj4+NRUlJCxRbtHENa8VMej4ewsDBUVVWZTZAmW30WCASIjo5GQkICampqkJeXh46ODpP7o9fr0dbWhpycHDQ1NSE5ORmRkZHjrj7TEEe9Xo/q6mqEhYVRKckF0M+VpBVfPHPmDBNGAytXrkRFRQUVW7RzDGUyGbW4W2BgILRarVkS5qeTkuPh4YGsrCz4+/vj/PnzOHLkCGpra2c9xR4eHkZ1dTWOHDmCqqoqBAUFISMjY9KVZ3OLo1QqhUAgoLYardPp0N3dTU0Yaa5IG1KsuIbzdB0AiIuLQ01NDZW9mCKRaMqFEExhi8/no7+/n0o1Yj6fj4iICFRWVsLX19dkBRNmkqdoKDoRFBSEzs5ONDc3o7q62ljb0cXFBS4uLlesWajVaqFQKCCXyyGXyzEwMAClUgmxWIxly5bB09NzWqMzczXY0mq1qK6uRmxsLLXRYnd3N+zt7akkWwMXRow0Yqc9PT1obW3FihUrzG5rMixCGH19fSESiXDq1Cmkpqaa1Za7uzsUCgU0Go1J+tZOBI/Hg1gsRkdHB7Uy7b6+vqitrYVUKjXJyTzb5G3DZyAWi6HRaNDf3w+5XI7u7m7U1tZCpVLBxsbGKOJHjhwx9haxs7ODi4sLRCIR/P394erqOquYmjnEsaGhAU5OTlRzSGlOo4eHh6FSqahMpfPz8xEcHAwnJyez25oMixBGHo9nXIAxtzBeXHiBRr6Zn58fSkpKEBkZSWVEwePxEBUVheLiYvj6+s5qBG7qHS02Njbw9va+JMVErVYbS2fl5uZi5cqVsLa2hq2trVl+uEwpjsPDw6itrUVycrKp3JsUnU6H9vZ2pKSkULFnKIhBY+GloKDAIuKLgIXEGAG6CzA0Cy+4u7vDysqK2iIMcGFXire3N8rLy2d8DFrb/GxtbeHk5GS0IRKJ4OTkZNbRvClijoYCFYGBgVR317S3t8PBwYHaYgjN0WlZWRni4+Op2JoMixHGuLg4VFZWUrFFs/ACj8eDRCKhUnPyYqKjo9HX1zejPi2WsPfZ3MxWHKVSKfUCFQa7tOpKjo6Oore3l1oSeVVVlUUsvAAWJow1NTVUtnHRLrwQEBCA7u5uqonPhtqJZ86cmdauooUgigZmKo5c1HgEgMHBQcjlcmoluWgWxOjr60NLS4tFLLwAFiSM/v7+cHBwmJfTaaFQCB8fHzQ2NlKxZ8AQzysrK5tSytBCEkUD0xVHvV6P0tJS6jUegQsLPYGBgVSSugG60+i8vDwEBQVRqRQ0FSxGGHk8HhISEnDkyBEq9mjnGAYHB0MqlVKtmwhcmFIrlUpUV1dP+LyFKIoGpiOO58+fh1arpT6F1mg0aGlpobblUK/Xo7Ozk5owHj9+HImJiVRsTQWLEUYA2LBhA3766ScqtlxdXY25crTsOTg4oLW1lYo9A9bW1khMTERjY+MV440LWRQNTEUcpVIp2trakJCQQL1RU3NzM9zd3amlsvT19cHa2pqavcOHD2PDhg1UbE0FixPGU6dOUdmyx+fz4e3tTbUtQGhoKGpra6kUsbgYBwcHrFy5EqWlpZd9tkwU/8tE4tjb24tz584hISEBdnZ2VP3SarWoq6tDaGgoNZuGaTSNFLOWlhZUVlZi3bp1Zrc1VSxKGP39/REeHo49e/ZQsWdIvqaFj48PBAIB9RVq4EIKT0REBAoLC42LQEwUL2c8cRwaGsKpU6cQExNDLVH/Yurr6+Hk5EStzzIhBDKZjNpq9K5du5CSkkJt2+FUsChhBIBNmzZh//79VGx5e3tDqVRSm07zeDxERkaiurqaWjmyi1m0aBH8/PyQn5+PmpoaJopX4GJxrKurM+7IoFWA9mI0Gg3q6uoQGRlJzWZfXx+0Wi08PDyo2Pvhhx+wefNmKramikUKY05ODhXhEAgE8Pf3pzqC8/LygrOzM+rr66nZNGAQZqFQiMrKSsTFxTFRvAJubm5Yvnw5zp8/DxcXFyxevJgTP2pqauDl5UU1iVwqlSIwMNBke+0nQqlUoqCgwKLii4AFCuOKFSsgFAqprU5LJBK0tLRQXS2OjIxEXV0dlarlY2lqaoJCoYCfnx/Ky8upF5WdKwwNDeHs2bMIDAxET08P1UrgBoaHh9HU1ES9y2F7ezu1JPK9e/ciKCgIwcHBVOxNFYsTRh6Ph40bN+Lrr7+mYs/FxQX29vYz2iEyG5teXl6ora2lZhP4b0wxJSUFcXFx8PHxQU5ODvr7+6n6Yen09PQgNzcXixYtwooVK7Bq1SrqbRIAoLq6GgEBAVSrWbe0tBgzKGiwb98+bNq0iYqt6WBxwghcmE4fPXqUmr2goCDqCyIRERHGvsc0GLvQYig2sWTJEpw4cYJ6GpGl0tTUhMLCQkRHRxunz7TbJACAQqFAW1sb1Sk8IQRSqRRBQUFU7On1emRnZzNhnCpZWVmQyWQ4e/YsFXv+/v5QKBTUKnsDF7YlBgUFTXlXymyYaPU5KCgIiYmJOHv2LCoqKjhrZsU1er0e5eXlqK6uRnJyMvz9/S95nKY4GgpUhIWFUU0N6u3thVqtptahLycnx9jm1tKwSGEUCoW4+uqr8Z///IeKPYFAgMDAQDQ0NFCxZyA8PBzDw8NmHa1OJSXHw8MDGRkZ6OzsxMmTJxdc3NHQTEsul09YEZyWONbV1UGv1yMsLMxsNsajvr4eixYtorLoAgC7d+/G+vXrqdmbDpbn0f+xefNmartggAtb9tra2qguiAgEAqxYsQLnz583y5R6OnmK9vb2SEtLo9rMimsubqbl7u6OlJSUSQsmmFscBwcHUVNTgxUrVlAVDKVSie7ubmrTaOBCUWJLS9MxYLHCeP311+PMmTPUErDt7e3h6emJpqYmKvYMuLu7QyKRmHxKPdN2BDExMcZmVhcng883DKPExsbGCZtpjYe5xFGv1+P06dMIDQ2lnkbV2NgIPz8/aj2xKysr0dTUhDVr1lCxN10sVhg9PT2RlZWFt956i5rNkJAQNDY2Uk++NvWUerY7WgzNrOzt7XH06FHOEtLNwejoKCoqKpCdnQ1XV1dkZmbOKEfQHOJYV1cHQgj1KbRGo4FUKqWaMvPmm29i8+bN1Fa/p4vFCiMAbN++HV9++SW1vcUeHh6cJF+bckptqm1+AoEAw6IA1FgHoqFNhsOHD6OxsZH6Pm9TodPpUFdXh59//hmDg4NIS0tDVFTUrIpBmFIcFQoFamtrERsbSz3mZkgipzVK1Wq12LNnD+677z4q9maCRQvj+vXrMTg4iEOHDlGzyVXytbu7O4KCglBcXDzjZHNT7n0ukPYj5c18/OFwM9b/MAg7/8Vobm7GkSNHOCmfNlO0Wi0aGxtx+PBhdHR0IDExEYmJiSar+2cKcdRqtSgpKUFoaCj1eoRcJJHv2rUL9vb2yMzMpGZzuli0MFpbW+PXv/413nnnHWo2uUq+Bi7kNlpZWeHMmTPTjjeauiDEsbpe8Hg86PQEPB4PJ7v0SE9PR1RUFJqamnDo0CFUVlZSy8OcLkNDQzh//jwOHTqEtrY2LFu2DKmpqWYpLjsbcSSE4PTp07C3t+dk22FVVRX1JPJ//etfuO+++6i1m50JFi2MAHDPPffg559/Rk9PDzWbtJOvDfD5fKxcuRK9vb3TSh0yR5WcrFB3EEJgxeeBEILMEHfweDz4+voiIyMDiYmJGB4extGjR3Hy5ElIpVJOtjhezMjICJqampCfn4/s7GxoNBokJycjNTXV7CW0ZiqO1dXVGBoaotqX2oBCoUB7eztVQa6vr0dBQQHuuusuajZnAo/MgZyMrKwsZGZm4plnnqFm88yZM9DpdIiNjaVm04BCoUBubi7i4+Mn7VdsztJhBdJ+ZNf3IjPEHUmS8RcoNBoNWltb0dHRgb6+PohEImMfaScnpylf7DqdDt999x3Wr18/5bgfIQQKhQIymQwymQwKhQIeHh7w8fGBn58ftRYAF9PX14eCggJER0dPWo2nra0N5eXlSE9P52QRorCwEE5OTlQr9zz66KNobm7GN998Q83mTJgTwvjNN9/gscceQ11dHbXKySqVCocPH0Z6ejonfSg6OjpQWlqK9PT0K05zLK2e4ujoKDo7OyGTydDZ2QkejweRSAQXFxe4uLhAJBLB3t5+3MWFyYRRr9dDqVRiYGAAcrkccrkcAwMDxoLDYrEYnp6enIjhWKYijnK5HPn5+UhISKBWZ/Fient7UVhYiKuvvpraZ6ZWqxEYGIgvv/wSV111FRWbM2VOCKNOp8OiRYvwyiuvYOvWrVd8XoG0H8fqepEVeuURznSoqKjA4OAgZ70oqqur0draivT09MtOXksTxbEQQjA0NGQUMMO/Wq0Wtra2sLW1hVAohFAoNHbaa2hoMKaMjI6OQq1WQ6VSQaVSQaPRQCAQXCKyLi4ucHBwsMhY1UTiqFKpkJOTg7CwMGo9XC6GEIK8vDz4+PhQrQr+1ltv4a233sL58+ct8ju7mDkhjADwyiuvYN++fcjLyxv3ccMqKo93ISaW/2DKrMVxdHQUP//8MxITE6l3hAMunMAlJSVQqVRISkoyCoili+KVIIRgdHTUKHYG4dPpdMZ0mtDQUFhZWcHKysoonBcLqKVfUBcznjiOjo4iPz8frq6uiImJ4eT9yGQynDlzBmvWrKHauyYmJgaPPPIItm3bRs3mTLH4xRcDv/nNb1BWVobTp0+P+/jYVdTs+tn3jLa2tsbixYtx7ty5aefvFUj78cKROhRIZ17Si8fjYcWKFbCyskJRURF0Ot2cFUXgwvuxsbGBs7MzvLy8EBAQgLCwMISHhyM8PBwAjH+HhYUhICAAnp6ecHJygrW19ZwSReDyBZnR0VGcPHkSjo6OnImiTqfD+fPnER4eTlUUDx8+jNbWVvzyl7+kZnM2zBlhdHV1xe23345XXnll3MfHW0U1BcHBwSCETCvp2zB6/fNP1Uh5M39W4mhlZYWEhAQQQnD8+HFUVlbOSVFcqBjEsby8HDk5ObC1teVkBdpAVVUVhEIhAgMDqdp99dVXsX37duqNxGbKnBFGAHjkkUewf/9+tLW1XfZYksQV+Q+m4G/rlphkGm2Az+cjNjYWNTU1U+4NY+rRq5WVFcRiMYaGhuDk5EQ154wxe5ycnGBvbw+lUgmxWMxZNZm+vj40NTVh+fLlVIW5uroa2dnZeOCBB6jZnC1zShjDw8Nx3XXX4cknnxz38SSJK/54VajJRNGAs7MzQkNDUVpaOqUptalHr42NjaipqUFqaiqsrKxQWFg4b/Yuz3cM02cHBwckJyfj/PnznLRJ0Ol0KC0tRUREBPXUoP/5n//B7bffDj8/P6p2Z8OcWXwxUFtbi+XLl6OkpMQYl6KBXq9HTk4OfH19p5QQO5UcwKkwNqao0+lw6tQpaLVaJCQkwMbGZsbHtiRmksdo6ahUKhQUFMDR0dG4B3o6eY6m5Pz585DL5UhOTqY6WiwsLMTq1atRU1MDX19fanZny5waMQJAWFgYbr/9djz++ONU7Rqm1LW1tVOaUpti9DreQosh5mhnZ4ecnBxqrV8Z06O/vx/Hjx+Hq6sr4uLijNNnLtokcDWFBoA//vGPeOihh+aUKAJzUBgB4JlnnsGRI0dQUFBA1e50p9SzYaLVZ4NIBwUFIS8vDzKZzKy+MKZHa2srTpw4gSVLlmDZsmWXiRFNcTRMoSMjI6lPoX/88UeUlZVRH8SYgjkpjD4+Pnj44Yc5+cDDwsJACEFdXZ3ZbEwlJYfH4yE0NBRxcXE4ffo0amtr533FbUuHEIKKigqcPXsWiYmJE1bDpiWOhlVompW5gQuhpyeffBJPPvkkXFxcqNo2BXNSGAHg8ccfR3l5Ob7//nuqdqc7pZ4u081T9Pb2RlpaGqRSKU6fPj1nyoHNN0ZHR1FUVITOzk5kZGTAw8Nj0teYWxy5nEJ/8cUX6OzsxEMPPUTVrqmYs8IoEonw1FNP4amnnqJePNXZ2RlLlixBUVERNBqNyY470+RtJycnpKenQ61WIzc3F4ODgybziTE5AwMDyM3NBY/HQ1paGuzt7af8WnOJo0qlwqlTp7B06VLqU2itVotnn30Wzz333KQ9dCyVOSuMAPDggw+iq6sLn3/+OXXbISEhcHV1RXFxsUmEebY7WmxsbJCUlASxWIycnBxjmXyG+dDr9aiqqkJeXh4CAwMRHx9v3LY5HUwtjjqdDkVFRfDx8YFEIpn18abLm2++CT6fjzvuuIO6bVMxp4VRKBTiueeew7PPPks9r4/H42H58uUYHR3F+fPnZ3UsU23z4/P5CA8PR2pqKlpaWtjo0YwMDAwgJycHXV1dSE9PR2ho6Kymq6YSR0IIzpw5AysrKyxdunTGx5kpw8PDeOWVV/Diiy/O6EfCUpjTwggAd9xxBwQCAd544w3qtg2pM21tbTNuZGWOvc8ikQgZGRnw8vJio0cTo9frUV1djby8PPj5+SEtLQ1OTk4mObYpxLG+vh69vb2Ij4/nZIfNiy++CD8/P4ttizpV5lyC93js3bsXv/3tb1FXV8dJwc++vj6cPHkSSUlJ06rCQ6MghFwuR2lpKQQCAZYtW8ZJbcmpMBcSvOVyOcrKysDj8RAbG2syQRzLTJPAOzs7UVxcjLS0NE6+597eXoSFheHbb79FRkYGdfumZF4IIyEEWVlZCA0NxQcffMCJDy0tLTh//jzS09OnFHynWSVHr9ejpqYGdXV18PX1RXh4+LQWCGhgycI4NDSEyspKdHV1YfHixQgJCTH7aGy64jg4OIjc3FzExsZCLBab1bcr8Ytf/AKjo6PYu3cvJ/ZNyZyfSgMX4n0ffvgh/vOf/+Cnn37ixIeAgAAEBASgqKho0ngn7dJhhtijof7e0aNHce7cOc57tFg6KpUKZ86cQXZ2Nuzs7LBmzRqEhYVRmaJOZ1qt0WhQWFiI0NBQzkRx9+7dOHLkCHbu3MmJfVMzL4QRuFAe7IUXXsD27duhVCo58SEyMhK2trYoLS29YkyPy3qKQqEQy5YtQ2ZmprF1Q3V1NStIMYbR0VFUVFTgyJEj0Ol0uOqqq7B06VLY2tpS9WMq4qjX61FSUgIXFxeEhYVR9c9Ab28vHnroIbz55pucCbOpmRdTaQN6vR5ZWVkICwvjbEo9OjqKvLw8uLq6XrYdzNKKzMrlclRUVEChUCA4OBgSiYT6xW/AEqbSKpUKTU1NaGhogLu7OyIiIiwiJnulabWhwvvw8DCSk5M5WwW+6aabjFPouVZM+ErMK2EELojPsmXLsHv3blxzzTWc+KBWq5GXlwcvLy8sXboUPB7P4kTxYnp6elBfX4/u7m74+fkhODiYuo9cCmN/fz8aGhrQ0dEBb29vhISEwM3NjaoPkzFWHAkhKC0thUKhQEpKCmdNwL766its374dFRUV82a0CMxDYQSAt99+G6+88grOnTvHySo1cKHHcX5+Pnx8fGBnZ4fq6mqLFMWLUSqVaGhoQHNzM5ycnCCRSODn50dlJEJbGEdHR9Ha2gqpVIrh4WFIJBIEBwdbdIVpgzguXboU/f396OvrQ0pKCmel53p6erB06VLs2LEDt956Kyc+mIt5KYx6vR6rV6/GokWL8OGHH3Lmx/DwMLKzs6HT6ZCWljZnNtNrtVq0t7dDKpVCoVAY+0R7eXmZbWRCQxg1Gg26urqMfahdXV0hkUjg4+NjcSvhV6K3txcnTpyAjY0NMjMzOQt9AMCNN94InU6Hb7/9dt5MoQ3M3dT0CeDz+fjoo48QExODrVu3cjal7uzsBHBhu15bWxtEItGcOIEEAgECAwMRGBiIwcFBtLe3o76+HqdPn4a7u7tRKC0t5Wc8hoaGjL2u+/r64OLiArFYjPDw8DnXIoIQgpaWFtja2mJ0dBRdXV1Ui91ezH/+8x8cO3YMlZWVc+Kcni7zUhgBICgoCC+99BLuu+8+nDt3jvpFYIgpGqY6+fn50Ol0iI6OnlMnkpOTE5YsWYIlS5ZApVIZRaaiogIODg7w8vKCq6srXFxcYGdnx+l7I4RgeHgYcrkc/f396OzsxMjIiLEj4cqVKzkdYc0GvV6PsrIyDAwMICMjA0ql0liPlLY49vT04JFHHsHbb78Nb29vqrZpMS+n0gYIIVi9ejWCgoKoTqnHW2hRqVTIz8+Hu7v7uMVL5xparRY9PT3o7u6GXC7HwMAArKysIBKJ4OLiAhcXF4hEItjb20/pvU53Kk0IgVKpxMDAAORyudEHQojRB09PT3h4eMyZafKV0Ov1OH36NIaGhpCcnGyMKXLVJuGGG24AIQTffPPNnD+Pr8S8FkYAkEqliI6Oxr///W9s2rTJ7PYmWn1Wq9U4efIk7OzsEBsby9lKojkghGBwcPAyodLr9bC1tYVQKLzkZriPz+eDx7vQNOzkyZNYtWqV8f86nQ5qtRoqlQoqleqyv8cTYkdHx3l1sWo0GhQXF0On0yEpKemyc4a2OH788cd47LHHUFFRMW9Hi8ACEEbgQjzkt7/9LfLz8xEREWE2O1NJyRkdHcXp06ehVCqRmJjI2ao5DQghUKvVlwjaWJHT6/UghECv1xvbw/J4PPB4PFhZWV0iqmMF1sbGZl6J4FgUCgWKiorg6uqK5cuXX3HkS0sci4qKsGbNGuzatQvXXXed2exYAgtCGAHgqaeewu7du1FUVGSW1eHp5CkSQlBVVYWmpibEx8dPqdrzfMcSErwtCZlMhtOnTyMsLGxKJc3MLY4ymQzx8fF4+OGH8Yc//MHkx7c0Foww6vV6bN68GUNDQ/j5559NevHNNHm7ra0NZWVliIyMxKJFi0zmz1yECeMFDP2EamtrERcXN63pqrnEUaPRIC0tDWFhYfj3v/89r0fpBubNXunJ4PP5+PzzzyGTyfDII4+Y7Liz2dHi5+eHlJQU1NTU4MyZM9RbNDAsC51Oh9OnT0MqlSItLW3aMTxztUn49a9/Db1ejw8++GBBiCKwgIQRuJB68t133+GLL77Ae++9N+vjmWKbn4uLCzIyMqBQKHDixAlW8WaBMjIygry8PKjVaqSnp8+41qOpxfGll17CkSNHsG/fvjnbv2UmLChhBC5U4dmzZw9+//vfIzc3d8bHMeXeZ6FQiOTkZDg4OCAnJwf9/f2zOh5jbtHT04Pjx48bRW22W/xMJY4HDx7E3/72N+zfvx++vr6z8mmuseCEEQCysrLwwgsv4Oabb57RiWOOghBWVlZYvnw5QkNDceLECVRUVLBWqPMcrVaL8vJyFBUVITIyEtHR0Sar9ThbcayqqsIdd9yBnTt3Ij4+3iQ+zSUWzOLLWAgh2L59OwoLC1FQUDDlaQKNKjlKpRKlpaXQaDRYsWIFXF1dzWLHklhoiy89PT0oKyuDg4MDli9fbrbiFTNZkBkYGEB8fDy2bNmCl156ySx+WToLVhiBC6ttq1evhqenJ77++utJf61plg4jhKChoQFVVVVYtGgRlixZMq8FY6EIo1arRWVlJVpaWhAVFYXAwECzL2hMRxx1Oh2uueYa2NjY4MCBA/P6u5iIBTmVNmBjY4NvvvkGxcXFeOKJJyZ8Lu16ijweDyEhIcjIyEBfXx+OHz/OYo9znN7eXmRnZ2NoaAhZWVmQSCRUVnmnM61+4IEH0Nrail27di1YUQTmcRGJqeLp6Ykff/wR6enpcHBwwNNPP33Zc7gsMuvo6IiUlBQ0NDTgxIkTC2L0SJMCaT+O1fUiK9QdSRLzhCwMo8Tm5mYsXbqUyihxLAZxnKjwxP/7f/8PBw4cQF5enkVULueSBS+MwIVeLUeOHEFWVhbs7Owuyey3hMrbhtGjt7c3SktLkZ2djaioKHh7ey+YvDJzUCDtR8qb+Rf2Zv9IkP9giknFkRCC9vZ2YyWirKwsTku1TSSOTz75JD7//HPk5eUt+M0GABNGI8uWLcOhQ4ewZs0a2Nra4uGHH7YIUbwYR0dHpKamorm5GeXl5bCzs0NkZOS0elkz/suxul7weDzo9ARWfB6y63tNJoxdXV2oqKiAVqtFREQE/Pz8LOJHbDxxfPbZZ/Hee+8hJyeHs4ZalgYTxotYuXIlvv/+e6xbtw4qlQrR0dEWI4oGeDweJBIJ/P390djYiMLCQotq3DSXyAp1B/nxgigSQpAZMvsfmIsbjC1ZsgQSiYRKu9XpcLE4fvDBB3j99deRnZ2NyMhIrl2zGJgwjiE5ORkHDhzA9ddfj+effx7XXnst1y6Ni5WVFUJDQyGRSFBXV4fc3Fz4+PggPDx8TlTWtgSSJK7IfzAF2fW9yAyZXYxxaGgIlZWV6OrqQmhoKBISEjjr2jcV3NzcUFxcjB07duDIkSNYtmwZ1y5ZFJb7zXFIRkYGDh48iA0bNgCASfdWmxpra2tERERg0aJFqK6uxtGjRyGRSLB48eI5W62aJkkS11kJokqlQnV1NVpaWhAUFGQMxVg6zz77LF577TUcPXoUK1eu5Nodi4MJ4xXIyMjATz/9hGuvvRYqlQqPP/441y5NiFAoxLJlyxASEoKqqiocPnwYAQEBCA4OnnO9TeYCCoUCDQ0NaG1tha+vL6666ipORuozWVV/4okn8P777yM7O5uNFK8AE8YJWLVqFY4cOYKrr74aKpUKzzzzDNcuTYqjoyNWrlwJhUKBxsZGZGdnw8PDA8HBwfD09LSIBYC5CiEEnZ2dqK+vh1wuR2BgIDIzMzn74ZnJqvrvfvc7fPnll8jJyWExxQlgwjgJcXFxyM7OxurVqzE4OIiXX37Z4oLp4+Hs7Ixly5YhIiICUqkUZWVlsLKygkQiQUBAwJyY7lkKKpUKzc3NkEqlAC4UIklISOC8NcV0VtV1Oh22b9+OH374Abm5uWz1eRKYME6BmJgY5Obm4rrrrkN1dTV27do1Z1oS2NjYICwsDCEhIejs7IRUKkVVVRXEYjEkEgk8PDzYKHIcCCHo6uqCVCpFV1cXvLy8EBMTAy8vL4v5vKa6qi6Xy3HDDTdAJpMhLy8PQUFBdB2dg8zbvdLffvstsrOzceuttyIpKckkx+zr68NNN92Erq4u7Nu3DyEhISY5Lm1GRkYglUrR3NwMQoixTzSXHfUsYa+0VqtFd3c3ZDIZOjs7jSPswMBAi61FWCDtn3BV/fz589i8eTPCw8PxxRdfzLjO40Jj3gpjXl4eUlNTTX7c0dFR/L//9//wn//8B19++SVWr15tchu0IISgv78fMpkMMpkMw8PD8PLyglgshre3N9XpNlfCODIyYuyV3dPTAwcHB+MPhYuLi8WMDmfCvn37cPfdd+O3v/0tnnvuuVmFgN5//31UVVVhZGQE//jHP8xWDchSmLfCWFFRAb1ej+rqaojFYuTk5ECn0yEtLQ0ZGRmzPv57772Hxx57DM8//zwefvhhE3jMPUql0iiSfX19cHFxgbe3N8RisbF7n7mgJYyEECgUCuP7VCgU8PDwML7P+ZID+vzzz+PFF1/EBx98gK1bt876eF1dXXB3dzfG2+c78zbGeOrUKdx555347LPP8OSTT0Kr1UKpVJpEFAHg3nvvRUREBLZs2YKzZ8/inXfeseiE3qng4OCAkJAQhISEQKPRoKurCzKZDLW1teDz+Zf0b3ZxcYGdnZ1Fj6gIIRgeHr6s17UhfBAWFgZPT0/OF1FMiVqtxp133onc3FxkZ2cjLi7OJMf18vLC119/jXXr1iE/P9/kAw1LY25fyRMQFRWF4uJixMbGorm5GTY2NsjPzzdpP9y0tDSUlJRgw4YNyMrKwt69e+fNvmUbGxv4+/vD398fer0eg4ODRmGpq6vDwMAABALBJULJpVgaRPBiAZTL5dDr9Ub//P39sXTpUrOPfrmira0NmzZtgkAgQElJCcRisUmPX15ejptuugnR0dEmH2hYGvNWGA3Z/IacPmdnZ4SHh5vcjkQiwcmTJ3H77bcjPj4e33777bxLmuXz+RCJRJfsGdfr9RgaGjIKUX19PQYGBgAAtra2EAqFEAqFl/x98X02NjZTEidCCDQaDVQqlfGmVqvH/T+PxzMKdUBAAKKjo+Ho6DgvRXAsBQUFuOmmm7B69Wq89957ZokPK5VKADDbQMOSmLcxRtro9Xo899xz2LFjB9555x3ceuutXLtEHULIJYI1nogZ7gMuFMTg8/ng8Xjg8XgYHR2FtbU1CCEghECv14MQAh6PB1tbW9ja2sLOzu4ysb34/wtBBMfy/vvv47HHHsOzzz6LRx991OyfgWGg0d/fP2/bbjBhNDHffvstfv3rX2PNmjXYuXPnvJlamxLDKNAggIQQjI6OIjs7G1lZWRAIBEax5PP5sLa2XpCCNxkymQzbtm3DqVOn8Nlnn2Ht2rVcuzRvsPwtHDPEcGFd6WYutmzZgsrKSqjVaixduhS7d+82m625imEEKBQKYWdnB3t7e+O2OgcHB9jb28POzg5CoXDKU+6Fxscff4zo6Gg4OzujsrLS7KLI1fXEFfNWGC8ejezevRsfffTRJfeZE7FYjH379uGVV17Bvffei5tvvhl9fX1mtclYGMhkMqxfvx7/8z//g/fffx9ffvkllVkJl9cTF8xbYTRQWlqKmJgY6nZ5PB5+9atfoaKiAsPDw1i6dCm++eYb6n4w5g+ffvqpcUGpsrISmzdvpu4DV9cTbebtqrSB7u5u1NfXo76+nhP7Pj4+OHDgAD777DNs27YNX331FXbu3AkXFxdO/GHMPTo7O/Gb3/wGBQUFePfdd3HDDTdw5gvX1xMt5v2Ice3atRgdHcXQ0BBnPvB4PNx+++2oqKjA0NAQoqKi8O2333LmD2Pu8NlnnyE6Ohr29vaorKzkVBQBy7ieaMBWpSlDCMG///1vPPzww1i3bh3eeusttnINyygiYUnIZDLcd999OHHiBOejxIXIvB8xWho8Hg933HGHMfYYFhaGP/3pTxgeHubaNYYFoFAo8Nhjj2Hx4sWws7OziFHiQoQJI0f4+vpi//792Lt3Lw4fPozQ0FDs2LEDWq2Wa9cYHKBWq/G///u/CAkJwenTp3HkyBHs2rULHh4eXLu2IGHCyDHp6ek4efIk3nnnHbz33nsIDw/Hv//9b+j1eq5dY1BAr9fj3XffxeLFi/Gf//wHn3/+OY4ePYr4+HiuXVvQMGG0AHg8HjZt2oRz587hqaeewhNPPIG4uDh8//33XLvGMCO7d+/G0qVL8dJLL+Gll15CaWkp1q5dOy8TpucaTBgtCCsrK9x9992oq6vDbbfdhttuuw0ZGRkoKCjg2jWGCcnOzkZSUhIeeOABPPDAA6iqqsItt9wyJ3oJLRTYN2GBCIVC/P73v0dTUxNSU1Nx9dVXY9OmTaisrOTaNcYsKC0txTXXXIONGzdi/fr1aGhowAMPPAAbGxuuXWOMgQmjBSMSifD888+jpqYGvr6+iI2NxdVXX42DBw9SiUEWSPvxwpE6FEj7zW5rvqLX67Fnzx5kZGQgJSUFkZGRaGhowJ/+9CfW79uCYcI4B/Dx8cE777yDxsZGJCcn46677sLSpUuxY8cOs6X5GHoW//mnaqS8mc/EcZooFAq88MILWLx4MR566CFcc801aG5uxo4dO9hK8xyACeMcQiwW49lnn0Vrayv++Mc/4pNPPkFgYCDuv/9+VFVVmdTWxT2LebwLPYsZk3PmzBls27YNgYGB2Lt3L55//nlIpVI8+eSTTBDnEEwY5yC2tra44447UFpair1796K/vx8rVqxASkoKPvjgA2Mh2NmQFeoOQibvWcwAhoeH8eabbyI+Ph7JycnQarU4dOgQCgsLsXXr1nnVU2ahwLYEzhN6e3vx6aef4t1330VPTw+2bNmC7du3z6oZ0mQ9i03JXNsSqNfrUVhYiJ07d2L//v0IDAzE9u3b8ctf/vKSFhCMuQkTxnkGIcRYhWXPnj1wd3dHZmYmbrjhBqxbt85iV0DngjCq1Wp899132Lt3L44dO4bBwUHccsstuPfee03WjY9hGTBhnMdoNBocP34c+/fvx759+6BQKJCWlob169fjpptusqjiFZYqjJ2dnfjqq6/w/fffIz8/H+7u7tiyZQs2btyIlJQUNk2epzBhXCAQQnDu3Dns27cPe/fuxdmzZxEXF4e1a9filltuMUsHxelgScJ49uxZ7Nq1Cz///DPKysoQFxeHzZs3Y+PGjQgPD2c7UxYATBgXKB0dHTh48CD27t2LI0eOICAgAFlZWUhJSUFKSgpCQkKo+sOVMOr1etTX1yM3Nxf5+fnIzs6GTCbD2rVrsXnzZlx33XXw9PSk5g/DMmDCyMDw8DCOHDmC77//HoWFhTh37hxEIhEiIiIQHR2N+Ph4pKamIjg42Gzb1mgIo16vR01NDfLz83Hq1CmcO3fOWP4tJiYGiYmJuP7665GZmQmhUGgWHxhzAyaMjMvQaDSoqKhASUkJiouLcerUKZw9exZOTk4IDw83imVaWhpCQkJMIpamFka9Xo/q6mrk5eUZRbCqqgojIyOIiYlBfHw8Vq5cibi4OEREREAgmPddPhjTgAkjY0qMjo6OK5bW1tbw8PCAp6en8ebj4wNfX18EBgYiICAAEokErq6uEwroVIVRr9ejr68PTU1NaG5uRmtrK9rb29HR0YGuri50d3ejp6cH3d3dIIRcJoLh4eFMBBmTwoSRMWNGR0fR3NyMjo4O462trQ3t7e1GsZLJZOjv74dQKDQKp6OjIwQCAaysrIz/WllZYWRkBHZ2dtDpdNDpdNBqtdBqtdDpdFAoFOjp6UFPTw9UKhXc3NwgFovh6+t7yc0gyj4+PggMDOR8IYcxN2HCyDA7arUaMpnMKJ4KhQJarRajo6NG8TPcBAKB8WZtbW38WyQSGQXP29vbYvMxGfMDJowMBoMxBrZXmsFgMMbAhJHBYDDGwISRwWAwxsCEkcFgMMbAhJHBYDDGwISRwWAwxsCEkcFgMMbAhJHBYDDGwISRwWAwxsCEkcFgMMbAyowwOKW4uBgKhQJnzpzB7373O67dYTAAsBEjg2OqqqqQnJyMhoYGrl1hMIywIhIMzvnuu+8gFAphZ2eHnJwc6HQ6pKWlISMjg2vXGAsUNpVmcMrzzz+Pp556Chs2bMDnn38OrVYLpVLJRJHBKWwqzeCUuLg45OfnIzY2Fs3NzbCxsUFZWRnXbjEWOGwqzbAYFAoFnJ2d0d/fD1dXV67dYSxgmDAyGAzGGFiMkcEpkzWvZ7/bDC5gMUYGpxBCQAjBW2+9BUIIfv/73xvvY6LI4AomjAyL4P7770dXVxckEgnXrjAYTBgZlgEhBEePHsWdd97JtSsMBhNGhmXw2muv4cSJE9i5cyfXrjAYbFWawWAwxsJGjAwGgzEGJowMBoMxBiaMDAaDMQYmjAwGgzEGJowMBoMxBiaMDAaDMQYmjAwGgzEGJowMBoMxBiaMDAaDMQYmjAwGgzEGJowMBoMxBiaMDAaDMYb/D0/Ny2tQlP1wAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUYAAAF2CAYAAAASrTFdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA7EAAAOxAGVKw4bAAB2XElEQVR4nO2dd1yb1/X/PxICxBQbMYUZNsNgG8wwm9hxnMQzSeOkaVbdJG52f2m/aZI2aZrmm9XGaaYzmtUMN44TjzjD8cAMGzAYjG32ElNsIRBIQtL9/eGvVBtjpnQfAff9eullrPGcI+l5Prr33HPP4RFCCBgMBoNhhM+1AwwGg2FpMGFkMBiMMTBhZDAYjDEwYWQwGIwxMGFkMBiMMTBhZDAYjDEwYWQwGIwxMGFkMBiMMTBhZDAYjDEwYWQwGIwxMGFkMBiMMVisMLa3t2P79u1ITk5GRkYGkpKScPPNN2PPnj3QarVcu2cWHnroITz00EPTek1nZycefvhhJCcnIzMzE8nJyVi9ejXeeOMNDAwMzMrmjz/+iOXLl4PH403LJ4Zl8ve//x0bN26kYuuvf/0rgoKCkJmZecXnzOR8pwaxQJqamoivry955513jPdptVryt7/9jQAgjY2N3Dk3DZ555hmSkZEx5ecrlUqiVCqn/Pzm5mbi7+9P3njjDaLX6433f/PNN8Ta2pr88MMPs7Z57NgxMpPTpLm5mTz22GNEKBSS119//bLHBwcHybJly0hSUhJ59dVXp338i/nuu+/IZ599Rl577TWybdu2aX2GpmC873m63z0N1Go1GRgYoGZvss9guuc7TQRcC/N4PPjgg1i5ciW2b99uvM/KygpPPfUUvv76aw49My/29vbTev7999+P2NhYPPjgg5fcv2XLFtxxxx2wtrY2uc2pEhAQgBtvvBEdHR2oqam57PEffvgBKpUKr7/+OtLT02dsZ2BgABs3bkR1dTVCQ0OxceNG/P3vf8fTTz89G/fnJTY2NrCxseHaDSPmOvdMgcVNpfv6+vD9999fccifm5uLwMBAABemkbfeeitSU1ORkpKC++67DwqFAgDwr3/9C+Hh4QgKCsIbb7yBq6++GsHBwfj000+Nx5LJZLj11luRkpKCjIwMXHfddTh58qTx8c7OTtxyyy1ITU1FamoqHn74YYyMjEzp+O+88w4+/vhjlJWVITMzE6tXrx73dWvXroVQKMSbb7552dRjIv8m+5w++OADrF69+or2Pv7443Ft1tbWIjMzE/Hx8di4cSPKysqm8e1dSklJCW655RbU1dVdcv/p06chFovR3NyMxMTEGR8fAEQiEU6dOoWQkBAAACEEer1+Sq81TPfS0tLw6KOPIisrC5GRkXjxxRcved7rr7+Oq666CmvWrMGqVavwzjvvGB8b73u+0nc/nfPp4u9pKufyZHzxxRdYvnw5goKCpvS+gInPv4muvbH86U9/wlVXXXXJZzveuWdRcD1kHUtBQQEBQH766acJn6fT6UhCQgJ59NFHCSGE6PV6cuutt5JNmzYZn/PRRx8RGxsb47G++OIL4uzsTLRaLdHpdGTlypXG1xNCyPPPP08eeeSRS47/8MMPE0IuTOU3btxIHnrooSkdn5ArTyUMr9uzZw8h5MLU9/vvv7/k+ZP5V1hYOKXPaSJ7Y30cHR0lS5YsIX/4wx+M/9+4ceOMptKEEPLqq6+SmpoaEhoaarxPpVKRb775huzatYtcddVVlzy/o6ODPP744xPeDh48eEV7/f39JCQkhDQ3N0/Zx2eeeYbw+Xxy8uRJQgghLS0txMXFhXzxxRfG5+zYsYOMjIwY/Q8NDSX5+fmXHGOyqfR0zqfxvqfJzrU33niDBAYGEpVKdcX3euzYMSKRSKb0viY6/6Zy7Rk+A1tb2yt+tpYYbjBgccJYVFREAJBDhw5N+DyDgNbU1Bjvy8nJIQCIVColhFw4mUQikfHxyspKAoC0t7eP+3q5XE5Onz59xeN//fXXxM7OzhjPm+j4hEwsjM7Ozpfdf/HzJ/PvSsL4xhtvkIyMDLJkyRLy2GOPTWhvrM28vDwCgNTW1hof/+qrr2YkjBqNhrz11ltEo9EQoVBovIC/+uorotFoyH333Ueee+65aR/3Suzfv5/8+te/vkTQpsIzzzxDoqKiLrnvtttuI1dffbXx/0eOHCHr1q0jKSkpJCMjg4hEIvLyyy9fcozJhHGq59OVvqfJzrWvv/6arF271vg5j8dYYZzofU10/k3l2jN8BhN9tpYsjBYXY1y8eDGsrKzQ3Nw84fOkUikAwNvb23if4W+pVGqcbru4uBgfFwqFAAC1Wj3u60UiEVasWHHJ8bdt2wY+/0LEQaVSwcvLC93d3fDy8prw+JPh6uo67fd3sX9hYWHg8/nG5xl48MEH8eCDDyIzMxM9PT1TtgcAra2tAGB8bwDg4eEx6evGo7CwEAkJCbC2toZYLIZUKoVKpcLixYthbW2NY8eO4cMPP5zRscdjw4YN2LBhA2655RbU1NTgmWeemfJrx75HLy8vnD59GgDQ2NiI6667Dm+//TZ+/etfAwAyMzOhVCqn5d9Uz6eJvqeJzrUbb7wRN95445T9mex9TXT+ffXVV5c9Nt61B0z82VoyFieMIpEImzdvxv79+7Ft27ZLHtNoNNi4cSNee+01SCQSABdiHc7Ozsa/ARgfm4jxXj84OIimpiZER0cbYzFffvkl/Pz8jK/r6uq6RDjMxWT+ubq6Yv369dizZw/uuecek9gMCAgAcOE9GmxeLK7TobS0FA888AAAIDQ0FNXV1RgYGMAtt9yC9vZ2tLW1ISEh4ZLXyGQyvPbaaxMeNz09Hdddd53x/7t378bjjz+Ouro68Pl8ZGZm4ve///20hLG3t/eS/3d1dcHf3x/AhTipWq3Gli1bjI9rNJopH9sA1+fTWCZ7XxOdf9O59ib6bC0Zi1t8AYA33ngDZ86cwbvvvmu8T61W49FHH4W1tTXCw8MRHx+PlStX4u233wZwIej+zjvvYMOGDZf8Yl2Jsa8HgBdeeAHffvstAGDlypVITEy8JCB99OhRbN68ecrvQyQSYXBwEADw6KOPoqCgYMqvncw/4EIA+9y5c3j55ZcvWXA4d+4cWlpajCOTqZKYmIiIiAi89957AACdTodPPvlkWscwMDo6arQfEhKCd99917hQdOzYMaSkpFy2ai4Wi/Hiiy9OeLtYFIEL33tGRobRVlNTE+Li4qbla21trfG7aWtrw8GDB3H33XcDAJYsWQIej4ecnBzj8c+cOXPJ68f7nsfep9VqZ30+TcSePXtwzTXXTHnhabL3NdH5N51rr6Ki4oqfrUXD8VT+ishkMnLPPfeQhIQEkpGRQRITE8nTTz99SXC5o6ODbN26laSkpJBVq1aR3/zmN0QulxNCCNm1axdZsmQJsbW1JVu3biUdHR0kMTGRACCJiYmktrbW+Prk5GSSkpJCfvvb3xKNRnOJD7feeitZtWoVycrKIhs3bjQG9qdy/KamJhIdHU1SUlLItddeS1Qq1SWvy8jIIKWlpYSQC7FBiURCRCIRuemmmy55f1fyz+DjAw88QOLj40l6ejpZtmwZSU5OJm+++SYZHBy8or0r2aytrSUZGRkkLi6OrF27ljz33HMEAMnIyCCtra2EEEJ27txJli1bNu73VlJSQu644w4SHBxMPv30U0IIIa+//jr5+eefiV6vJ8899xyJjo4m8fHx5PPPP5/h2fFf9Ho92blzJ/nHP/5BXnzxRXLrrbeStrY24+MT+UrIf+NcTzzxBMnKyiIRERHkhRdeuOQ5r732GgkMDCRr1qwh99xzD4mJiSESiYS88cYbhBAy7vc83n1TPZ/Gfk9TOddmsvgy2fua6Pyb6NojhJBnn32WSCQSkpqaSh566CGSkZFxyWc73rlnSfAIYV0CGdPj7rvvhpubG/7xj39w7cqkTObrX/7yF2RnZyM7O5uuYxxw7Ngx/OY3v0F9fT3Xrlg8FhdjZFg2R48eRUVFBX7++WeuXZmUueSrucjNzUVubi6efPJJVFRUIDw8nGuX5gRsxMiYFiMjI+Dz+bC1teXalUmZzNe//vWv+PDDDyGXy7Fu3Trs2rWLsofmp76+Hrfccgvs7e1BCMF7773HxHEKMGFkMBiMMVjkqjSDwWBwCRNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGAMTRgaDwRgDE0YGg8EYAxNGBoPBGIOAawcYDADIz89HTk4OdDod0tLSkJGRwbVLjAUME0aGRRAdHQ2tVgulUslEkcE5bCrNsAiam5thY2ODsrIyrl1hMMAjhBCunWAwFAoFnJ2d0d/fD1dXV67dYSxwmDAyGAzGGNhUmsFgMMbAFl8YFgGPx7vsPjaZYXAFGzEyLIK33noLhBD8/ve/ByGEiSKDU5gwMiyC+++/H11dXZBIJFy7wmAwYWRYBoQQHD16FHfeeSfXrjAYTBgZlsFrr72GEydOYOfOnVy7wmCwdB0Gg8EYCxsxMhgMxhiYMDIYDMYYmDAyGAzGGJgwMhgMxhiYMDIYDMYYmDAyGAzGGJgwMhgMxhiYMDIYDMYYmDAyGAzGGJgwMhgMxhiYMDIYDMYYmDAyGAzGGFgFb4ZZIIRgYGAAHR0d6OjoQHt7u/HfgYEBaLVa4210dBSjo6PQ6XQQCAQQCASwtrY2/i0QCODi4gI/Pz/4+PjAx8cHvr6+8PHxgZOT07jVvxmM2cCq6zBmxMjICMrLy1FVVWUUvNbWVqMQdnZ2QqVSwdXVFZ6envDw8ICnpye8vb0hEokuEz6BQIDOzk54e3uPK5pyuRxdXV3o7u5Gd3c3enp6IJfLYWdnB29vb/j6+hpvBgGNiIhAdHQ0bG1tuf64GHMMJoyMSRkeHsaZM2dQUlKC4uJiFBcXo7q6Gp6enggJCYGXl5dRnPz8/BAQEACJRIKAgAAIhcIp2dDpdPjuu++wfv16WFlZTek1KpUKUqkUUqkULS0taGtrM4pyV1cX6urq0NfXh4iICKxcuRLx8fGIi4tDdHT0lP1iLEyYMDIuQalUGkXw1KlTKC4uRk1NDcRiMSIiIhATE4PExESkpKTAz8/PZHZnIoxToaWlBbm5uSgqKkJ5eTkqKyvR09OD8PDwS8QyJiYGdnZ2JrPLmNswYVzg6HQ6nDx5Evv27cPBgwdRU1NjnIYuW7YMCQkJSEtLg1gsNrsf5hDG8WhtbUV+fj4KCwtRXl6OiooKdHd3IyIiAuvXr8emTZsQHx8PPp+tTS5UmDAuQAYHB3Ho0CHs3bsXBw8ehK2tLTIzM7FhwwasXr0a3t7e1H2iKYzj0dbWhqNHj+LAgQPIzs4GAKxfvx6bN2/GmjVrYG9vT90nBncwYVwgNDc348CBA9i7dy9ycnIQFhaGNWvW4KabbkJycjLnoyOuhXGsL8ePH8eePXtw5MgRSKVSZGVlYcuWLVi/fj18fHw49Y9hfpgwzlMIISgpKcH+/fuxd+9e1NTUIDExEddccw22bt2KkJAQrl28BEsSxrFUV1fjP//5D3766ScUFxdj6dKl2LRpEzZt2oSYmBiWLjQPYcI4z+js7MTHH3+M9957D3K5HBkZGdiwYQNuuOEGiEQirt27IpYsjBfT19eHPXv24MCBA8jNzYW3tzfuu+8+3HHHHXB3d+faPYaJYMI4D9Dr9fj555/x7rvv4ocffkBSUhK2bduGW265BQLBzHP4C6T9OFbXi6xQdyRJXE3o8eXMFWG8GLVajc8++wwfffQRSkpKsHnzZtx3333IyMhgo8g5Dlt2m8P09vbihRdeQFBQELZt24agoCCcO3cOx44dw69+9atZi2LKm/n480/VSHkzHwXSfhN6Pj+wtbXFtm3bkJeXh9LSUri5ueGWW25BaGgoXn31VQwMDHDtImOGMGGcg5w7dw7btm1DYGAgfvzxR/zjH/+AVCrFq6++arLY4bG6XvB4POj0BDweD9n1vSY57nwlPDwcb731FlpbW/GXv/wFu3fvhr+/Px588EHU1NRw7R5jmjBhnCPo9Xrs378fmZmZWLVqFTQaDQoKCnD8+HH84he/MPn0MyvUHYQQWPF5IIQgM4TFz6aCQCDA7bffjpMnT+LYsWPo6urC8uXLsW7dOvz0009gkau5AYsxWjiEEPzwww94/PHHIZfLcffdd+ORRx6hEugvkPYju74XmSEsxjgbOjs78eqrr+LTTz+Fv78/Xn75ZWRlZXHtFmMiCMNiOXHiBElNTSVeXl7kpZdeImq1mmuXzIZWqyV79+4lWq2Wa1fMxsjICHnmmWeIm5sbufrqq8np06e5dolxBdhU2gKpqKjAxo0bsW7dOiQnJ6O+vh7/8z//AxsbG65dY8wCoVCIv/zlL6itrUV4eDjS09OxdetW1NfXc+0aYwxMGC2IlpYW3HXXXYiPj4e3tzfq6urw0ksvwdHRkWvXGCbEzc0Nr7/+OiorK2FjY4OYmBjcf//9kMlkXLvG+D+YMFoAvb29eOyxxxAeHg6lUony8nK8//778PT05No1hhnx9/fHv//9bxQXF6OlpQVhYWH405/+BIVCwbVrCx4mjByiVCrx/PPPIzg4GGfPnkVubi52795tcdv1GOYlIiICBw4cwI8//oicnBwEBQXh1VdfhUql4tq1Bcu8Fcbi4mIcPXoUO3bs4NqVcTl06BCWLFmCffv24ZtvvsGhQ4cQGxvLtVsMDklJSUFOTg4+/fRTfPLJJ4iKikJubi7Xbi1I5q0wVlVVITk5GQ0NDVy7cgkKhQLbtm3D1q1b8cc//hEFBQVYvXo1124xLIj169ejtLQU9957L66//no88sgjGB4e5totAEB+fj5eeOEF/O1vf8Px48e5dsdszOs8xu+++w5CoRB2dnbIycmBTqdDWloaMjIyOPHn559/xt13343Fixfjww8/RFBQECd+WCLzOY9xNlRXV+POO+9ET08PPvnkE6SkpHDqj0KhQGlpKZRKJa677jpOfTEn83bE+Pzzz2P9+vX45z//iejoaCQnJyM2NpYTUVQoFLjnnnvwi1/8Ao8//jgOHz7MRJExJZYsWYITJ05g27ZtuPbaa/Hoo49yOnpsbm6GjY0NysrKOPOBBvNWGOPi4pCfn4/Y2FhOv8zDhw8jKioKdXV1KCsrw0MPPcR5UVjG3ILP5+OJJ57AqVOncPLkScTExODEiROc+BIYGIhVq1bht7/9LSf2qcF1hjkNBgYGCCGE9PX1UbOpUCjIvffeS0QiEfnnP/9JdDodNdtzkYWw88UU6HQ68vzzzxMnJyfy6KOPkuHhYa5dmpcsiKGLs7MzAMDV1bz7fQ0cOXIEUVFRqK6uRmlpKR5++GE2SmSYBD6fjyeffBJFRUU4ceIEYmJicPLkSa7dmnfMvGCfhTNZoVBihjUnnU6Hxx9/HB988AGeffZZNm0eg1arhVqthkqlgkajgV6vByEEhBBotVoAF3b/WFlZgcfjgcfjgc/nw8bGBkKhEEKhkC3M/B/h4eE4efIkXnzxRVxzzTV47LHH8Oc//9ns59t415U5riWumder0ga+/vprDA0N4a677jKbDblcjq1bt6KlpQX79u1DWFiY2WxZIjqdDgqFAkqlEiqVCiqVyiiChptWq4VAIIBQKISNjQ34fD74fL7xYuvs7DR2KDSIpl6vh0ajMb7e2toatra2RqE03GxtbeHo6AhnZ+cF92N05swZ3HDDDVi+fDk+/fRTODg4mNUejeuJa+btiNFAaWmp2YPV1dXVWL9+PUJCQlBQUGCcus9XdDodBgYGMDAwALlcjoGBASgUCgiFQjg6OhrFysXF5TLxulJVcUO6Tnx8/BVHhVqtdlzBlcvlUKlUGBoagkajgZOTE1xcXIw3JyeneT3SXLZsGYqKirBlyxasWrUKBw4cgEQiMYstGteTJTDvhbG7uxv19fVmq2Dy008/YevWrdi2bRteeeWVeTdaIYRAoVCgt7fXKISDg4NG4ROJRPD19YWLiwtsbW3N6otAIICjo+OERTUMQjkwMIDOzk5UV1dDrVbD2dnZ6K+7uzucnJzmVV8Wd3d3HD16FA888ABWrlyJb7/9FqmpqSa3Y+7ryVKY98K4du1afPnllxgaGjLpcQkhePXVV/Hss8/i9ddfn1fTCp1Oh56eHshkMnR2dkKn08Hd3R0uLi7w8/ODSCQyuwjOFKFQCLFYDLFYbLxPpVIZRb2rqwuVlZWwtrY2Ps/d3X1e/KAJBAK8++67iI6OxrXXXotXX30V99xzj0ltmOt6sjQWRIzR1KhUKtx77704evQo9uzZg8TERK5dmjVqtRqdnZ2QyWTo6uqCnZ2dUTjc3NzMPrqiufNFr9ejr68PMpkMMpkMarUa3t7eEIvF8PLymhd1L48cOYJbb70VW7duxY4dO2bVGG0hwoRxmnR0dGDz5s3GHiw+Pj5cuzRjlEol2tvbIZPJIJfL4ebmZhQI2jUgudoSSAjB0NCQUSQNn4NYLIavry/s7Oyo+WJqGhsbsXHjRnh6emL37t2s7/U0YMI4DYqLi7Fx40ZkZWXhww8/tNjp5ETodDrIZDI0NTWhv7/fKITe3t6cjpQsZa/02JGzh4cHJBIJvL29LXK6PVnvb6VSiVtuuQXnz5/HgQMHEBUVxYGXcw8mjFPkm2++wZ133oknnngCTz75JNfuTBulUommpiY0NzdDKBRCIpEgICAA1tbWXLsGwHKE8WLUajVaWloglUoxOjqKwMBABAUFwd7enmvXAPy39zePd6GTY/6DKeOKo16vx1NPPYW3334bu3fvxtq1aznwdm7BAg9T4IsvvsD27dvxySef4IYbbuDanSlDCEF3dzcaGhrQ09MDPz8/JCUlwcXFZV6tyJoLW1tbhIaGIiQkBH19fWhqasLRo0fh5eWFkJAQKrHXibi497cV/0Lv7/GEkc/n44UXXsCSJUtw44034osvvsCGDRs48HjuwIRxEj788EM8+uij+Oqrr7Bu3Tqu3ZkSOp0OLS0taGhowOjoKIKDgxEbGzsvFhW4gMfjwd3dHe7u7lCpVGhqasKpU6cgFAoRHBwMf39/TqbZWaHuID9Ovff3XXfdBXt7e/zyl7/Exx9/jBtvvJGSp3MPJowT8M477+CJJ57At99+OyeKyRJC0NraiqqqKtjY2GDJkiXw8fGxyNjYXEUoFCI8PBxhYWFob29HXV0damtrERERAR8fH6ojyCSJK/IfTJlW7++bb74Ztra2uP3226FWq/HLX/6SgqdzDyaMV2DHjh147rnncODAAaSlpXHtzoQQQtDZ2YnKykro9XpERUVRv0gXGlZWVggICIC/vz9aW1tx/vx51NbWIjIykmoTsySJ65QE8WI2bdqEr776CjfffDOGh4fxm9/8xkzezV2YMI7Da6+9hueeew7//ve/LV4U+/r6UFFRAaVSifDwcAQEBLARIkV4PB4CAgLg5+eHpqYmlJSUwNnZGZGRkXBxceHavSuybt06vPfee7jvvvvA4/Gwbds2rl2yKJgwjuGdd97BX//6V3z11VfQaDRoaWlBQEAA125dhkKhQGVlJXp7exEWFobg4GCLWc2dS0yW7jJV+Hw+goODERAQgIaGBuTn58Pb2xvh4eEW2Re8sbERIpEIn332GW677TbY2dmxafVFMGG8iA8//BBPPPGEcfrc19eHgoICALAYcVSpVKisrERbW5txUcVSUm7mGpeku/x45XSX6WBtbY0lS5YgKCgINTU1yM7ORkBAACIiIixm8auxsdHYLE4kEmHXrl245ZZbYGtryxZk/g825/o/vvjiCzz66KPYs2ePcfrs5uaGpKQknD17Fi0tLZz6RwhBW1sbjh07BkIIVq9ejcjISCaKs+DidBce70K6i6mwtbVFdHQ0rrrqKmg0Ghw9ehQymcxkx58pY0URAK677jp88sknuOuuu/Ddd99x7KFlwIQRwN69e7F9+3bs2rXrstVnSxBHtVqNU6dO4dy5c4iNjUVsbOyc3qpmKWSFuoOQqae7zAR7e3vEx8cjJiYGpaWlOH36NDQajcntTIXxRNHAli1b8MEHH+DWW2/F4cOHOfHPkljwO19KS0uRnp6ODz/8EL/4xS+u+DzDtDo6OprqtLqtrQ3l5eUQi8VYunTpvB0hcrXzpUDaP610l9mgVqtRXl6Ovr4+LFu27JIKQOZmIlG8mH/961947LHHUFRUhMWLF1Pzz9JY0MLY2dmJuLg43HvvvXj66acnfT5Ncbz4Ilq+fLmxsvV8xRK3BJqL9vZ2nDlzBt7e3oiOjjb7j91URdHA7373Oxw8eBBFRUUWvbJuThasMKrVamRmZiIgIAC7du2acooLDXE0jBJpXTiWwEISRoDeD990RRG4sLf62muvBQB8//33C+L7GMuCjDESQrB9+3ZoNBp8+umn08r7M2fMUavVori4+JJY4kIQxYWIra0t4uPjsXTpUpw+fRplZWXQ6XQmtTETUQQupB7t3r0bzc3NePzxx03q01xhQQrj66+/jkOHDmHfvn0QCoXTfr05xHF4eBi5ubnQarXIysqa91NnxgX8/Pxw1VVXQalUIj8/HyqVyiTHnakoGnB2dsb+/fvx8ccf45NPPjGJT3OJBSeMP//8M/785z/jq6++gr+//4yPY0px7O3tRU5ODry8vJCYmGgx+W4MOtja2mLVqlUQiUQ4fvw45HL5rI43W1E0EBYWhs8//xwPPvigMZ93obCghLG2thY333wzduzYgZSUlFkfzxTiKJVKUVBQgKioKERFRbH9zQsUPp+PZcuWYfHixcjPz0dbW9uMjmMqUTRwzTXX4Omnn8amTZtm7NNcZMHsfBkYGMCGDRtwxx13mHRfqEEcp7tDRq/X49y5c+jo6EBycjJcXc2bKsKYGyxatAhOTk44deoUFAoFwsPDp/xjaWpRNPCHP/wB586dw8aNG5GXl7cgcmgXxKq0TqfDhg0boNVq8eOPP5qlyMJ0Vqs1Gg1OnToFrVaLhISEBXGijYderwchBHq9HlqtFocOHcLatWshEAjA5/PB5/MX7AhaqVSisLAQDg4OU1qEM5coGtBoNMjIyIBEIsGXX34577+XBSGMTzzxBL755hsUFRWZ5aQxMBVxVCgUKCoqgqurK5YvXz5vUyF0Oh0GBwcxPDwMlUp1yU2tVkOlUk1pB4iNjQ2EQqHxZmtra/zbwcEBTk5O87aa0OjoKE6fPg2lUonExEQ4ODiM+zxzi6KBzs5OJCQk4P7775/3q9XzXhhzc3Nx/fXXo7CwEBEREWa3N5E49vf34+TJkwgLC0NoaOi8+dXV6XRQKBTG3s1yuRwKhQK2trZwcHC4orDZ2trCysoKPB4Per0eBw8exPXXXw8+nw9CCHQ63SVCOlZYh4aGMDo6CmdnZ7i4uMDFxQUikQjOzs7zRiwJIaiqqoJUKkVycjKcnZ0veZyWKBooKirCVVddhby8PCxfvtzs9rhiXscYh4eHcdddd+Gpp56iIorAlWOOvb29KCwsRFRUFCQSCRVfzAUhxNiXubu72yiCBnESi8VwcXGZViqU4feZx+MZRc3KymrCFXpCCFQqFeRyOQYGBtDR0YHKykqjWHp6ekIsFsPV1XXO/gjxeDxjZZ78/HysWrXKuBuFtigCQEJCAh544AHccccdKC4unrcZFPN6xPjII4/g1KlTyMvLoz6CuHjkKBQKUVRUhGXLls0qRYhLRkdH0d3dDZlMhs7OTlhZWRkb1Lu6us66lawpd76oVCr09/cb26ACMLaJ9fT0nLPN5xsbG1FZWYlVq1ZBLpdTF0UDWq0WsbGx2LJlC5599lmqtmkxb4XRMIUuKSlBWFgYJz709fXhxIkTIIQgLi4Ovr6+nPgxU0ZHR9HW1oaOjg709PTA2dkZYrEYYrEYzs7OJh2FmWtLICEEcrncKOhDQ0Pw8PCAr68vfH1955xINjc3o7y8HDweD6mpqdRF0cDp06eRnp4+b6fUc+usmCJKpRJ33nkn/vSnP3EmigCMW7x4PJ7Jt3uZC0II+vv7IZVK0dbWBhcXF/j7+2P58uVzcvWcx+PB1dUVrq6uiIiIwPDwMGQyGZqamnD27Fn4+/sjKCiIM4GZLhefR3q9njM/YmNj8dBDD+H2229HSUnJvJtSz8sR48MPP4ySkhLk5uZyFoTv7e1FQUEBVqxYAaFQyEnJsumg0+nQ3t6O+vp6jIyMIDAwEIGBgXBycqJmn3YRCYVCgaamJrS2tsLJyQnBwcEW3VXx4piiXC7H+fPnkZKSwpmoa7VaxMXFYdOmTfjrX//KiQ/mYt4J4/Hjx7FhwwZOp9CG1eeYmBhjTJGreo6TMTo6ioaGBjQ2Nhr7JPv5+VFPI+Kyuo5Wq0Vra6uxD3dISAiCgoIsapo93kKL4b6UlJTLVqtpUVpairS0NOTm5mLFihWc+GAO5pUwKpVKLF26FPfffz/+8Ic/cOLD4OAg8vLyEBkZednqsyWJo06nQ1NTE2pqauDi4oLFixfDzc2Ns9VbSyg7RghBd3c3ampqoFQqsWTJEgQGBnI+gpxo9bm+vh61tbVIT0+Hvb09J/49+eSTOHDgwLyaUs8rYXzwwQdRVlaGnJwcTk5mjUaDnJwcBAYGXrH6MdfiSAhBa2srqqqqYGtri8jISHh4eFD3YyyWIIwGCCHo6upCRUUF9Ho9IiIiOOvTPZWUnPPnz6O7uxupqamcjHK1Wi1WrlyJDRs24LnnnqNu3xzMG2HMzs7Gxo0bOZtC6/V6FBYWwtraGnFxcRNeRFyIoyVd7ONhScJowNCArLKyEjY2NoiMjISnpyc1+1PNUySEoLCwEFZWVli5ciUn36lhSp2Tk4PY2Fjq9k2NZUaZp4larcbdd9+NP//5z5zFFSsqKqBWq7FixYpJT0zaDbaGh4dx8uRJlJWVITg4GFlZWfD19bUYUbRUeDwe/P39sXr1agQEBKCkpASFhYUYGRkxu+3pJG/zeDzExcVBoVCgpqbG7L6Nx4oVK/Doo4/irrvumjMZGBMxL4Tx7bffhrOzMx577DFO7Dc3N6O1tRWJiYlTHu3QEEdCCBobG3Hs2DGIRCKsWbMGEomE85jZXIPP5yM4OBirV6+GUCjEsWPH0NLSAnNNtmayo8Xa2hqJiYmor69He3u7WfyajL/85S9QKpX47LPPOLFvSub8FaJQKPC3v/0Nzz33HCcXfF9fH86ePTujKjnmFMfh4WGcOHEC9fX1WLVqFaKioixmijpXsba2xrJlyxAfH4/KykoUFRWZrOK2gdls83N0dMTKlStRWloKhUJhUr+mgkAgwJ///Gf86U9/MvnnQps5L4yvvPIKIiMjsXHjRuq2R0ZGUFRUhOjoaLi5uc3oGKYWR0IImpqajKPErKysGfvGGB9PT09kZWVBKBTi6NGjJhs9mmLvs5eXF8LDw1FYWAi1Wj1rn6bLHXfcAXd3d7z99tvUbZuSOb340tnZidDQUPz4448mqcg9HbRaLfLy8uDh4YGlS5fO+nimWJBRqVQ4ffo0hoeHERsbO6cE0RIXX6ZCd3c3SktLIRKJsGLFihmnq5iyIAQhBGVlZVAqlUhOTqY+kzp48CBuv/12NDU1cZZfOVvm9IjxueeeQ0ZGBnVRBIDy8nLY2toiKirKJMeb7chRLpcjJycH9vb2bJRIEcPoUSAQICcnB4ODg9M+hqmr5PB4PMTExIAQgvPnz8/6eNPl+uuvR1RUFF555RXqtk3FnBXGhoYGfPTRR3jppZeo25bJZOjq6kJsbKxJV3ZnKo5tbW3Iz89HWFjYvC5+a6lYW1sjNjYWEokEubm56OzsnPJrzVU6zJC609LSgp6eHpMdd6q8/PLLeO2116b1WVgSc1YYn3rqKWzZssVkI7apotFoUFZWhpiYmFmX2hqP6YgjIQSVlZUoLy9HQkICFi1aZHJ/GFODx+MhLCwMsbGxKCkpQW1t7aRxR3PXU7Szs0NUVBRKS0uh1WpNfvyJWLVqFTIzM+fsHuo5GWMsKytDWloaKioqqO8eKSkpASEEK1euNKudyWKOUy17P1eYqzHG8ZhK+wpaRWYJISgoKICDgwNiYmLMZmc8KisrsXLlSpSXlyMkJISq7dkyJ0eMjz/+OO68807qotjR0YHu7m4qJ9hEI8eRkRHk5uYCANLS0ua8KM43nJ2dkZ6eDrVajby8vMtWh2lW3ubxeFi+fDlaW1upT6kjIiJwww034KmnnqJq1xTMOWHMzs7GqVOnqA/RNRoNzpw5g2XLlk1p5bFA2o8XjtShQNo/Y5vjiePw8DDy8vLg6emJhISESbvHMbjBxsYGSUlJcHZ2Rn5+vjGvj4t2BFxOqf/3f/8XBw8eRGlpKVW7s2VOTaUJIUhISMC1115LXRhLSkoAAHFxcZM+t0Daj5Q388Hj8UAIQf6DKUiSzLxvtGFavXjxYjQ0NMDf3x8RERHzakvffJpKXwwhBOXl5ejp6UFAQADq6+s5aUdg2E9tb29PfUr90EMPobq6GocOHaJqdzbMqRFjdnY2pFIp/vjHP1K1a5hCR0dHT+n5x+p6L1Tt1hPweDxk1/fOyr6bmxuWLVuG8+fPw8XFZd6J4nzGkDojFApRWVmJuLg4TgrL8ng8LFu2jJMp9bPPPouCggKUlZVRtTsb5pQw7tixA7/61a+uWHfOFNPXsUx3Cg0AWaHuIITAin9hxJgZ4j4rH4aHh3H+/HkEBgaip6cHra2tszoegy5NTU0YGBiAv78/zp49y9l2OTs7OyxdupT6lNrNzQ033XQTduzYQc3mbJkzU+mGhgYsXboUtbW18PPzu+xxU09fDZSXl0Oj0Ux7FbpA2o/s+l5khrjPyo+RkRHk5+fD19cXERER6O/vt5hit6Zkvk6lL44pOjs7o7y8HL29vUhJSTFLutdkGFapDTMPWlRVVSE2NhZNTU3w8vKiZnemWE7t9kl44403sG7dunFFEbh0+mrFvzB9na0wKpVKNDc3Iysra9qvTZK4ztq+VqtFQUEBvL29jdPnK/WttnT0ej0GBwcxMjIClUp1yU2n0xkbO504cQJ8Ph8CgQBCoRC2trYQCoUQCoWwt7eHo6PjnKkONN5CS0xMDEpLS1FUVITk5GTqPwI8Hg9RUVHIzc3FokWLptX7ezaEh4dj1apV2LlzJ55++mkqNmfDnBgxDg4Ows/PDz/99BNWrVo17nPMMWI0lGqfamzRlBBCcOrUKej1eiQmJl4WU+S6EvhEEEIwODiIvr4+DAwMQC6XQ6FQwNraGvb29kahMwiftbU1CCEoLi42FlodHR2FSqWCWq02CqhSqYROp4OzszNcXFwgEong5uYGR0dHi4u5TrT6rNfrceLECTg4OGD58uWc+F5SUgJra2uqCzH79+/HPffcg5aWFotvgTAnRoyffvoplixZckVRBC6M0PIfTDHJ9BUABgYGIJPJsGbNmlkdZ6bU1NRgcHAQ6enp4144ljZy1Ol06O3tRUdHBzo7O6HT6eDq6goXFxcsWbIEIpFowrJshuKmYrH4iqMoQghUKhXkcjnkcjna29tx/vx5WFtbG/tdu7u7cz6inCwlh8/nIz4+HsePH0djYyOCg4Op+xgeHo5jx44hJCSEWh7s+vXr4erqiq+++gq/+tWvqNicKRY/YiSEIDIyEo899hh+85vfULN78uRJuLq6Ijw8nJpNA+3t7Thz5gzS0tLg6Og44XO5HDkamkc1NzdDJpPBzs7OKFDTbaw10xijXq9Hb28vOjs7IZPJoFarIRaLIZFI4O7uTn00Np08xYGBAeTl5SE+Pp6TuNvZs2ehVqvNvovrYl5++WV8++23OHnyJDWbM8HihfHkyZPYsGED2traqAWre3p6cOrUKaxZs4Z6ArXhYklISJhyfxFziWOBtB/H6nqRFXrpCFyj0UAqlaKpqQmEEEgkEvj5+U0q4hNhisUXQgiGhobQ2tqK5uZmWFlZYdGiRQgMDKTyPc4kebu9vR1lZWVIT0+f1ec3E9RqNQ4fPoyUlBS4uLhQsSmXy+Hv74+ioiJERkZSsTkTLF4Y77rrLlhbW+P999+nYo8QgpycHPj7+1Pf36lWq3H8+HGEhoZOe3planEcL2a7QmyPmpoaSKVSeHh4YNGiRfDy8jLJqMzUq9J6vR6dnZ1oaGiAXC5HUFAQwsLCzBbbms2OlurqarS2tiI9PZ36D3FVVRX6+/snDFOZml/84hfw9/e36PQdi17eGxgYwO7du/Hggw9Ss9nR0QGNRoOgoCBqNoELglxaWgpPT88ZVckxdSXwi1f57QTAuYpKHD58GBqNBhkZGUhKSoK3t7fFLXoY4PP58PHxQUpKCtLS0qBUKnH48GHU1taaPIdvttv8Fi9eDCcnJ5SXl5vUr6kQEhICuVyO7u5uajZ/+9vf4pNPPuGkwvhUsWhh/OKLLxAZGYlly5ZRsafX61FZWYnw8HDqaRQtLS0YHBxEdHT0jMXGlOKYFeoOHtFjvR/B27E6+NlqkZqairi4ODg5Oc3q2LRxdnZGQkICkpKS0NnZiSNHjkAqlVpMOwJDoYfu7m50dHTM2qfpYG1tjSVLlqCiosJszb3GkpmZCS8vL3z77bdU7M0EixbGnTt34s4776Rmr7293dgykyYjIyM4d+4cVqxYMeuG6aYSx0hXK+y92h63hdogKCIG116VzslWNlPi5uaGlJQULF++HPX19cjPz8fQ0NCMj2fKghA2NjZYtmwZzpw5A41GM6tjTZegoCCo1Wp0dXVRscfn8/HLX/4SO3fupGJvJlhsjLG2thbLly9HV1cXtXSCnJwcSCQSSCQSKvYA823un2nMUa/Xo66uDrW1tQgLC0NoaCiV9BfaO190Oh2qq6vR2NiI8PBwBAcHT2ukbq4qOdMpVmJK6urq0N3dTS3W2N3dDT8/P7S2tlrkThiLHTEeOHAAycnJ1ESxr68PSqWS+mjRMIU29QrdTEaOg4ODyM3NRXt7O9LS0rB48WLOcwLNhZWVFSIjI5GcnAypVIr8/HwMDw9P6bXmLB0WHR3NyZRaIpGgt7d3Rj1rZoKnpyeWL1+OgwcPUrE3XSz2rP/2229x3XXXUbPX0NCAoKAgqrFFU06hx2M64tjZ2Ync3Fx4e3sjPT19znZ3my6urq7IyMiAq6srjh8/jt7eiSshmbue4sVTapqLE9bW1ggICEBDQwM1m9dccw327t1Lzd50sEhh7OvrQ2FhIW6++WYq9kZGRiCTyaivRJeXl8Pf3x8eHh5mszGZOBJCUFdXh5KSEsTGxiI8PHzejhKvhJWVFaKiohAdHY2CggI0NTWN+zxaRWZ9fHzg6emJc+fOmc3GeAQHB6OlpYVajHPr1q04fPgwZ9WGJsIir4AffvgBUVFRVywYYWqam5vh7e094ZY1U9PT04O+vj4qFU6uJI46nQ6lpaVobGxEamoqxGKx2X2xZPz9/ZGcnIzq6mqUl5cbC1sA9CtvL126FDKZDHK53Oy2DDg5OcHNzc0k6V5TYenSpfDx8cHRo0ep2JsOFimMe/fuxdq1a6nYIoRAKpVSHS0SQlBRUYHFixdTS+gdK46Gyj0jIyPIyMhYMFPnyTBMrfv7+3Hq1CnodDpO2hHY2toiJCQElZWVVOwZCAoKMlkq01S46qqrsG/fPiq2poPFCaNGo8FPP/2ErVu3UrHX1dUFHo9n1unsWDo6OqBWq6lP3Q3iWF5ejuzsbAgEAiQlJVl8pRPaCIVCpKSkQKvV4vjx46isrOSkHQEXyddisRgajQb9/aYr9jwRN954I/bv309NiKeKxQljTk4OXF1dERsbS8WeVCqFRCKhtoODyyRy4EKys729PYaHhyesZLPQEQgEEIvFGBoagpOTE/V9zAA3ydd8Ph8BAQGQSqVU7K1ZswYajQanT5+mYm+qWJww7tu3b0aFYWeCSqVCZ2cnAgMDqdgDLqTn8Pl86mlBwIWYoiFnMjk5GefPn6cWT5prNDY2oqamBqmpqeDz+SguLr4k5kiLoKAgaDQaquk7EokEbW1tGB0dNbstKysrpKenW9x02qKEkRCCffv24YYbbqBiTyaTwd3dnVoVY51Oh6qqKkRGRlLfY2zoVkcIwcqVK+Hh4WHSvdXziYtjim5ubkhMTMTIyAgqKiqo+8Ln8xEeHo7Kykpqwuzo6AhnZ2dqO2E2btzIhHEizp07h4GBAaxbt46KPZlMBh8fHyq2gAtNkRwcHDjJ9G9oaEBPTw/i4+ON02dTF56YD4y30CIQCJCYmGgsZ0Ybf39/8Pl8qk3QxGIxZDIZFVs33HADqqurLeoctChh3LdvH9LS0qgsBmi1WnR3d1NLUSGEoKGhAWFhYdRHi11dXaiqqkJiYuJlNS2ZOP6XiVaf7ezskJCQgLNnz6Kvr4+qXzweD2FhYaivr6cWaxSLxejs7KQyShWJREhISMCBAwfMbmuqWJQw/vDDD9RGi93d3XBycqKWuyiTycDj8aiPFpVKJYqLixEbG3vFlBwmjlPLU3Rzc0N0dDSKioowMjJC1T9fX1+o1epJd+aYCicnJ1hbW1P7Ebj66qvxww8/ULE1FSxGGHU6HcrKyqgtvMhkMqoJzQ0NDdMuVDBbCCE4ffo0goKCJg0ZLGRxnE6eYmBgIHx8fFBWVkY1xYTP52PRokWor6+nYo/H48Hb25vadDo9PR3FxcVUbE0FixHGmpoaCAQCKjtBCCHo7OykJowKhQJyuZx6T5b6+npotdop961ZiOI4k+TtqKgoDA0NUY83BgUFobu7m9po1RBnpPEDEB8fj56eHmpCPBkWI4ynT5+mtk+3v78fPB6PWsJuc3Mz/Pz8qJatHxwcRHV1NVasWDGtz3QhieNMd7QIBAKsWLEC58+fpzqltrW1hbe3NzVB9vDwgFqtnlXNyqlib2+PsLAwY9k1rrEYYSwuLsbSpUup2DJMo2lMa3U6HVpaWqhvOSwtLUVISMiMmhwtBHGc7TY/Dw8PBAQEUJ9SSyQSalv2+Hw+vLy8qI3iIiMjLWY6bTHCeOrUKcTHx1OxRTO+aGgrSqsLG3BhhKrVarF48eIZH8Pc4kgIwfDwMDo6OtDU1GQsd9XY2IimpibIZDKzjcZMtfc5IiICQ0NDVJOvPT09wePxqG0TpJm2ExsbazHCaPoigDNAr9fjzJkzeOedd8xua3h4GMPDw9T2Rre3t1OrEgT8N4l8+fLlsw5LGMSxoKAAAGYVI9Xr9ejp6UFPTw8GBgYgl8uh0+ng7OwMOzs74+hdLpdDr9djZGQECoUC1tbWcHFxgUgkgoeHBzw8PGY10jdlQQhDTLyyshJisZhKGIjH48HPzw8dHR1UMhy8vb1RVlYGjUZj9jS6pKQkvPnmm2a1MVUsQhhra2vB4/EQFRVldlt9fX1wdXWlskdYr9ejq6tryosfpqChocGkSeSzFcfh4WE0NjaipaUFAoEAXl5e8PPzQ1RUFBwdHY1iotPp0NbWhhUrVhi/G71ej8HBQcjlcsjlcpSWlhp9CAoKmnaqlTmq5Pj5+aG2thYtLS3UWmKIxWKcOnUKMTExZg8H2djYwMnJCf39/fD29jarraSkJHR3d6Ozs9PstibDIoSxpKQEERERVH5x5XI5tWltT08PbG1tqXXVGx0dRW1tLZKSkkx6wcxEHBUKBWpqaiCTyeDr64v4+Hi4ublNyy8+nw+RSASRSASJRAJCCHp6eiCVSnHkyBH4+vpiyZIlU2p/Ya7SYTweD5GRkSgrK4O/vz+VH1xXV1cQQjAwMEDlXBaJRJDL5WYXK3t7e4SGhqKkpIRq9f7xsIgYY3FxMZXRInChVzWt1WiaKUHAhZG3u7s73NzcTH7sqcYc9Xo9ampqkJOTAzs7O6xZswaxsbFwd3eftVjzeDx4enpi5cqVuOqqq2BtbY3s7OxJd4SYu56il5cXHBwcqLUFoJ1j6OLigoGBASq2IiMjLaLSjkUII62FF0IItREjIYTqIo9Wq0VTUxOWLFliNhuTiaNCoTA200pPT0dUVJTZCnTY29sjOjr6kmZWSqXysufRKDLL4/GwZMkSNDQ0UCv0QHNRxMXFhVol8RUrVqCoqIiKrYngXBgNCy/Jyclmt2W4cGh0HhwcHMTo6KhZRm/j0dLSAmdnZ7OL/njiSAhBfX09cnNzIRaLqTbTMlTcdnNzQ3Z29iX9WmhW3vbw8ICNjQ3a29vNaseAp6cnBgcHqeRROjs7Q6VSUWnOtWrVKovIZeQ8xmiYBtHIYZTL5RCJRFTyF2UyGby9vanETQkhaGxsNOto8WIujjkSQqBQKNDe3o7U1FTqVa6B/7ZCFYvFKCoqglqthrW1Naqrq6lV3ubxeFi0aBGampqo1NoUCATw9PSETCbDokWLzGrLysoKTk5OGBgYMPtKeFJSErq6utDV1cVpv2nOR4w1NTXU2pbSClYDF4pU0Ppi+/v7odFoqJZQM9QpPHPmDNra2pCWlsaJKI71KTU1FfX19Th//jxWrVpF1Sd/f38MDAxQ683s5eVFLZ+R1nTawcHBuNLPJZwLY0dHBzw9PanYohlfpCnCzc3NCAgIoNr21BBDtbW1hVarRU9PDzXbE2EQCmtra2qFVg0IBAL4+flR27JHc1HEsDJNAw8PD6pJ8+NhEcJIY2RlWHihMYIYHh6GXq+n0ifEIFC+vr5mt3UxjY2NxpHiqlWrLGL7oCGmmJKSgtTUVDQ0NFD3ydfXl9pF7ezsjJGRESp9oGkuwHh5eTFhbGtro7JyOzw8DABUxMowMqURyzQUxKC55XBoaAiVlZVISEiAnZ2dReytHrvQ4ujoiJUrV+Ls2bNUCz0YCi/QmE4LBAI4OjpSESyRSASVSkVFhL28vNDW1mZ2OxNhEcJIY7SjVCrh4OBARaxojUwBugUxgP8WqAgODr5EjLkUxyutPnt4eMDf3x9nzpyh2mWPZuEFWtNpKysr2NnZjZsSZWrEYjG11f0rwbkwdnR0UNlLrFKpqDW9ohlfNKx+06KhoQGjo6PjFqjgQhwnS8mJjIzE4OAgVbE2tAWgAc0prlAohEqlMrsdX19fJozt7e1U2pfSEkaascyRkREMDw9TW7xSKpWoqqpCbGzsFbMIaIrjVPIUDbUTz507R+WiBi4UXujr66PSfpSmMNra2lLJZQwICFjYMUa9Xo/u7m4qwqhWqy9rBGUORkZGoNfrqeyP7u/vh0gkopLqBFzYchgQEDDpaJiGOE4nedvDwwPe3t7U2gLY2NjAwcGBimAZFmBoiDCtEWNgYCDnlbw5Fcbe3l4QQqgkxNIaMQ4PD8Pe3n7exTJVKhVaW1sREhIypeebUxxnsqMlNDQUTU1NVAQEoDeSEwgEsLW1NS4umhNawiiRSNDX10dloedKcCqMHR0dcHNzozLioSWMNGOZNCsFSaVSY7GEqWIOcZzpNj+RSAQXFxdqsUaaOYa0BIuWHTc3NwiFQk5HjZwKY3t7O7X42HwTRppJ5ISQGdcbNKU4znbvs0QioSqM821RhJYdPp8PT09PTuOMnI8YaQgjIQRqtZqaMNKIZapUKmi1Wip5mf39/dBqtTNOxDeFOJqiIISPjw+Ghoao5BiKRCIolcp5FfujtfgCcL/7ZUEIo1arhU6noyJYtAR4ZGQEdnZ2VLYB9vX1GXuNzJTZiKOpquRYWVnB3d2dShN5gUAAGxsbKsnltATLIMA0ckIXtDAODQ1RGfGoVCrY2NhQEZH5NmUHTBfLnIk4mrp0GM09v0KhkKpgmRsbGxvweDwq78nR0ZFK29Yrwakwjo6OQiAwf+UzGo18DMxXYTTV6vd0xNEc9RTZosjM4fF4sLGxobJaLBAIqGUQjAenwqjVaqkIIyGEWuUZWvmStIRxdHQUw8PDJk0Lmoo4mqvIrEEYaVTano+xPx6PR2UqbWVlBa1Wa3Y7V2JBjBgJIdT2Euv1eioiTEuAFQoF7O3tYW1tbdLjTiSO5qy8LRQKYW1tTWWaRkuw+Hw+tZYKfD6fijAKBIKFK4xardbkF9x46PV6qkUWaAgjrdG2OReTLhbH1tZWAEBTU9OsRbFA2o8XjtShQNp/2WM8Hg+2trbUpoM6nW5Cf0yBKUZxU/WRx+OZTIQnsmkqYVQoFPjLX/6CH374YVp966d1ZbW1teGf//wnent7AVw4sR9++OEZN2IfHR2FlZUVdDrdjF4/VXQ6HXg8ntntABeEUa/Xm92WXq8HIcTsdrRaLfh8vtnsiEQixMfHGxsgVVVVYdWqVXB0dJyRzaLmfly18yR4PB7+eojg6PZVSAh0veQ5hBBoNBoq31GHXIktX+RN6M9sIYRgdHR0xu9nKp+ZAZ1OZ7zNhslsKhQKkwjwxx9/jLi4OFx77bW46aabcNttt02pHxGPTOOn5uzZswgODkZeXh56enpw2223zcrpu+66C1ZWVti4ceOsjsNgMOYXN954I3Q63axHwg899BDuuusuxMXF4YEHHsBdd901pY6k0xoxRkdH46OPPsLmzZuxc+fOGTtrNC4QwMXFBevXr5/1sSais7MTdXV1SElJMasdADh48CDWrFlj9vhfcXExPD09Z7QbZTq0t7ejubkZSUlJZrNhmD4bwgNLly6d8f75i0cihIw/+snNzUV4eLjZc2jr6urQ1NWPzd91T+jPbBkaGsKJEyewdu3aGb1+Kp+ZgezsbMTExMy6++VkNu+8806TdNjU6/XGLcc6nW7K24+nHaTKz8/H3XffjdLS0um+9DKsra2n5exMEQgEIIRQ2ZPN4/HA4/HMbstwfBqf3cUnl6lpbGxETU0NVq1ahdzcXCQkJODUqVPg8/kzCtGsWuSBY/enIru+F5kh7kiSXH6B6/V6CAQCKueD2NluUn9my2zPual8ZgYIISb57CazqdPpTJJiFxUVhY6ODixfvhwtLS0IDg6e0uumLYzPPvssAODvf//7dF96uXFKuUq0Ugxo2qK1amdnZ2e2yi0Xrz4bEv0vbs0KYEbimCRxveLFTQjB8PAw7OzsZu74FDGMgCfyxxSYYsFvqj6aciFzIps6nc4ki4u/+tWv8Nprr0Gv1yMzM3PKGxWmbdlQbdsUNRStra2plEsy5UraZNDKv6KVI+fk5AS1Wm3yvMmxKTkXB/NNIY5XYmhoCHw+H/b29iY75pVQqVRUinzodDpqebq0si5Mlcrn7OyMp59+GgBw/fXXT/l1nKbr0Br10Mzzmm/bwKysrODs7GzS3SJTyVM0Vz1Hwy4eGulb83EXFK3UN1ONGGcKp8JobW1NRRhp7gyYb9vAANOW0JpO8rY5xJFmP575Jox6vR4ajYbKxgJamz+uBKfC6Orqiv5+8yS9XoyhKfx8EmGaYm8qYZzJjhZTiyPN4r40S9DREEa1Wg0+n09lU8bAwIBJVqVnCqfC6OPjg56eHrPbEQgEEAgE82qK6+DggJGRESpJ6x4eHuju7p7VD8tstvmZShzVajX6+/vh7u4+42NMx5ZOp6OyyEN7fz6NqXRPTw98fHzMbudKLAhhBObfFNfGxgZCoZBKpRhHR0eIRKIZt7Q0xd5nU4hja2srPD09qYyu5HI5nJ2d51XbDloCDDBhRHd3NxVb800YAbrl8wMDAyGVSqf9OlMWhJiNOBJCIJVKqXSkBOg3KptPsUydTrewhdHX1xf9/f3zSrBoCyOt2oJ+fn4YGhqaVvVrc1TJmak4dnV1QavVQiwWm8SPyaAdy5xPwtjR0QG9Xk+tH9R4cCqMzs7OEAqFVBoU0Yz9DQ8PU4n90RwxCgQCLFq0CDU1NVN6vjlLh01XHAkhqK2tRUhICLV8P1qr3xqNBqOjo9TyMmkIo6EjJa1+6ePBqTDyeDx4e3vPaIo2XWiuFguFQigUCrPbcnFxwdDQELX+uyEhIRgYGEBbW9uEzzOnKBqYjjhKpVKoVCqz7ys3oFQqodFoplTFZbbI5XI4OTlRERFaMcbW1lZqI/srwakwAhem083NzWa3Q3OKS6uviI2NDVxdXdHZ2Wl2W8CFvNPly5ejvLz8ij8yNETRwFTEcXh4GOfPn8eKFSuo5cXJZDJ4enpSEav5GMtsbm7mNL4IWIgwTjYCMQXzNfYnFoupNib39vaGWCzGmTNnLtsTTlMUDUwkjoQQlJWVQSKRUEnRMSCTyVgscxZ0dHQYtx5zhUUII402iYauY/Mt9icWi9HV1UXlfRlYunQp+vv7L/lB40IUDVxJHJuamjA8PIyIiAhqvoyOjqKvrw/e3t5U7NGMZarVajg4OJjdlkwmg6+vr9ntTIRFCCONqaBQKIStrS21ZusKhYKKWDk6OkIoFBqrqtPA2toasbGxOHPmDHp6ejgVRQNjxbGzsxMVFRWIi4ujGsTv6uqCSCSiMrLSaDQYGRmhFst0dHSkEo7o7u7mXBi524z4f/j6+lLLZTSM5Mz9C3uxCNP4Nffx8UFrayu8vLzMbsuAp6cnli9fjoKCAvB4PKSmpnImigYM4njixAkQQpCQkABXV/OV+xqP1tZWahc1TbGiuce8u7ubxRhpjRiBCyM5WrE/FxeXaeX8zQaJRIL29nbqfXgvXg3nsgfwxRh84vF41FbrDYyMjKCrq8ukZdImor+/n5pY0Vzk6erqYsIYFRWFxsZGKqk0NGN/Xl5e6OrqomLLwcEBbm5uVFb3DRimz2lpaVixYgUKCwshlUqpFQQeCyEE9fX1KCkpQUJCApKTk01esmwympubIRaLqW2b6+zsnHexzO7ubnR1dVGNC48H58Lo4+MDV1dXY5c4c+Li4mKy7mOTIRaLZ114YTosWrQIjY2NVIRpbEzR19cXSUlJqK2tRUFBAUZGRszuw8UolUrk5+dDKpUiJSUFXl5eZqvneCX0ej0aGxuxaNEis9sCLqwQDwwMUAmfjI6OYnh4mMqIMS8vDyEhIcaK7lzBuTACQGxsLE6ePGl2O4Zm6zSSr+3s7ODk5ERt1CgWi0EIMXtY4koLLe7u7sjMzISjoyOOHTtGZfRICEFDQwOys7Ph5uaGjIyMS0Y1NMWxra0NQqGQWlpQZ2cn3NzcqJQAoxnLLCwsxMqVK81uZzIsQhjj4+NRUlJCxRbtHENa8VMej4ewsDBUVVWZTZAmW30WCASIjo5GQkICampqkJeXh46ODpP7o9fr0dbWhpycHDQ1NSE5ORmRkZHjrj7TEEe9Xo/q6mqEhYVRKckF0M+VpBVfPHPmDBNGAytXrkRFRQUVW7RzDGUyGbW4W2BgILRarVkS5qeTkuPh4YGsrCz4+/vj/PnzOHLkCGpra2c9xR4eHkZ1dTWOHDmCqqoqBAUFISMjY9KVZ3OLo1QqhUAgoLYardPp0N3dTU0Yaa5IG1KsuIbzdB0AiIuLQ01NDZW9mCKRaMqFEExhi8/no7+/n0o1Yj6fj4iICFRWVsLX19dkBRNmkqdoKDoRFBSEzs5ONDc3o7q62ljb0cXFBS4uLlesWajVaqFQKCCXyyGXyzEwMAClUgmxWIxly5bB09NzWqMzczXY0mq1qK6uRmxsLLXRYnd3N+zt7akkWwMXRow0Yqc9PT1obW3FihUrzG5rMixCGH19fSESiXDq1Cmkpqaa1Za7uzsUCgU0Go1J+tZOBI/Hg1gsRkdHB7Uy7b6+vqitrYVUKjXJyTzb5G3DZyAWi6HRaNDf3w+5XI7u7m7U1tZCpVLBxsbGKOJHjhwx9haxs7ODi4sLRCIR/P394erqOquYmjnEsaGhAU5OTlRzSGlOo4eHh6FSqahMpfPz8xEcHAwnJyez25oMixBGHo9nXIAxtzBeXHiBRr6Zn58fSkpKEBkZSWVEwePxEBUVheLiYvj6+s5qBG7qHS02Njbw9va+JMVErVYbS2fl5uZi5cqVsLa2hq2trVl+uEwpjsPDw6itrUVycrKp3JsUnU6H9vZ2pKSkULFnKIhBY+GloKDAIuKLgIXEGAG6CzA0Cy+4u7vDysqK2iIMcGFXire3N8rLy2d8DFrb/GxtbeHk5GS0IRKJ4OTkZNbRvClijoYCFYGBgVR317S3t8PBwYHaYgjN0WlZWRni4+Op2JoMixHGuLg4VFZWUrFFs/ACj8eDRCKhUnPyYqKjo9HX1zejPi2WsPfZ3MxWHKVSKfUCFQa7tOpKjo6Oore3l1oSeVVVlUUsvAAWJow1NTVUtnHRLrwQEBCA7u5uqonPhtqJZ86cmdauooUgigZmKo5c1HgEgMHBQcjlcmoluWgWxOjr60NLS4tFLLwAFiSM/v7+cHBwmJfTaaFQCB8fHzQ2NlKxZ8AQzysrK5tSytBCEkUD0xVHvV6P0tJS6jUegQsLPYGBgVSSugG60+i8vDwEBQVRqRQ0FSxGGHk8HhISEnDkyBEq9mjnGAYHB0MqlVKtmwhcmFIrlUpUV1dP+LyFKIoGpiOO58+fh1arpT6F1mg0aGlpobblUK/Xo7Ozk5owHj9+HImJiVRsTQWLEUYA2LBhA3766ScqtlxdXY25crTsOTg4oLW1lYo9A9bW1khMTERjY+MV440LWRQNTEUcpVIp2trakJCQQL1RU3NzM9zd3amlsvT19cHa2pqavcOHD2PDhg1UbE0FixPGU6dOUdmyx+fz4e3tTbUtQGhoKGpra6kUsbgYBwcHrFy5EqWlpZd9tkwU/8tE4tjb24tz584hISEBdnZ2VP3SarWoq6tDaGgoNZuGaTSNFLOWlhZUVlZi3bp1Zrc1VSxKGP39/REeHo49e/ZQsWdIvqaFj48PBAIB9RVq4EIKT0REBAoLC42LQEwUL2c8cRwaGsKpU6cQExNDLVH/Yurr6+Hk5EStzzIhBDKZjNpq9K5du5CSkkJt2+FUsChhBIBNmzZh//79VGx5e3tDqVRSm07zeDxERkaiurqaWjmyi1m0aBH8/PyQn5+PmpoaJopX4GJxrKurM+7IoFWA9mI0Gg3q6uoQGRlJzWZfXx+0Wi08PDyo2Pvhhx+wefNmKramikUKY05ODhXhEAgE8Pf3pzqC8/LygrOzM+rr66nZNGAQZqFQiMrKSsTFxTFRvAJubm5Yvnw5zp8/DxcXFyxevJgTP2pqauDl5UU1iVwqlSIwMNBke+0nQqlUoqCgwKLii4AFCuOKFSsgFAqprU5LJBK0tLRQXS2OjIxEXV0dlarlY2lqaoJCoYCfnx/Ky8upF5WdKwwNDeHs2bMIDAxET08P1UrgBoaHh9HU1ES9y2F7ezu1JPK9e/ciKCgIwcHBVOxNFYsTRh6Ph40bN+Lrr7+mYs/FxQX29vYz2iEyG5teXl6ora2lZhP4b0wxJSUFcXFx8PHxQU5ODvr7+6n6Yen09PQgNzcXixYtwooVK7Bq1SrqbRIAoLq6GgEBAVSrWbe0tBgzKGiwb98+bNq0iYqt6WBxwghcmE4fPXqUmr2goCDqCyIRERHGvsc0GLvQYig2sWTJEpw4cYJ6GpGl0tTUhMLCQkRHRxunz7TbJACAQqFAW1sb1Sk8IQRSqRRBQUFU7On1emRnZzNhnCpZWVmQyWQ4e/YsFXv+/v5QKBTUKnsDF7YlBgUFTXlXymyYaPU5KCgIiYmJOHv2LCoqKjhrZsU1er0e5eXlqK6uRnJyMvz9/S95nKY4GgpUhIWFUU0N6u3thVqtptahLycnx9jm1tKwSGEUCoW4+uqr8Z///IeKPYFAgMDAQDQ0NFCxZyA8PBzDw8NmHa1OJSXHw8MDGRkZ6OzsxMmTJxdc3NHQTEsul09YEZyWONbV1UGv1yMsLMxsNsajvr4eixYtorLoAgC7d+/G+vXrqdmbDpbn0f+xefNmartggAtb9tra2qguiAgEAqxYsQLnz583y5R6OnmK9vb2SEtLo9rMimsubqbl7u6OlJSUSQsmmFscBwcHUVNTgxUrVlAVDKVSie7ubmrTaOBCUWJLS9MxYLHCeP311+PMmTPUErDt7e3h6emJpqYmKvYMuLu7QyKRmHxKPdN2BDExMcZmVhcng883DKPExsbGCZtpjYe5xFGv1+P06dMIDQ2lnkbV2NgIPz8/aj2xKysr0dTUhDVr1lCxN10sVhg9PT2RlZWFt956i5rNkJAQNDY2Uk++NvWUerY7WgzNrOzt7XH06FHOEtLNwejoKCoqKpCdnQ1XV1dkZmbOKEfQHOJYV1cHQgj1KbRGo4FUKqWaMvPmm29i8+bN1Fa/p4vFCiMAbN++HV9++SW1vcUeHh6cJF+bckptqm1+AoEAw6IA1FgHoqFNhsOHD6OxsZH6Pm9TodPpUFdXh59//hmDg4NIS0tDVFTUrIpBmFIcFQoFamtrERsbSz3mZkgipzVK1Wq12LNnD+677z4q9maCRQvj+vXrMTg4iEOHDlGzyVXytbu7O4KCglBcXDzjZHNT7n0ukPYj5c18/OFwM9b/MAg7/8Vobm7GkSNHOCmfNlO0Wi0aGxtx+PBhdHR0IDExEYmJiSar+2cKcdRqtSgpKUFoaCj1eoRcJJHv2rUL9vb2yMzMpGZzuli0MFpbW+PXv/413nnnHWo2uUq+Bi7kNlpZWeHMmTPTjjeauiDEsbpe8Hg86PQEPB4PJ7v0SE9PR1RUFJqamnDo0CFUVlZSy8OcLkNDQzh//jwOHTqEtrY2LFu2DKmpqWYpLjsbcSSE4PTp07C3t+dk22FVVRX1JPJ//etfuO+++6i1m50JFi2MAHDPPffg559/Rk9PDzWbtJOvDfD5fKxcuRK9vb3TSh0yR5WcrFB3EEJgxeeBEILMEHfweDz4+voiIyMDiYmJGB4extGjR3Hy5ElIpVJOtjhezMjICJqampCfn4/s7GxoNBokJycjNTXV7CW0ZiqO1dXVGBoaotqX2oBCoUB7eztVQa6vr0dBQQHuuusuajZnAo/MgZyMrKwsZGZm4plnnqFm88yZM9DpdIiNjaVm04BCoUBubi7i4+Mn7VdsztJhBdJ+ZNf3IjPEHUmS8RcoNBoNWltb0dHRgb6+PohEImMfaScnpylf7DqdDt999x3Wr18/5bgfIQQKhQIymQwymQwKhQIeHh7w8fGBn58ftRYAF9PX14eCggJER0dPWo2nra0N5eXlSE9P52QRorCwEE5OTlQr9zz66KNobm7GN998Q83mTJgTwvjNN9/gscceQ11dHbXKySqVCocPH0Z6ejonfSg6OjpQWlqK9PT0K05zLK2e4ujoKDo7OyGTydDZ2QkejweRSAQXFxe4uLhAJBLB3t5+3MWFyYRRr9dDqVRiYGAAcrkccrkcAwMDxoLDYrEYnp6enIjhWKYijnK5HPn5+UhISKBWZ/Fient7UVhYiKuvvpraZ6ZWqxEYGIgvv/wSV111FRWbM2VOCKNOp8OiRYvwyiuvYOvWrVd8XoG0H8fqepEVeuURznSoqKjA4OAgZ70oqqur0draivT09MtOXksTxbEQQjA0NGQUMMO/Wq0Wtra2sLW1hVAohFAoNHbaa2hoMKaMjI6OQq1WQ6VSQaVSQaPRQCAQXCKyLi4ucHBwsMhY1UTiqFKpkJOTg7CwMGo9XC6GEIK8vDz4+PhQrQr+1ltv4a233sL58+ct8ju7mDkhjADwyiuvYN++fcjLyxv3ccMqKo93ISaW/2DKrMVxdHQUP//8MxITE6l3hAMunMAlJSVQqVRISkoyCoili+KVIIRgdHTUKHYG4dPpdMZ0mtDQUFhZWcHKysoonBcLqKVfUBcznjiOjo4iPz8frq6uiImJ4eT9yGQynDlzBmvWrKHauyYmJgaPPPIItm3bRs3mTLH4xRcDv/nNb1BWVobTp0+P+/jYVdTs+tn3jLa2tsbixYtx7ty5aefvFUj78cKROhRIZ17Si8fjYcWKFbCyskJRURF0Ot2cFUXgwvuxsbGBs7MzvLy8EBAQgLCwMISHhyM8PBwAjH+HhYUhICAAnp6ecHJygrW19ZwSReDyBZnR0VGcPHkSjo6OnImiTqfD+fPnER4eTlUUDx8+jNbWVvzyl7+kZnM2zBlhdHV1xe23345XXnll3MfHW0U1BcHBwSCETCvp2zB6/fNP1Uh5M39W4mhlZYWEhAQQQnD8+HFUVlbOSVFcqBjEsby8HDk5ObC1teVkBdpAVVUVhEIhAgMDqdp99dVXsX37duqNxGbKnBFGAHjkkUewf/9+tLW1XfZYksQV+Q+m4G/rlphkGm2Az+cjNjYWNTU1U+4NY+rRq5WVFcRiMYaGhuDk5EQ154wxe5ycnGBvbw+lUgmxWMxZNZm+vj40NTVh+fLlVIW5uroa2dnZeOCBB6jZnC1zShjDw8Nx3XXX4cknnxz38SSJK/54VajJRNGAs7MzQkNDUVpaOqUptalHr42NjaipqUFqaiqsrKxQWFg4b/Yuz3cM02cHBwckJyfj/PnznLRJ0Ol0KC0tRUREBPXUoP/5n//B7bffDj8/P6p2Z8OcWXwxUFtbi+XLl6OkpMQYl6KBXq9HTk4OfH19p5QQO5UcwKkwNqao0+lw6tQpaLVaJCQkwMbGZsbHtiRmksdo6ahUKhQUFMDR0dG4B3o6eY6m5Pz585DL5UhOTqY6WiwsLMTq1atRU1MDX19fanZny5waMQJAWFgYbr/9djz++ONU7Rqm1LW1tVOaUpti9DreQosh5mhnZ4ecnBxqrV8Z06O/vx/Hjx+Hq6sr4uLijNNnLtokcDWFBoA//vGPeOihh+aUKAJzUBgB4JlnnsGRI0dQUFBA1e50p9SzYaLVZ4NIBwUFIS8vDzKZzKy+MKZHa2srTpw4gSVLlmDZsmWXiRFNcTRMoSMjI6lPoX/88UeUlZVRH8SYgjkpjD4+Pnj44Yc5+cDDwsJACEFdXZ3ZbEwlJYfH4yE0NBRxcXE4ffo0amtr533FbUuHEIKKigqcPXsWiYmJE1bDpiWOhlVompW5gQuhpyeffBJPPvkkXFxcqNo2BXNSGAHg8ccfR3l5Ob7//nuqdqc7pZ4u081T9Pb2RlpaGqRSKU6fPj1nyoHNN0ZHR1FUVITOzk5kZGTAw8Nj0teYWxy5nEJ/8cUX6OzsxEMPPUTVrqmYs8IoEonw1FNP4amnnqJePNXZ2RlLlixBUVERNBqNyY470+RtJycnpKenQ61WIzc3F4ODgybziTE5AwMDyM3NBY/HQ1paGuzt7af8WnOJo0qlwqlTp7B06VLqU2itVotnn30Wzz333KQ9dCyVOSuMAPDggw+iq6sLn3/+OXXbISEhcHV1RXFxsUmEebY7WmxsbJCUlASxWIycnBxjmXyG+dDr9aiqqkJeXh4CAwMRHx9v3LY5HUwtjjqdDkVFRfDx8YFEIpn18abLm2++CT6fjzvuuIO6bVMxp4VRKBTiueeew7PPPks9r4/H42H58uUYHR3F+fPnZ3UsU23z4/P5CA8PR2pqKlpaWtjo0YwMDAwgJycHXV1dSE9PR2ho6Kymq6YSR0IIzpw5AysrKyxdunTGx5kpw8PDeOWVV/Diiy/O6EfCUpjTwggAd9xxBwQCAd544w3qtg2pM21tbTNuZGWOvc8ikQgZGRnw8vJio0cTo9frUV1djby8PPj5+SEtLQ1OTk4mObYpxLG+vh69vb2Ij4/nZIfNiy++CD8/P4ttizpV5lyC93js3bsXv/3tb1FXV8dJwc++vj6cPHkSSUlJ06rCQ6MghFwuR2lpKQQCAZYtW8ZJbcmpMBcSvOVyOcrKysDj8RAbG2syQRzLTJPAOzs7UVxcjLS0NE6+597eXoSFheHbb79FRkYGdfumZF4IIyEEWVlZCA0NxQcffMCJDy0tLTh//jzS09OnFHynWSVHr9ejpqYGdXV18PX1RXh4+LQWCGhgycI4NDSEyspKdHV1YfHixQgJCTH7aGy64jg4OIjc3FzExsZCLBab1bcr8Ytf/AKjo6PYu3cvJ/ZNyZyfSgMX4n0ffvgh/vOf/+Cnn37ixIeAgAAEBASgqKho0ngn7dJhhtijof7e0aNHce7cOc57tFg6KpUKZ86cQXZ2Nuzs7LBmzRqEhYVRmaJOZ1qt0WhQWFiI0NBQzkRx9+7dOHLkCHbu3MmJfVMzL4QRuFAe7IUXXsD27duhVCo58SEyMhK2trYoLS29YkyPy3qKQqEQy5YtQ2ZmprF1Q3V1NStIMYbR0VFUVFTgyJEj0Ol0uOqqq7B06VLY2tpS9WMq4qjX61FSUgIXFxeEhYVR9c9Ab28vHnroIbz55pucCbOpmRdTaQN6vR5ZWVkICwvjbEo9OjqKvLw8uLq6XrYdzNKKzMrlclRUVEChUCA4OBgSiYT6xW/AEqbSKpUKTU1NaGhogLu7OyIiIiwiJnulabWhwvvw8DCSk5M5WwW+6aabjFPouVZM+ErMK2EELojPsmXLsHv3blxzzTWc+KBWq5GXlwcvLy8sXboUPB7P4kTxYnp6elBfX4/u7m74+fkhODiYuo9cCmN/fz8aGhrQ0dEBb29vhISEwM3NjaoPkzFWHAkhKC0thUKhQEpKCmdNwL766its374dFRUV82a0CMxDYQSAt99+G6+88grOnTvHySo1cKHHcX5+Pnx8fGBnZ4fq6mqLFMWLUSqVaGhoQHNzM5ycnCCRSODn50dlJEJbGEdHR9Ha2gqpVIrh4WFIJBIEBwdbdIVpgzguXboU/f396OvrQ0pKCmel53p6erB06VLs2LEDt956Kyc+mIt5KYx6vR6rV6/GokWL8OGHH3Lmx/DwMLKzs6HT6ZCWljZnNtNrtVq0t7dDKpVCoVAY+0R7eXmZbWRCQxg1Gg26urqMfahdXV0hkUjg4+NjcSvhV6K3txcnTpyAjY0NMjMzOQt9AMCNN94InU6Hb7/9dt5MoQ3M3dT0CeDz+fjoo48QExODrVu3cjal7uzsBHBhu15bWxtEItGcOIEEAgECAwMRGBiIwcFBtLe3o76+HqdPn4a7u7tRKC0t5Wc8hoaGjL2u+/r64OLiArFYjPDw8DnXIoIQgpaWFtja2mJ0dBRdXV1Ui91ezH/+8x8cO3YMlZWVc+Kcni7zUhgBICgoCC+99BLuu+8+nDt3jvpFYIgpGqY6+fn50Ol0iI6OnlMnkpOTE5YsWYIlS5ZApVIZRaaiogIODg7w8vKCq6srXFxcYGdnx+l7I4RgeHgYcrkc/f396OzsxMjIiLEj4cqVKzkdYc0GvV6PsrIyDAwMICMjA0ql0liPlLY49vT04JFHHsHbb78Nb29vqrZpMS+n0gYIIVi9ejWCgoKoTqnHW2hRqVTIz8+Hu7v7uMVL5xparRY9PT3o7u6GXC7HwMAArKysIBKJ4OLiAhcXF4hEItjb20/pvU53Kk0IgVKpxMDAAORyudEHQojRB09PT3h4eMyZafKV0Ov1OH36NIaGhpCcnGyMKXLVJuGGG24AIQTffPPNnD+Pr8S8FkYAkEqliI6Oxr///W9s2rTJ7PYmWn1Wq9U4efIk7OzsEBsby9lKojkghGBwcPAyodLr9bC1tYVQKLzkZriPz+eDx7vQNOzkyZNYtWqV8f86nQ5qtRoqlQoqleqyv8cTYkdHx3l1sWo0GhQXF0On0yEpKemyc4a2OH788cd47LHHUFFRMW9Hi8ACEEbgQjzkt7/9LfLz8xEREWE2O1NJyRkdHcXp06ehVCqRmJjI2ao5DQghUKvVlwjaWJHT6/UghECv1xvbw/J4PPB4PFhZWV0iqmMF1sbGZl6J4FgUCgWKiorg6uqK5cuXX3HkS0sci4qKsGbNGuzatQvXXXed2exYAgtCGAHgqaeewu7du1FUVGSW1eHp5CkSQlBVVYWmpibEx8dPqdrzfMcSErwtCZlMhtOnTyMsLGxKJc3MLY4ymQzx8fF4+OGH8Yc//MHkx7c0Foww6vV6bN68GUNDQ/j5559NevHNNHm7ra0NZWVliIyMxKJFi0zmz1yECeMFDP2EamtrERcXN63pqrnEUaPRIC0tDWFhYfj3v/89r0fpBubNXunJ4PP5+PzzzyGTyfDII4+Y7Liz2dHi5+eHlJQU1NTU4MyZM9RbNDAsC51Oh9OnT0MqlSItLW3aMTxztUn49a9/Db1ejw8++GBBiCKwgIQRuJB68t133+GLL77Ae++9N+vjmWKbn4uLCzIyMqBQKHDixAlW8WaBMjIygry8PKjVaqSnp8+41qOpxfGll17CkSNHsG/fvjnbv2UmLChhBC5U4dmzZw9+//vfIzc3d8bHMeXeZ6FQiOTkZDg4OCAnJwf9/f2zOh5jbtHT04Pjx48bRW22W/xMJY4HDx7E3/72N+zfvx++vr6z8mmuseCEEQCysrLwwgsv4Oabb57RiWOOghBWVlZYvnw5QkNDceLECVRUVLBWqPMcrVaL8vJyFBUVITIyEtHR0Sar9ThbcayqqsIdd9yBnTt3Ij4+3iQ+zSUWzOLLWAgh2L59OwoLC1FQUDDlaQKNKjlKpRKlpaXQaDRYsWIFXF1dzWLHklhoiy89PT0oKyuDg4MDli9fbrbiFTNZkBkYGEB8fDy2bNmCl156ySx+WToLVhiBC6ttq1evhqenJ77++utJf61plg4jhKChoQFVVVVYtGgRlixZMq8FY6EIo1arRWVlJVpaWhAVFYXAwECzL2hMRxx1Oh2uueYa2NjY4MCBA/P6u5iIBTmVNmBjY4NvvvkGxcXFeOKJJyZ8Lu16ijweDyEhIcjIyEBfXx+OHz/OYo9znN7eXmRnZ2NoaAhZWVmQSCRUVnmnM61+4IEH0Nrail27di1YUQTmcRGJqeLp6Ykff/wR6enpcHBwwNNPP33Zc7gsMuvo6IiUlBQ0NDTgxIkTC2L0SJMCaT+O1fUiK9QdSRLzhCwMo8Tm5mYsXbqUyihxLAZxnKjwxP/7f/8PBw4cQF5enkVULueSBS+MwIVeLUeOHEFWVhbs7Owuyey3hMrbhtGjt7c3SktLkZ2djaioKHh7ey+YvDJzUCDtR8qb+Rf2Zv9IkP9giknFkRCC9vZ2YyWirKwsTku1TSSOTz75JD7//HPk5eUt+M0GABNGI8uWLcOhQ4ewZs0a2Nra4uGHH7YIUbwYR0dHpKamorm5GeXl5bCzs0NkZOS0elkz/suxul7weDzo9ARWfB6y63tNJoxdXV2oqKiAVqtFREQE/Pz8LOJHbDxxfPbZZ/Hee+8hJyeHs4ZalgYTxotYuXIlvv/+e6xbtw4qlQrR0dEWI4oGeDweJBIJ/P390djYiMLCQotq3DSXyAp1B/nxgigSQpAZMvsfmIsbjC1ZsgQSiYRKu9XpcLE4fvDBB3j99deRnZ2NyMhIrl2zGJgwjiE5ORkHDhzA9ddfj+effx7XXnst1y6Ni5WVFUJDQyGRSFBXV4fc3Fz4+PggPDx8TlTWtgSSJK7IfzAF2fW9yAyZXYxxaGgIlZWV6OrqQmhoKBISEjjr2jcV3NzcUFxcjB07duDIkSNYtmwZ1y5ZFJb7zXFIRkYGDh48iA0bNgCASfdWmxpra2tERERg0aJFqK6uxtGjRyGRSLB48eI5W62aJkkS11kJokqlQnV1NVpaWhAUFGQMxVg6zz77LF577TUcPXoUK1eu5Nodi4MJ4xXIyMjATz/9hGuvvRYqlQqPP/441y5NiFAoxLJlyxASEoKqqiocPnwYAQEBCA4OnnO9TeYCCoUCDQ0NaG1tha+vL6666ipORuozWVV/4okn8P777yM7O5uNFK8AE8YJWLVqFY4cOYKrr74aKpUKzzzzDNcuTYqjoyNWrlwJhUKBxsZGZGdnw8PDA8HBwfD09LSIBYC5CiEEnZ2dqK+vh1wuR2BgIDIzMzn74ZnJqvrvfvc7fPnll8jJyWExxQlgwjgJcXFxyM7OxurVqzE4OIiXX37Z4oLp4+Hs7Ixly5YhIiICUqkUZWVlsLKygkQiQUBAwJyY7lkKKpUKzc3NkEqlAC4UIklISOC8NcV0VtV1Oh22b9+OH374Abm5uWz1eRKYME6BmJgY5Obm4rrrrkN1dTV27do1Z1oS2NjYICwsDCEhIejs7IRUKkVVVRXEYjEkEgk8PDzYKHIcCCHo6uqCVCpFV1cXvLy8EBMTAy8vL4v5vKa6qi6Xy3HDDTdAJpMhLy8PQUFBdB2dg8zbvdLffvstsrOzceuttyIpKckkx+zr68NNN92Erq4u7Nu3DyEhISY5Lm1GRkYglUrR3NwMQoixTzSXHfUsYa+0VqtFd3c3ZDIZOjs7jSPswMBAi61FWCDtn3BV/fz589i8eTPCw8PxxRdfzLjO40Jj3gpjXl4eUlNTTX7c0dFR/L//9//wn//8B19++SVWr15tchu0IISgv78fMpkMMpkMw8PD8PLyglgshre3N9XpNlfCODIyYuyV3dPTAwcHB+MPhYuLi8WMDmfCvn37cPfdd+O3v/0tnnvuuVmFgN5//31UVVVhZGQE//jHP8xWDchSmLfCWFFRAb1ej+rqaojFYuTk5ECn0yEtLQ0ZGRmzPv57772Hxx57DM8//zwefvhhE3jMPUql0iiSfX19cHFxgbe3N8RisbF7n7mgJYyEECgUCuP7VCgU8PDwML7P+ZID+vzzz+PFF1/EBx98gK1bt876eF1dXXB3dzfG2+c78zbGeOrUKdx555347LPP8OSTT0Kr1UKpVJpEFAHg3nvvRUREBLZs2YKzZ8/inXfeseiE3qng4OCAkJAQhISEQKPRoKurCzKZDLW1teDz+Zf0b3ZxcYGdnZ1Fj6gIIRgeHr6s17UhfBAWFgZPT0/OF1FMiVqtxp133onc3FxkZ2cjLi7OJMf18vLC119/jXXr1iE/P9/kAw1LY25fyRMQFRWF4uJixMbGorm5GTY2NsjPzzdpP9y0tDSUlJRgw4YNyMrKwt69e+fNvmUbGxv4+/vD398fer0eg4ODRmGpq6vDwMAABALBJULJpVgaRPBiAZTL5dDr9Ub//P39sXTpUrOPfrmira0NmzZtgkAgQElJCcRisUmPX15ejptuugnR0dEmH2hYGvNWGA3Z/IacPmdnZ4SHh5vcjkQiwcmTJ3H77bcjPj4e33777bxLmuXz+RCJRJfsGdfr9RgaGjIKUX19PQYGBgAAtra2EAqFEAqFl/x98X02NjZTEidCCDQaDVQqlfGmVqvH/T+PxzMKdUBAAKKjo+Ho6DgvRXAsBQUFuOmmm7B69Wq89957ZokPK5VKADDbQMOSmLcxRtro9Xo899xz2LFjB9555x3ceuutXLtEHULIJYI1nogZ7gMuFMTg8/ng8Xjg8XgYHR2FtbU1CCEghECv14MQAh6PB1tbW9ja2sLOzu4ysb34/wtBBMfy/vvv47HHHsOzzz6LRx991OyfgWGg0d/fP2/bbjBhNDHffvstfv3rX2PNmjXYuXPnvJlamxLDKNAggIQQjI6OIjs7G1lZWRAIBEax5PP5sLa2XpCCNxkymQzbtm3DqVOn8Nlnn2Ht2rVcuzRvsPwtHDPEcGFd6WYutmzZgsrKSqjVaixduhS7d+82m625imEEKBQKYWdnB3t7e+O2OgcHB9jb28POzg5CoXDKU+6Fxscff4zo6Gg4OzujsrLS7KLI1fXEFfNWGC8ejezevRsfffTRJfeZE7FYjH379uGVV17Bvffei5tvvhl9fX1mtclYGMhkMqxfvx7/8z//g/fffx9ffvkllVkJl9cTF8xbYTRQWlqKmJgY6nZ5PB5+9atfoaKiAsPDw1i6dCm++eYb6n4w5g+ffvqpcUGpsrISmzdvpu4DV9cTbebtqrSB7u5u1NfXo76+nhP7Pj4+OHDgAD777DNs27YNX331FXbu3AkXFxdO/GHMPTo7O/Gb3/wGBQUFePfdd3HDDTdw5gvX1xMt5v2Ice3atRgdHcXQ0BBnPvB4PNx+++2oqKjA0NAQoqKi8O2333LmD2Pu8NlnnyE6Ohr29vaorKzkVBQBy7ieaMBWpSlDCMG///1vPPzww1i3bh3eeusttnINyygiYUnIZDLcd999OHHiBOejxIXIvB8xWho8Hg933HGHMfYYFhaGP/3pTxgeHubaNYYFoFAo8Nhjj2Hx4sWws7OziFHiQoQJI0f4+vpi//792Lt3Lw4fPozQ0FDs2LEDWq2Wa9cYHKBWq/G///u/CAkJwenTp3HkyBHs2rULHh4eXLu2IGHCyDHp6ek4efIk3nnnHbz33nsIDw/Hv//9b+j1eq5dY1BAr9fj3XffxeLFi/Gf//wHn3/+OY4ePYr4+HiuXVvQMGG0AHg8HjZt2oRz587hqaeewhNPPIG4uDh8//33XLvGMCO7d+/G0qVL8dJLL+Gll15CaWkp1q5dOy8TpucaTBgtCCsrK9x9992oq6vDbbfdhttuuw0ZGRkoKCjg2jWGCcnOzkZSUhIeeOABPPDAA6iqqsItt9wyJ3oJLRTYN2GBCIVC/P73v0dTUxNSU1Nx9dVXY9OmTaisrOTaNcYsKC0txTXXXIONGzdi/fr1aGhowAMPPAAbGxuuXWOMgQmjBSMSifD888+jpqYGvr6+iI2NxdVXX42DBw9SiUEWSPvxwpE6FEj7zW5rvqLX67Fnzx5kZGQgJSUFkZGRaGhowJ/+9CfW79uCYcI4B/Dx8cE777yDxsZGJCcn46677sLSpUuxY8cOs6X5GHoW//mnaqS8mc/EcZooFAq88MILWLx4MR566CFcc801aG5uxo4dO9hK8xyACeMcQiwW49lnn0Vrayv++Mc/4pNPPkFgYCDuv/9+VFVVmdTWxT2LebwLPYsZk3PmzBls27YNgYGB2Lt3L55//nlIpVI8+eSTTBDnEEwY5yC2tra44447UFpair1796K/vx8rVqxASkoKPvjgA2Mh2NmQFeoOQibvWcwAhoeH8eabbyI+Ph7JycnQarU4dOgQCgsLsXXr1nnVU2ahwLYEzhN6e3vx6aef4t1330VPTw+2bNmC7du3z6oZ0mQ9i03JXNsSqNfrUVhYiJ07d2L//v0IDAzE9u3b8ctf/vKSFhCMuQkTxnkGIcRYhWXPnj1wd3dHZmYmbrjhBqxbt85iV0DngjCq1Wp899132Lt3L44dO4bBwUHccsstuPfee03WjY9hGTBhnMdoNBocP34c+/fvx759+6BQKJCWlob169fjpptusqjiFZYqjJ2dnfjqq6/w/fffIz8/H+7u7tiyZQs2btyIlJQUNk2epzBhXCAQQnDu3Dns27cPe/fuxdmzZxEXF4e1a9filltuMUsHxelgScJ49uxZ7Nq1Cz///DPKysoQFxeHzZs3Y+PGjQgPD2c7UxYATBgXKB0dHTh48CD27t2LI0eOICAgAFlZWUhJSUFKSgpCQkKo+sOVMOr1etTX1yM3Nxf5+fnIzs6GTCbD2rVrsXnzZlx33XXw9PSk5g/DMmDCyMDw8DCOHDmC77//HoWFhTh37hxEIhEiIiIQHR2N+Ph4pKamIjg42Gzb1mgIo16vR01NDfLz83Hq1CmcO3fOWP4tJiYGiYmJuP7665GZmQmhUGgWHxhzAyaMjMvQaDSoqKhASUkJiouLcerUKZw9exZOTk4IDw83imVaWhpCQkJMIpamFka9Xo/q6mrk5eUZRbCqqgojIyOIiYlBfHw8Vq5cibi4OEREREAgmPddPhjTgAkjY0qMjo6OK5bW1tbw8PCAp6en8ebj4wNfX18EBgYiICAAEokErq6uEwroVIVRr9ejr68PTU1NaG5uRmtrK9rb29HR0YGuri50d3ejp6cH3d3dIIRcJoLh4eFMBBmTwoSRMWNGR0fR3NyMjo4O462trQ3t7e1GsZLJZOjv74dQKDQKp6OjIwQCAaysrIz/WllZYWRkBHZ2dtDpdNDpdNBqtdBqtdDpdFAoFOjp6UFPTw9UKhXc3NwgFovh6+t7yc0gyj4+PggMDOR8IYcxN2HCyDA7arUaMpnMKJ4KhQJarRajo6NG8TPcBAKB8WZtbW38WyQSGQXP29vbYvMxGfMDJowMBoMxBrZXmsFgMMbAhJHBYDDGwISRwWAwxsCEkcFgMMbAhJHBYDDGwISRwWAwxsCEkcFgMMbAhJHBYDDGwISRwWAwxsCEkcFgMMbAyowwOKW4uBgKhQJnzpzB7373O67dYTAAsBEjg2OqqqqQnJyMhoYGrl1hMIywIhIMzvnuu+8gFAphZ2eHnJwc6HQ6pKWlISMjg2vXGAsUNpVmcMrzzz+Pp556Chs2bMDnn38OrVYLpVLJRJHBKWwqzeCUuLg45OfnIzY2Fs3NzbCxsUFZWRnXbjEWOGwqzbAYFAoFnJ2d0d/fD1dXV67dYSxgmDAyGAzGGFiMkcEpkzWvZ7/bDC5gMUYGpxBCQAjBW2+9BUIIfv/73xvvY6LI4AomjAyL4P7770dXVxckEgnXrjAYTBgZlgEhBEePHsWdd97JtSsMBhNGhmXw2muv4cSJE9i5cyfXrjAYbFWawWAwxsJGjAwGgzEGJowMBoMxBiaMDAaDMQYmjAwGgzEGJowMBoMxBiaMDAaDMQYmjAwGgzEGJowMBoMxBiaMDAaDMQYmjAwGgzEGJowMBoMxBiaMDAaDMYb/D0/Ny2tQlP1wAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -192,33 +192,33 @@ "output_type": "stream", "text": [ " grid nodes ψ B\n", - "[0.212 0.000 0.000] [0.007] [3.407e-18 3.533e-01 3.572e-02]\n", - "[0.212 2.094 0.000] [0.007] [0.047 0.318 0.060]\n", - "[0.212 4.189 0.000] [0.007] [-0.047 0.318 0.060]\n", - "[0.591 0.000 0.000] [0.056] [-1.022e-17 3.830e-01 -4.195e-02]\n", + "[0.212 0.000 0.000] [0.007] [2.708e-18 3.534e-01 3.555e-02]\n", + "[0.212 2.094 0.000] [0.007] [0.047 0.317 0.060]\n", + "[0.212 4.189 0.000] [0.007] [-0.047 0.317 0.060]\n", + "[0.591 0.000 0.000] [0.056] [-5.055e-18 3.830e-01 -4.191e-02]\n", "[0.591 2.094 0.000] [0.056] [0.136 0.378 0.050]\n", "[0.591 4.189 0.000] [0.056] [-0.136 0.378 0.050]\n", - "[0.911 0.000 0.000] [0.132] [-2.360e-17 2.629e-01 -7.165e-02]\n", - "[0.911 2.094 0.000] [0.132] [0.225 0.371 0.060]\n", - "[0.911 4.189 0.000] [0.132] [-0.225 0.371 0.060]\n", - "[0.212 0.000 0.110] [0.007] [-0.027 0.365 -0.010]\n", - "[0.212 2.094 0.110] [0.007] [-0.065 0.325 -0.010]\n", - "[0.212 4.189 0.110] [0.007] [-0.048 0.374 -0.073]\n", - "[0.591 0.000 0.110] [0.056] [0.059 0.414 0.053]\n", - "[0.591 2.094 0.110] [0.056] [-0.032 0.309 0.045]\n", - "[0.591 4.189 0.110] [0.056] [-0.030 0.378 -0.128]\n", - "[0.911 0.000 0.110] [0.132] [0.177 0.421 0.149]\n", - "[0.911 2.094 0.110] [0.132] [-0.032 0.231 0.030]\n", - "[0.911 4.189 0.110] [0.132] [-0.063 0.370 -0.225]\n", - "[0.212 0.000 0.220] [0.007] [ 0.027 0.365 -0.010]\n", - "[0.212 2.094 0.220] [0.007] [ 0.048 0.374 -0.073]\n", - "[0.212 4.189 0.220] [0.007] [ 0.065 0.325 -0.010]\n", - "[0.591 0.000 0.220] [0.056] [-0.059 0.414 0.053]\n", - "[0.591 2.094 0.220] [0.056] [ 0.030 0.378 -0.128]\n", - "[0.591 4.189 0.220] [0.056] [0.032 0.309 0.045]\n", - "[0.911 0.000 0.220] [0.132] [-0.177 0.421 0.149]\n", - "[0.911 2.094 0.220] [0.132] [ 0.063 0.370 -0.225]\n", - "[0.911 4.189 0.220] [0.132] [0.032 0.231 0.030]\n" + "[0.911 0.000 0.000] [0.132] [-2.726e-17 2.630e-01 -7.147e-02]\n", + "[0.911 2.094 0.000] [0.132] [0.222 0.364 0.061]\n", + "[0.911 4.189 0.000] [0.132] [-0.222 0.364 0.061]\n", + "[0.212 0.000 0.110] [0.007] [-0.026 0.366 -0.011]\n", + "[0.212 2.094 0.110] [0.007] [-0.063 0.326 -0.006]\n", + "[0.212 4.189 0.110] [0.007] [-0.050 0.374 -0.073]\n", + "[0.591 0.000 0.110] [0.056] [0.056 0.419 0.060]\n", + "[0.591 2.094 0.110] [0.056] [-0.031 0.311 0.050]\n", + "[0.591 4.189 0.110] [0.056] [-0.025 0.374 -0.123]\n", + "[0.911 0.000 0.110] [0.132] [0.177 0.409 0.141]\n", + "[0.911 2.094 0.110] [0.132] [-0.028 0.233 0.039]\n", + "[0.911 4.189 0.110] [0.132] [-0.057 0.360 -0.219]\n", + "[0.212 0.000 0.220] [0.007] [ 0.026 0.366 -0.011]\n", + "[0.212 2.094 0.220] [0.007] [ 0.050 0.374 -0.073]\n", + "[0.212 4.189 0.220] [0.007] [ 0.063 0.326 -0.006]\n", + "[0.591 0.000 0.220] [0.056] [-0.056 0.419 0.060]\n", + "[0.591 2.094 0.220] [0.056] [ 0.025 0.374 -0.123]\n", + "[0.591 4.189 0.220] [0.056] [0.031 0.311 0.050]\n", + "[0.911 0.000 0.220] [0.132] [-0.177 0.409 0.141]\n", + "[0.911 2.094 0.220] [0.132] [ 0.057 0.360 -0.219]\n", + "[0.911 4.189 0.220] [0.132] [0.028 0.233 0.039]\n" ] } ], @@ -289,7 +289,9 @@ "- $\\zeta$ surface from 0 to 2$\\pi$, so it must occupy a toroidal length of $d\\zeta = 2\\pi$\n", "\n", "Hence the total volume of the node is $dV = d\\rho \\times d\\theta \\times d\\zeta = 4\\pi^2$.\n", - "If more nodes are used to discretize the space, then the sum of all the nodes' volumes must equal $4\\pi^2$." + "If more nodes are used to discretize the space, then the sum of all the nodes' volumes must equal $4\\pi^2$.\n", + "We require\n", + "$$\\int_0^1 \\int_0^{2\\pi}\\int_0^{2\\pi} d\\rho d\\theta d\\zeta = 4\\pi^2$$" ] }, { @@ -534,38 +536,38 @@ "text": [ "Notice that nodes with the same 𝜌 coordinate share the same output value.\n", " grid nodes 𝜌 surface integrals of |B|\n", - "[0.212 0.000 0.000] [13.916]\n", - "[0.212 2.094 0.000] [13.916]\n", - "[0.212 4.189 0.000] [13.916]\n", - "[0.591 0.000 0.000] [15.199]\n", - "[0.591 2.094 0.000] [15.199]\n", - "[0.591 4.189 0.000] [15.199]\n", - "[0.911 0.000 0.000] [15.153]\n", - "[0.911 2.094 0.000] [15.153]\n", - "[0.911 4.189 0.000] [15.153]\n", - "[0.212 0.000 0.110] [13.916]\n", - "[0.212 2.094 0.110] [13.916]\n", - "[0.212 4.189 0.110] [13.916]\n", - "[0.591 0.000 0.110] [15.199]\n", - "[0.591 2.094 0.110] [15.199]\n", - "[0.591 4.189 0.110] [15.199]\n", - "[0.911 0.000 0.110] [15.153]\n", - "[0.911 2.094 0.110] [15.153]\n", - "[0.911 4.189 0.110] [15.153]\n", - "[0.212 0.000 0.220] [13.916]\n", - "[0.212 2.094 0.220] [13.916]\n", - "[0.212 4.189 0.220] [13.916]\n", - "[0.591 0.000 0.220] [15.199]\n", - "[0.591 2.094 0.220] [15.199]\n", - "[0.591 4.189 0.220] [15.199]\n", - "[0.911 0.000 0.220] [15.153]\n", - "[0.911 2.094 0.220] [15.153]\n", - "[0.911 4.189 0.220] [15.153]\n" + "[0.212 0.000 0.000] [13.923]\n", + "[0.212 2.094 0.000] [13.923]\n", + "[0.212 4.189 0.000] [13.923]\n", + "[0.591 0.000 0.000] [15.226]\n", + "[0.591 2.094 0.000] [15.226]\n", + "[0.591 4.189 0.000] [15.226]\n", + "[0.911 0.000 0.000] [14.889]\n", + "[0.911 2.094 0.000] [14.889]\n", + "[0.911 4.189 0.000] [14.889]\n", + "[0.212 0.000 0.110] [13.923]\n", + "[0.212 2.094 0.110] [13.923]\n", + "[0.212 4.189 0.110] [13.923]\n", + "[0.591 0.000 0.110] [15.226]\n", + "[0.591 2.094 0.110] [15.226]\n", + "[0.591 4.189 0.110] [15.226]\n", + "[0.911 0.000 0.110] [14.889]\n", + "[0.911 2.094 0.110] [14.889]\n", + "[0.911 4.189 0.110] [14.889]\n", + "[0.212 0.000 0.220] [13.923]\n", + "[0.212 2.094 0.220] [13.923]\n", + "[0.212 4.189 0.220] [13.923]\n", + "[0.591 0.000 0.220] [15.226]\n", + "[0.591 2.094 0.220] [15.226]\n", + "[0.591 4.189 0.220] [15.226]\n", + "[0.911 0.000 0.220] [14.889]\n", + "[0.911 2.094 0.220] [14.889]\n", + "[0.911 4.189 0.220] [14.889]\n" ] } ], "source": [ - "from desc.compute.utils import surface_integrals\n", + "from desc.integrals import surface_integrals\n", "\n", "grid = QuadratureGrid(L=2, M=1, N=1, NFP=eq.NFP)\n", "B = eq.compute(\"|B|\", grid=grid)[\"|B|\"]\n", @@ -697,7 +699,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAADECAYAAACMc2sOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAp/klEQVR4nO3deXhU5d0+8PvMkklCNpgsJCEEAsgmSRAwINTEBURacYNarNpCRSsV6vJabNUXqASUvq6o2FoN4lKtoFXfH7VUBRWKokgiCCprICSEJJBkSCazfn9/YOY1kGWSWc7MmfvjNdclMzkz3zPPzJz7POc5z1FEREBERESkATq1CyAiIiLyFwYbIiIi0gwGGyIiItIMBhsiIiLSDAYbIiIi0gwGGyIiItIMBhsiIiLSDAYbIiIi0gwGGyIiItIMBhsiIiLSDAYbIiIi0gwGG9KcYcOGoaioCEVFRcjPz4eiKBg/frznvqKiIrVL7Lb33nvPsy7hoKf1Pv/88xg2bBgGDBjQ49eeP38+5s+f3+PlW4Xae97d9fLHe0kUloRIYwoLCz3/v3HjRgEgBw8ebPfxcNK6LuHCm3oXLVp0VnuUlJRIdnZ2j1+3qalJmpqaerz8D4XSe96T9fLmvWyvDYjCmUHdWEXkf8uXL/fpcQpvsbGxapcQEFpdLyJ/46Eo0pwJEyZ0+vhLL70EnU6HvLw8fPjhhwCAW265BXfccQcAYPv27Rg1ahSGDBmCnTt3AgCqq6sxa9YsTJo0CRMnTsStt96KxsbGdp//h4cAVq5cicmTJyMnJwdr1qxp83ddPefevXtRVFSEcePGYfr06SgtLT1r+Z/97GeYNGkSJk2ahAULFsBqtXoef/TRR1FQUICLL74YP/rRj/DSSy91+J48+eSTuPjii3HppZdiwoQJWLVqVbfXp6t6z7Rq1SqsXr0apaWlKCoqwiWXXNLm8Y5eq7P1fuqppzBgwIA2hxvPrH/KlCmIjo7G6tWrz6qpO+tQWlqKF198EStXroTD4Tjr8Xnz5nXrc9bd9WqtdezYsbj88stRXFwMRVFQVFSEo0ePevVedtUGRGFJ7S4jokBq71CUiMgFF1wgxcXFIiLidDolPT1dsrKyPI/fd999snXrVhERcblccv7558sdd9whIiJut1tmzZolV155ZYevW1JSIlFRUfKvf/1LREReffVVSUhIEKfT6dVzOhwOGTp0qNxzzz2ef0+fPt1zWKR1+QULFnjWYfr06TJ//nwREdmzZ48kJiaK1WoVEZEvv/yy08MNjz32mOdvW1paZPDgwbJlyxav16erejvS0aGojl6rq/Xu6jnXrVsnIiJvvvmmrF+/vs3fdGcdPv74Y7nrrrtERGTNmjWyZMmSdtfP289Zd9ervVqnTZt2Vq1dtVtH7xdROGOwIU3rKNg89thjMnr0aM/f3HXXXaLX62Xbtm0iIjJ58mRxu90iIvLpp58KAPnuu+88y3/88ccCQMrLy9t93ZKSEklMTPT8e8+ePQJAKisrvXrOzZs3CwDZu3ev5/G///3vng1Xe8uvXbtWYmJixO12y5EjRyQmJkaeeuopOXnypIiIWCyWDt+nDz74QKZOnSoTJ06UwsJCSUxMlBUrVni9Pl3V25GOQkhSUpLn3998843ntbpa786eMyEhodNaurMO48aNk4aGBhEReffdd+WSSy5p9zm9/Zx1d728rbWz97IVgw1pDcfYUESaMWMG7rrrLhw8eBDr1q3DggULUFZWhnXr1iE6OhojR470nA1TXl4OAEhLS/Ms3/r/5eXl6N+/f7uvkZSU5Pn/6OhoAIDNZvPqOSsrKwEAqampnseTk5M9/9+6/K9+9SvodKePKLe0tCA1NRU1NTXo168ftmzZgscffxyLFy/GmDFjsHjxYowfP/6sOg8ePIhp06bhmWeewZw5cwAARUVFaGpq8np9KioqOq23uxITEz3/bzKZPK/V1Xr/8PXP1Lt3705f09t1+OSTT5Ceno6EhAQAQFlZWYev6+3nrLvr1Z33u6P3kkirGGwoIvXr1w8FBQV44403cODAAQwZMgQzZszAo48+CpPJhJkzZ3r+Njs7G8DpsR2tG7Pq6uo2j3VXV8+p1+sBAMePH/c8Xltb61m+9RTev/3tb8jMzPTcf/z4caSmpqK5uRlZWVl48cUXYbPZsHz5ckyePBnV1dVnDULdvn07bDYbrr76as99dru9W+uTlZXVab3+0tV6+8Lbdfjggw9w4YUXev791ltv4ZFHHmn3Ob39nHV3vYL1fhOFIw4epog1Y8YMrFixwtOLcc011+DAgQP4xz/+0WYA8rhx4zB27Fg888wzAAARwapVq3DFFVd02FvTla6es6CgAMOHD8df/vIXAIDL5cKLL77oWX7s2LEoKChoM8j3ww8/xFVXXQUA2LZtG+bMmQMRgclkwoUXXgiHw9HunCxDhw6Foij4+OOPAQCHDh1CWVlZt9anq3o7kpiYCIvFAgC444478Omnn3b6912tty+8XYfNmzfD6XQCOB1ELrjgAhQWFnb4vN58zrq7Xu3V+sorr3R/pdH9NiAKeSofCiMKmJKSEsnLyxMAUlBQIP/85z/bPH7o0CEBILt37/bcd9FFF7UZsNmqqqpKrrvuOpk4caJMmDBBbr75Zqmvr2/3dV977TUZOnSomEwmue6666SqqkoKCgo8dbSOi+jqOffu3SuFhYUyZswYmTJlijz44IMCQAoLC6WiokKOHTsms2bNkgkTJshFF10k06dPl8OHD3ue+4YbbpAJEyZIYWGhjBs3Tt5+++0O36vHH39c+vfvL5deeqnMnTtXcnNzJTs7W1auXOn1+nRVb3sOHToko0aNkokTJ8rll1/u1Wt1tt4rV66U7OxsSUxMlBkzZpzVHoWFhbJjx44O34eu1sHpdEpaWpps2bJFVq9eLS+//HKHz/XDdfTmc9bd9fphrT/+8Y/lkUceaTPGxtt2O7MNWlpaulwnolCmiIiolKmIiMLKF198gYULF+KDDz5QuxTU1ta2GVfz+uuv48477/SMzyKKVDwURUTkpc2bN2PixIlqlwEAmD17Nnbs2AEAcDgcKCkpwZVXXqlyVUTq4+BhIiIv9e3bF1OmTFG7DADAVVddhblz5yI+Ph4WiwXjxo3DihUr1C6LSHU8FEVERESawUNRREREpBkMNkRERKQZPQo2IgKr1QoexSIiIqJQ0qNg09LSgtjYWLS0tPi7HiIiIqIe46EoIiIi0gwGGyIiItIMBhsiIiLSDK8m6HM4HJ6LvgGA1WoNWEGkXU6LE/YqO+xVdtiqbLBX2eFudkOcAnELFIMCxajAmGyEKd2EqIwoRKVHISolCor+7Is3EpH63CKodThQabOhym5Hld2OGocDdrcbThEoAIw6HWJ0OvSNikJ6VBQyTCakR0UhXq9v98KsRL7wKtgUFxdjyZIlga6FNEJEYKuwwfKFBZbtFli2WWD53AJnvbPN3ylGBVBw+gYA359kJy4BXD/4O4OCmHNikHhBIuLGxCF+TDzicuOgM7HDkSiY7G43djU1YbvFgu0WC7Y2NmJ3czOcPzhDVg9A/31YUeD5WkMAOEXww3NpE/R6jImPR0FCAsbExWFMfDwGREcz7JBPvJp5uL0eG7PZjObmZsTExAS0QAoPbocbDVsaUPdOHWrW1sB2xAYAUKIUiN1P0wIYcPrX0QUoJgW9L+mN5KuTYf6JGaa+Jv+8BhG1UWO3Y/2JE/hHbS3eO3ECLW439AB0igKHn6b8iFIU2L9/rvSoKFybkoLpZjMKk5IQpeMODHVPjy6pYLVaERsby2AT4UQEDR83oPK5StS9XQfXKRcUowJxBGl+o9bfOzcQNzoOfX/RF2m/SIMxyRic1yfSKIvTiVeqq/FidTU+a2wEcPrr5up8Mb8xfh+aYnU6TDObMTc9HZf27g0de3LICww21G3ORieqX65GxRMVsH5nhWJQIM4QmKxRDyh6BWk3piHzN5mIHx2vdkVEYeXrpiY8c/QoVh87hha3GwJA7W+2AYATwIDoaCzIzMQv+/ZFbyN3XqhjDDbkNUedA4cfOoyjTx+F2+ZGSPzqtaO11yj+/HjkPJSD3hf1VrskopC2taEB9x44gI8bGjy9JaGodfzOzenpeCA7G31NPARNZ2OwoS65mlyoeKIC5cvKITYJjd4Zb+gBuICkS5Iw6E+D2INDdIbdTU1YeOAA/reuztMzEg4MigKDouC/srJwT1YWEgxenQdDEYLBhjokIjj2wjHsv3c/nCedwTvA7meth8pSfpqCwY8OhimTe3kU2Wrsdtyzfz/WVFdDryhtzmoKJ3oAcXo9Hhw4EPMyMz1nY1FkY7ChdrWUt+Cb2d+gflN9SB5u6gnFoECJVnDOU+cg7aY0nlJKEemN48dxy3ff4ZTLFbaB5kwKgPPj47Fm+HCcExurdjmkMgYbakNEUPVcFfbduQ9iD6PDTt3UZ2ofDH1+KEwZ7L2hyFBjt2Pe3r1YW1PTZn4ZrTAoCnQAHsrJwYJ+/dh7E8EYbMjDcdKB3T/bjZP/Pqm9X70zKAYFumgdhr86HMlXJKtdDlFAfXjyJGZ8/TUsGuql6YgCYEJCAt4891ykRUWpXQ6pgDMfEQCgaU8Ttp+3HfUf1ms+1ACAOAWuJhd2XbkL5cvL0YN8TxTyRARPVVRgclkZGpxOzYca4PTP1zaLBflffIEdFova5ZAK2GNDqFtfh69/+vXpU7jD5bQIf1KAlJkpGFYyDPpYvdrVEPmF3e3GvO++w/PHjqldiipaTw1/afhw/DQ1Ve1yKIjYYxPhKp6swM6f7IS7OUJDDQAIUPNmDb684EvYa+xqV0PkswanExeVlmJ1hIYa4PRJnHYRXLd7N5YeOsRe2QjCYBPByh8qx77f7gvZifaCygk0f92MHZN2wHbMpnY1RD12wuFA0Y4d2GaxhOsMDX73wKFD+MPBgww3EYLBJkKVLy/Hwd8fVLuMkCJOQcuBFuyYuAP2avbcUPg56XCgqLQUu8644jYBDx8+jN/t389wEwEYbCLQkceO4OAfGGraI06B7bANOwp3wF7LcEPho9HpxKVlZdjDUNMuAfA/FRVYdOiQ2qVQgDHYRJjjbxzH/rv2q11GSBOnoGV/C3ZN3wW33a12OURdcongp19/ja+amhhquvBgeTmer6pSuwwKIAabCGIptWDPjXvULiMsiFPQuK0Re2/fy65rCnm/P3AA/z55kqHGS7d++y22NDSoXQYFCINNhLAft2PntJ2anUk4IFxA1XNVqFxVqXYlRB16pboafzpyBOxb9J4AmL5zJw63tKhdCgUAg00EcDvc2HXVLjhqHGF7IUs17Z2/Fyc3nVS7DKKzfNHYiNnffKN2GWHHDaDR5cKPd+6E1cUfRa1hsIkAR1YcQeNnjeyt8cHun+2GsyFSJ/qhUGR1uXDd7t1w8/BTjzhFsKepCQ8c5IkUWsNgo3Gndp7CwUUHwX5qH7gBZ50T++7ep3YlRB4PHDyI8pYWdsL6wAXg0YoKbOV4G01hsNEwt8ONPTfsOX1VOPKJOAXHnj+GE/86oXYpRNja0IBHKyoYavxAB+Dne/bwkJSGMNho2JEVR9C0qylyL5Xgbzpgzy/3wNnIN5TU0+Jy4YY9e/jj7ScuAIdbWnA/D0lphlffDYfDAavV2uZGoc1WacOhBw/xEJQ/uQFHrQOHVxxWuxKKYE8dPcpDUH7mAvBERQX2NTerXQr5gVfBpri4GLGxsZ6b2WwOdF3ko0NLDvEMqEBwAkf+5whsVbyeFAVfvcOBP5aX86sdAIqi4A/stdEEr4LNfffdh+bmZs+trq4u0HWRD5r3NqPqr1U8CypQXED5g+VqV0ER6E9HjsDqZjdsIDhF8EZNDb60WNQuhXzkVbAxGo2IiYlpc6PQdfAPB6HoOWI4UMQpqPxLJZr3sduagqfKZsMjR45wduEAMigKfrefl5wJdxx/pjHN3zajZm0NxMEfv0BSdAoOP8SxNhQ8j/EsqIBziuCD+npsa2xUuxTyAYONxlQ+WwnFyN6aQBOHoPrlajjqHWqXQhHA6nLhz5WV7K0JAqOi4OmjR9Uug3zAYKMhriYXKp+rZG9NkIhTUL2mWu0yKAK8UVMDC+dZCQqHCP52/DjqHNxpCVcMNhpy/LXjcFs5sDBoXEDFExW8+jcF3JMVFZxnM4jcIiipqlK7DOohBhsNqVhZcfqytRQ0LQdaUL+pXu0ySMNKLRZsP3WKU1IFkQvAyqNHudMSphhsNKKlvAVNZU0MNkGmGBXUvlmrdhmkYetqa2FU2F8TbIdtNnzV1KR2GdQDDDYaUftuLaBXu4rIIw5Bzboa7tlRwKyrqYGDn6+gMyoK3qnlTks4YrDRiNo3a9lboxJ7lR1NX3HPjvzvkNWKPZzmXxUOEayrqVG7DOoBBhsNcDY4Uf9xPa8LpRLFqKD2He7Zkf+9W1fHjlgVlTU1odLGy6eEGwYbDajfVM/rQqlIHIK6d3mZEfK/9SdOcH9FRToAG06cULsM6iYGGw1o/LwRShQHF6rp1Fen4HZyE0T+IyL4rLGRR5hVpFcUfMFrR4UdBhsNsGyzQOz8+VOT2ATN33AsBPnPUZsNJ51OtcuIaA4RfMrLK4QdBpswJyKwfM49CtXpgFPbT6ldBWnI9lP8PIWCnU1NcPKK6mGFwSbM2SpscNZzr05til6B5QsGTPKf7RYLojh/jersItjNM9PCikHtAjpjq7TBeZIb7c40bGlQuwTC6QHEjZ81oulrnvbtjePxbjSbuV/VmU8bGmDn/DUh4d8nTkDPkNml3gYDMkwmtcuAIj2YWcxqtSI2NhbNzc2IiYkJRF2wVdrw2ZDP4G5mFyCRltSagRteBmzRaldCRP4Uq9Nhb0GB6uEmZHeZnCedDDVEGmSJZ6gh0qJmtzskBryHbLAhIiIi6i4GGyIiItIMBhsiIiLSDK/OinI4HHD+4LiZ1WoNWEE/VIManALnciDSkqN2AAfVroKI/C4uTu0KAHgZbIqLi7FkyZJA19JGg6UB1+N6OKH+QCQi8qNKAHPULoKI/M5ggKW8HOjVS9UyvDrdu70eG7PZHNDTvZu+bsL6c9ezx4ZIY45mAA8sVbsKIvK7uDjsmjYNI1UONl712BiNRhiNxkDXcpaU7/8jIg2JAjBQ7SKISKs4eJiIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0I2SDjaG3AbrYkC2PiHoo3gKYWtSugoj8LVanQ2+DV+ckBVTIXt0bOH2Fb+dJzmPTGXu1HWWXlKldBhmA1OtSkf37bLUrCQvH491oNnPHpTNPV1TguaoqzuQVAt4aORJDYmPVLiPk9TYYVL+yN+Dl6d5qMWWYYMpQ/00KZbEjYmHoY4DzBH/+VOUC+lzWB71Gqjt/Q7jg2d5du9xsxqqqKrXLiHgmRcFPzGYYdAzi4YItFeYURUH8uHhAUbuSCCdA/Jh4tasgDRkTz89TKMiNi2OoCTNsLQ1IOD8BipHJRk26aB1ih7Krmvwnw2SCOQTGK0Qyo6JgfEKC2mVQNzHYaED8uHiIvdtDpciPeuX1gqJnuCT/Gp+QwB9pFblEMJY9Z2GH3xkNSCpKgmLgRlUtikFB8vRktcsgDZpmNvMos4oEwGV9+qhdBnUTg40GGOINSLooia2pEnEKzNPNapdBGnSF2QyX2kVEsPPi4pAWFaV2GdRN3BRqRPLVyRxArBJTPxPPhqKAyIqOxrk8zVgVBkXBNSm8CHM4YrDRCPMVZnDXLvgUo4Lka5OhKEyVFBjXpqTAyM9X0DlFMN3MnthwxGCjEdH9ohE3Jo4tGmTiEKRcy706CpwZKSlwdH8eVfJRTnQ0RvZiT2w44mZQQ/rN73d6tBsFhwLEnBODxEmJaldCGnZuXBzPjgoyPYAF/fqxJzZM8buiISk/TYE+Xq92GZFDAfr9lj9+FHgLMjO5zxJEekXBL9LS1C6DeojBRkP0MXpk3JLByfqCRGfSIe0G/vhR4F2TkoIkTtYXFEZFwY1paUgyGtUuhXqIwUZjMn6dAXFy3y7QFKOCtJvSYEjgxoYCz6TT4baMDBjYOxhwDhHMy8xUuwzyAYONxsQMikHqz1LZaxNoAvS/t7/aVVAE+W2/fjw7KsAMioKpffrgPM42HNYYbDRoYPFAiJu9NoGiGBRkzMtAzIAYtUuhCJIaFYWF/fuDo+gCxyWCFTk5apdBPvIq2DgcDlit1jY3Cl0xA2OQeVsmL7MQIIpRQfb92WqXQRHorn79kMCxNgFhUBRcn5qKUXFxapdCPvIq2BQXFyM2NtZzM3PSopCXfX82g00g6IH+C/sjKoXTrFPwxRsMWDxgALvaA0BE8ODAgWqXQX6giHQ985PD4YDT6fT822q1wmw2o7m5GTEx7I4PVYf/5zAOLDwAuNWuRCN0QFRGFM7fcz4McdxrJnXY3G7kff459lmtnGzcT/QAFvbvj2IehtIEr4K/0WhETExMmxuFvqw7sxB/XjzAbbB/uIHha4Yz1JCqTDodXh4+nPPa+IkewKCYGPz3gAFql0J+wh5NDVP0Coa9NIwTyPmDAci4LQO9L+qtdiVEGJuQgHs5kNgvBMArw4fDpOPmUCvYkhrXa1gvDCweyJb2hQ4w9TUhZwW7qSl0/PeAARgcE8Nw4wM9gHv798fYhAS1SyE/4uYuAmTdlYWkwiQOJu4pBRjx+ggegqKQYtLp8PeRIzlpXw8ZFAX5cXE8BKVBDDYRQNErGLl2JKIyojjepgeG/mUoEi/ghS4p9OTGxeGVESPULiPs6AH0MRjw7qhRPASlQWzRCGHsY0Tu+lzoonQAd/C8owMyF2QifU662pUQdejalBQsys7m17obdIqC/x01Cukmk9qlUAAw2ESQXiN7YcRr3LvzhmJQkFSYhEGPDFK7FKIu/feAAbjCbOZhKS+VDBuGcRxXo1kMNhEm+YpkDHl6iNplhDTFoCB2RCxGvjkSOgO/IhT6dIqCV0eMwLj4eIabLiwfOBA/T0tTuwwKIP5qR6DM2zIx6DH2RLRHMSiIGRKD/A/zYUwyql0Okdd66fX4V24u8uPiGG46sCg7G/dm83IoWsdgE6Gy7sjC4CcGq11GSFEMCmKHxyL/43wYzQw1FH7iDQZ8kJeHMQw3Z3lwwAAs5iUTIgKDTQTrt6Afhv516OlPQaR/EvRA3Jg45H+Uj6hkXgeKwleCwYAP8vNRlJgY8V9r5fvbo4MG4X6e1h0xIv1zH/HSf5WOvPfzoI/TR/Q8N31v6ovRH42GsTd7aij89dLr8c/cXCzIzFS7FNUYAMTodHjn3HNxZ1aW2uVQEHl1EcwzWa1WxMbG8iKYGmI9YMVX075Cy/4WiDNCrkLzfawf/PhgZN6eyUtPkCaVVFXhlu++g1skYq6Ha1AUZERF4Z+5uRjRq5fa5VCQMdiQh9PixJ6b9qDuH3VqlxJwikGBPk6PEW+MQJ9L+6hdDlFA/aehAVfv2oUTTiec3f/JDysKgEuSkvD6yJHoY2QPbCRisKE2RATHXz2O7277Dm6rW3u9NwoAAVJmpGDIM0MQlcLxNBQZ6h0O/HbfPqyproYO0FzvjUFRYFQUPD54MOamp7MHNoIx2FC7bFU2fDv3W5z4fyc8YSDctfbSnPPcOUidkap2OUSqWF9Xh9nffKOp3hsFQFFSEkqGDUN2dLTa5ZDKGGyoQyKC468dx/7/2g/7MXvY7uIpBgXiEvSd3Rc5D+Wwl4YiXr3DgfsPHsSzlZXQKQocYRpw9AD6GI1YnpODOX37speGADDYkBfcNjcqn63EocWH4LQ4AZfaFXnJAMAJmK80I2d5DnoN5yBCoh86YLXivgMH8FpNDQyKEjY9OAZFQbROh/uzszE/MxOxer3aJVEIYbAhrzktThx55AgqHquAy+I63f8bgr04ilGBOARJFychZ1kOEgp4TRiizpRaLLj/4EGsP3EC+hANOK1z0kTrdJifmYmF/fujNwcHUzsYbKjbXFYXat6oQcUTFTj15SlPkFDV9796uhgdMuZmIOPXGYgdGqtuTURh5qDVij9XVuLZyko0ulwhse9i/P5Q2YjYWNzRrx+uT0tDL/bQUCcYbMgnlu0WVP6lErVv1sJR6whqyGkdOwMdkDgxEWk3piFtVhr0vfijR+SLFpcLb9TUYM2xY9jU0ACXSFB7clrDTJLBgKuTkzE3PR3jExI4hoa8wmBDfiFugWW7BXXv1KFmXQ2a9zQD+P6wkEv8stunGJXTp58LoOulg/kKM5KvTEafqX14wUqiAGl0OrHhxAm8U1eHt2trPT05RkWB3Q9B58znGhQdjRkpKZienIyChAToGWaom7wKNg6HA06n0/Nvq9UKs9nMYEMdctQ5YNluOX373ILGzxphr7K3PW1cDyg65fQvWyuBJ7y00sXq0OvcXkgYn4D4sfGIHxOP2KGxUPT8wSMKJrcI9lqt2G6xYLvFgs8aG1F66hSa3G33XIyKcubXGiICJ9pKNRpRkJCA8+PjMeb7W2oUz1ok33gVbBYvXowlS5acdT+DDXWH2+mGo9oBW5UN9io77JV2uKyu00HGdbpHRjEqMCYbEZUeBVOGCVHpUTDEG9QunYg6ccrpRJXd7rkdt9vhEIFDBDqcDjrROh3STSakR0UhIyoKaVFRMOp4uULyP/bYEBERkWZ4tStsNBph5Gl1REREFOLYD0hERESa0aPBC61Hr6xWq1+LISIiIupMdHR0p6f+9yjYtLS0AADMZnPPqiIiIiLqga7G9/ZoHhu32436+vouU5MvWgco19XVcYCyytgWoYHtEDrYFqGB7RA6gtkWAemx0el06NOnT4+L6o6YmBh+YEME2yI0sB1CB9siNLAdQkcotAUHDxMREZFmMNgQERGRZoRssDEYDFi0aBEMBs46qza2RWhgO4QOtkVoYDuEjlBqix4NHiYiIiIKRSHbY0NERETUXQw2REREpBkMNkQaISIYP348FEXBpk2b1C6HiDSgubkZd955J/R6PVavXq12OV4JarBxOp1YtmwZRowYgdzcXIwYMQLLli1rc+Xwznz11VeYNm0ahg0bhqFDh2LatGn46quvAly1NvW0LRwOB9auXYsrrrgC+fn5yM3NxfDhwzFnzhzs378/SNVri6/fi1bPPfccPvvsswBVqX2+toPVakVxcTHOP/98jBkzBoMGDcK4cePwpz/9KcCVa48vbeF0OvHkk09i9OjRGDVqFEaOHIkJEybg1VdfDULl2rJx40bk5eXho48+gtvt7vbyqm2zJYjmzJkjffv2lX379omIyL59+6Rv374yZ86cLpfdtWuXxMfHy8KFC8Xtdovb7Zbf/e53kpCQILt27Qp06ZrT07bYunWrAJBly5aJ0+kUEZHKykoZM2aMJCQkyO7duwNeu9b48r1oVVtbK6mpqTJ9+nQBIBs3bgxQtdrlSzs0NTXJhAkT5JZbbpGmpiYREbHZbPLLX/5SCgoKAlq3FvnSFr/5zW9EURRZt26d575HH31UAMjjjz8esJq1aPz48bJlyxYpKSkRAFJSUuL1smpus4MWbFo3iGd+sJ544gkBIFu3bu10+csuu0xSUlLEbrd77rPb7ZKamipTp04NSM1a5UtbbN26VQYOHHjW/e+9954AkHnz5vm9Xi3z9XvRas6cOXL77bfLokWLGGx6wNd2WLhwoQwZMsQT9lvV1NTIRx995Pd6tczXtoiPj5dRo0a1e39+fr5fa9U6h8MhItKjYKPmNjtoh6JauwGnTJnS5v7LLruszePtqa2txb///W9cdNFFMBqNnvuNRiMuvvhibNiwAbW1tQGoWpt8aYuCggJ8++23Z92flZUFADh58qS/yowIvrRFq61bt2L9+vVYunSp/wuMEL60g91ux5///GdcffXV0Ov1bR5LTk7GhRde6Odqtc3X70R8fDwcDkeb+9xuN1wuF0wmkx8r1b6ezkmj9jY7aMHmyy+/BADk5OS0uT8nJweKomDHjh0dLltaWgq3241Bgwad9djgwYPhdrtRVlbm34I1zJe2UBSlzQe11e7duwEAkydP9mOl2udLWwCAy+XCvHnz8PDDDyMxMTFgdWqdL+2wc+dO1NfXIyMjA4sXL8bYsWMxdOhQTJo0CatWrYJwqrBu8fU7sWzZMuzbtw/PPPMM3G43HA4H7rvvPthsNtxzzz0Bq5v+j9rb7KAFm5qaGphMprMSs9FoRExMDGpqajpdFgASEhLOeqz1vs6Wp7Z8aYv2iAhWrlyJgoIC3Hjjjf4sVfN8bYunnnoKcXFxuOmmmwJZpub50g6HDh0CANx///1oamrC5s2bsXv3btx66624/fbbcfPNNweydM3x9Tvxi1/8AmvXrsXDDz8Ms9mMPn364K233sL777+Pa6+9NpCl0/fU3mYHLdiISKeXGe9qWQA9Xp7a8qUt2rN8+XIcOXIEa9euDYnptMOJL21RVVWFP/7xj3j66af9XFXk8aUdrFYrACAlJQUPP/wwoqOjodfrceONN2LmzJl44YUXePZmN/j6+1RcXIyZM2fioYceQm1tLU6ePIm7774bV155JV5//XU/VkodUXubHbRgk5qaipaWFthstjb3OxwOWK1WpKSkdLosADQ0NJz1WGNjIwB0ujy15UtbnOmJJ57Aiy++iI0bN6Jfv37+LlXzfGmLu+++GzfddBNyc3MDXabm+dIOrXugo0ePhk7X9ie1oKAAwOlxUOQdX9ri22+/xQMPPICZM2di1qxZ0Ov1MBgMmDt3LgoLCzF79mxUV1cHehUintrb7KAFm/POOw8AcODAgTb3HzhwACKC0aNHd7hsfn4+dDpdu/Ok7Nu3DzqdDnl5ef4tWMN8aYsfWrx4MdasWYPNmzcjOzvb73VGAl/aYuPGjdiwYQPy8/M9t2effRYAcPPNNyM/Px/33ntv4IrXEF/a4dxzzwVwerzTmVoHE/dkDpBI5UtblJWVQUQwbNiwsx4bPnw4rFZrl2N0yHdqb7ODFmxmzZoFAHj//ffb3L9hwwYAwPXXX++57/jx421GtScnJ+PSSy/Fpk2b2kzQ5HQ6sXHjRkyZMgXJycmBLF9TfGkL4HQ34/z587Fp0yZs3LjRk7yrqqowffr0QJauOb60RVVVFb7++muUlpZ6br/+9a8BAH/9619RWlqKhx56KNCroAm+tENOTg5Gjx6NsrKyswJM60Z0woQJAalbi3xpi759+wL4v3FPP9QalLit8L+Q22YH9GTyM8yePVsyMjJk//79IiKyf/9+SU9PbzPp0pYtW0Sv18u0adPaLNs62c/vf/97z2Q/9957r8THx3OCvh7oaVvY7Xa5/vrrJSUlRZ577jl56aWXPLfHHntMsrOzg70qYc+X78WZOI9Nz/nSDp988omYTCZZsmSJ574NGzZIVFSUzJ49OzgroCE9bQuXyyUXXHCBmEwm+fDDDz33v/POO6LX66WoqEjcbnfwVkQjOpvHJhS32UENNg6HQ5YuXSrDhg2TUaNGybBhw6S4uNgzCZCISFlZmfTp00fmzp171vKlpaUydepUGTp0qJxzzjkydepUKS0tDeYqaEZP2+Ltt98WAB3eGGy6z9fvhcjpycvy8vIkLS1NAMigQYMkLy9PtmzZEqzVCHu+tsN//vMfmTx5smRnZ8vgwYMlNzdXnnzySXG5XMFcDU3wpS0sFosUFxdLbm6ujBw5UoYPHy55eXny8MMPy6lTp4K9KmFt6dKlkpeXJ1lZWQJAsrKyJC8vT5YvX+75m1DcZisinGSBiIiItIFX9yYiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs0wqF0AEUWWo0ePYvXq1bDb7cjOzsacOXPULomINITBhoiCpqysDLfddhveeecdJCcn47LLLoPJZMLPf/5ztUsjIo3goSgiCoqWlhZcc801WLp0KZKTkwEAY8aMQUlJicqVEZGWMNgQUVC88MILiI6OxsUXX+y578SJE6itrVWxKiLSGgYbIgqK119/HVdddVWb+7788ksMHjxYnYKISJMYbIgo4Ox2O7Zt24Yf/ehHnvuqqqqwfft2zJw5U8XKiEhrGGyIKOA+//xztLS0ID8/33PfqlWrkJeXhxkzZqhXGBFpDoMNEQXcJ598gtTUVGzcuBHA6bOj1q5di3Xr1kGv16tcHRFpiSIionYRRKRtP/nJTzB48GAUFhZi165dAIB58+bBbDarXBkRaQ2DDREFlIjAbDbj+eefx9VXX612OUSkcTwURUQBtWvXLtTX1+PCCy9UuxQiigAMNkQUUJ9//jlGjx7Nw05EFBQ8FEVEAWWxWNDc3Iy0tDS1SyGiCMBgQ0RERJrBQ1FERESkGQw2REREpBkMNkRERKQZDDZERESkGQw2REREpBkMNkRERKQZDDZERESkGQw2REREpBkMNkRERKQZ/x9kakXbCD3yYgAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAADECAYAAACMc2sOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAp/klEQVR4nO3deXhU5d0+8PvMkklCNpgsJCEEAsgmSRAwINTEBURacYNarNpCRSsV6vJabNUXqASUvq6o2FoN4lKtoFXfH7VUBRWKokgiCCprICSEJJBkSCazfn9/YOY1kGWSWc7MmfvjNdclMzkz3zPPzJz7POc5z1FEREBERESkATq1CyAiIiLyFwYbIiIi0gwGGyIiItIMBhsiIiLSDAYbIiIi0gwGGyIiItIMBhsiIiLSDAYbIiIi0gwGGyIiItIMBhsiIiLSDAYbIiIi0gwGG9KcYcOGoaioCEVFRcjPz4eiKBg/frznvqKiIrVL7Lb33nvPsy7hoKf1Pv/88xg2bBgGDBjQ49eeP38+5s+f3+PlW4Xae97d9fLHe0kUloRIYwoLCz3/v3HjRgEgBw8ebPfxcNK6LuHCm3oXLVp0VnuUlJRIdnZ2j1+3qalJmpqaerz8D4XSe96T9fLmvWyvDYjCmUHdWEXkf8uXL/fpcQpvsbGxapcQEFpdLyJ/46Eo0pwJEyZ0+vhLL70EnU6HvLw8fPjhhwCAW265BXfccQcAYPv27Rg1ahSGDBmCnTt3AgCqq6sxa9YsTJo0CRMnTsStt96KxsbGdp//h4cAVq5cicmTJyMnJwdr1qxp83ddPefevXtRVFSEcePGYfr06SgtLT1r+Z/97GeYNGkSJk2ahAULFsBqtXoef/TRR1FQUICLL74YP/rRj/DSSy91+J48+eSTuPjii3HppZdiwoQJWLVqVbfXp6t6z7Rq1SqsXr0apaWlKCoqwiWXXNLm8Y5eq7P1fuqppzBgwIA2hxvPrH/KlCmIjo7G6tWrz6qpO+tQWlqKF198EStXroTD4Tjr8Xnz5nXrc9bd9WqtdezYsbj88stRXFwMRVFQVFSEo0ePevVedtUGRGFJ7S4jokBq71CUiMgFF1wgxcXFIiLidDolPT1dsrKyPI/fd999snXrVhERcblccv7558sdd9whIiJut1tmzZolV155ZYevW1JSIlFRUfKvf/1LREReffVVSUhIEKfT6dVzOhwOGTp0qNxzzz2ef0+fPt1zWKR1+QULFnjWYfr06TJ//nwREdmzZ48kJiaK1WoVEZEvv/yy08MNjz32mOdvW1paZPDgwbJlyxav16erejvS0aGojl6rq/Xu6jnXrVsnIiJvvvmmrF+/vs3fdGcdPv74Y7nrrrtERGTNmjWyZMmSdtfP289Zd9ervVqnTZt2Vq1dtVtH7xdROGOwIU3rKNg89thjMnr0aM/f3HXXXaLX62Xbtm0iIjJ58mRxu90iIvLpp58KAPnuu+88y3/88ccCQMrLy9t93ZKSEklMTPT8e8+ePQJAKisrvXrOzZs3CwDZu3ev5/G///3vng1Xe8uvXbtWYmJixO12y5EjRyQmJkaeeuopOXnypIiIWCyWDt+nDz74QKZOnSoTJ06UwsJCSUxMlBUrVni9Pl3V25GOQkhSUpLn3998843ntbpa786eMyEhodNaurMO48aNk4aGBhEReffdd+WSSy5p9zm9/Zx1d728rbWz97IVgw1pDcfYUESaMWMG7rrrLhw8eBDr1q3DggULUFZWhnXr1iE6OhojR470nA1TXl4OAEhLS/Ms3/r/5eXl6N+/f7uvkZSU5Pn/6OhoAIDNZvPqOSsrKwEAqampnseTk5M9/9+6/K9+9SvodKePKLe0tCA1NRU1NTXo168ftmzZgscffxyLFy/GmDFjsHjxYowfP/6sOg8ePIhp06bhmWeewZw5cwAARUVFaGpq8np9KioqOq23uxITEz3/bzKZPK/V1Xr/8PXP1Lt3705f09t1+OSTT5Ceno6EhAQAQFlZWYev6+3nrLvr1Z33u6P3kkirGGwoIvXr1w8FBQV44403cODAAQwZMgQzZszAo48+CpPJhJkzZ3r+Njs7G8DpsR2tG7Pq6uo2j3VXV8+p1+sBAMePH/c8Xltb61m+9RTev/3tb8jMzPTcf/z4caSmpqK5uRlZWVl48cUXYbPZsHz5ckyePBnV1dVnDULdvn07bDYbrr76as99dru9W+uTlZXVab3+0tV6+8Lbdfjggw9w4YUXev791ltv4ZFHHmn3Ob39nHV3vYL1fhOFIw4epog1Y8YMrFixwtOLcc011+DAgQP4xz/+0WYA8rhx4zB27Fg888wzAAARwapVq3DFFVd02FvTla6es6CgAMOHD8df/vIXAIDL5cKLL77oWX7s2LEoKChoM8j3ww8/xFVXXQUA2LZtG+bMmQMRgclkwoUXXgiHw9HunCxDhw6Foij4+OOPAQCHDh1CWVlZt9anq3o7kpiYCIvFAgC444478Omnn3b6912tty+8XYfNmzfD6XQCOB1ELrjgAhQWFnb4vN58zrq7Xu3V+sorr3R/pdH9NiAKeSofCiMKmJKSEsnLyxMAUlBQIP/85z/bPH7o0CEBILt37/bcd9FFF7UZsNmqqqpKrrvuOpk4caJMmDBBbr75Zqmvr2/3dV977TUZOnSomEwmue6666SqqkoKCgo8dbSOi+jqOffu3SuFhYUyZswYmTJlijz44IMCQAoLC6WiokKOHTsms2bNkgkTJshFF10k06dPl8OHD3ue+4YbbpAJEyZIYWGhjBs3Tt5+++0O36vHH39c+vfvL5deeqnMnTtXcnNzJTs7W1auXOn1+nRVb3sOHToko0aNkokTJ8rll1/u1Wt1tt4rV66U7OxsSUxMlBkzZpzVHoWFhbJjx44O34eu1sHpdEpaWpps2bJFVq9eLS+//HKHz/XDdfTmc9bd9fphrT/+8Y/lkUceaTPGxtt2O7MNWlpaulwnolCmiIiolKmIiMLKF198gYULF+KDDz5QuxTU1ta2GVfz+uuv48477/SMzyKKVDwURUTkpc2bN2PixIlqlwEAmD17Nnbs2AEAcDgcKCkpwZVXXqlyVUTq4+BhIiIv9e3bF1OmTFG7DADAVVddhblz5yI+Ph4WiwXjxo3DihUr1C6LSHU8FEVERESawUNRREREpBkMNkRERKQZPQo2IgKr1QoexSIiIqJQ0qNg09LSgtjYWLS0tPi7HiIiIqIe46EoIiIi0gwGGyIiItIMBhsiIiLSDK8m6HM4HJ6LvgGA1WoNWEGkXU6LE/YqO+xVdtiqbLBX2eFudkOcAnELFIMCxajAmGyEKd2EqIwoRKVHISolCor+7Is3EpH63CKodThQabOhym5Hld2OGocDdrcbThEoAIw6HWJ0OvSNikJ6VBQyTCakR0UhXq9v98KsRL7wKtgUFxdjyZIlga6FNEJEYKuwwfKFBZbtFli2WWD53AJnvbPN3ylGBVBw+gYA359kJy4BXD/4O4OCmHNikHhBIuLGxCF+TDzicuOgM7HDkSiY7G43djU1YbvFgu0WC7Y2NmJ3czOcPzhDVg9A/31YUeD5WkMAOEXww3NpE/R6jImPR0FCAsbExWFMfDwGREcz7JBPvJp5uL0eG7PZjObmZsTExAS0QAoPbocbDVsaUPdOHWrW1sB2xAYAUKIUiN1P0wIYcPrX0QUoJgW9L+mN5KuTYf6JGaa+Jv+8BhG1UWO3Y/2JE/hHbS3eO3ECLW439AB0igKHn6b8iFIU2L9/rvSoKFybkoLpZjMKk5IQpeMODHVPjy6pYLVaERsby2AT4UQEDR83oPK5StS9XQfXKRcUowJxBGl+o9bfOzcQNzoOfX/RF2m/SIMxyRic1yfSKIvTiVeqq/FidTU+a2wEcPrr5up8Mb8xfh+aYnU6TDObMTc9HZf27g0de3LICww21G3ORieqX65GxRMVsH5nhWJQIM4QmKxRDyh6BWk3piHzN5mIHx2vdkVEYeXrpiY8c/QoVh87hha3GwJA7W+2AYATwIDoaCzIzMQv+/ZFbyN3XqhjDDbkNUedA4cfOoyjTx+F2+ZGSPzqtaO11yj+/HjkPJSD3hf1VrskopC2taEB9x44gI8bGjy9JaGodfzOzenpeCA7G31NPARNZ2OwoS65mlyoeKIC5cvKITYJjd4Zb+gBuICkS5Iw6E+D2INDdIbdTU1YeOAA/reuztMzEg4MigKDouC/srJwT1YWEgxenQdDEYLBhjokIjj2wjHsv3c/nCedwTvA7meth8pSfpqCwY8OhimTe3kU2Wrsdtyzfz/WVFdDryhtzmoKJ3oAcXo9Hhw4EPMyMz1nY1FkY7ChdrWUt+Cb2d+gflN9SB5u6gnFoECJVnDOU+cg7aY0nlJKEemN48dxy3ff4ZTLFbaB5kwKgPPj47Fm+HCcExurdjmkMgYbakNEUPVcFfbduQ9iD6PDTt3UZ2ofDH1+KEwZ7L2hyFBjt2Pe3r1YW1PTZn4ZrTAoCnQAHsrJwYJ+/dh7E8EYbMjDcdKB3T/bjZP/Pqm9X70zKAYFumgdhr86HMlXJKtdDlFAfXjyJGZ8/TUsGuql6YgCYEJCAt4891ykRUWpXQ6pgDMfEQCgaU8Ttp+3HfUf1ms+1ACAOAWuJhd2XbkL5cvL0YN8TxTyRARPVVRgclkZGpxOzYca4PTP1zaLBflffIEdFova5ZAK2GNDqFtfh69/+vXpU7jD5bQIf1KAlJkpGFYyDPpYvdrVEPmF3e3GvO++w/PHjqldiipaTw1/afhw/DQ1Ve1yKIjYYxPhKp6swM6f7IS7OUJDDQAIUPNmDb684EvYa+xqV0PkswanExeVlmJ1hIYa4PRJnHYRXLd7N5YeOsRe2QjCYBPByh8qx77f7gvZifaCygk0f92MHZN2wHbMpnY1RD12wuFA0Y4d2GaxhOsMDX73wKFD+MPBgww3EYLBJkKVLy/Hwd8fVLuMkCJOQcuBFuyYuAP2avbcUPg56XCgqLQUu8644jYBDx8+jN/t389wEwEYbCLQkceO4OAfGGraI06B7bANOwp3wF7LcEPho9HpxKVlZdjDUNMuAfA/FRVYdOiQ2qVQgDHYRJjjbxzH/rv2q11GSBOnoGV/C3ZN3wW33a12OURdcongp19/ja+amhhquvBgeTmer6pSuwwKIAabCGIptWDPjXvULiMsiFPQuK0Re2/fy65rCnm/P3AA/z55kqHGS7d++y22NDSoXQYFCINNhLAft2PntJ2anUk4IFxA1XNVqFxVqXYlRB16pboafzpyBOxb9J4AmL5zJw63tKhdCgUAg00EcDvc2HXVLjhqHGF7IUs17Z2/Fyc3nVS7DKKzfNHYiNnffKN2GWHHDaDR5cKPd+6E1cUfRa1hsIkAR1YcQeNnjeyt8cHun+2GsyFSJ/qhUGR1uXDd7t1w8/BTjzhFsKepCQ8c5IkUWsNgo3Gndp7CwUUHwX5qH7gBZ50T++7ep3YlRB4PHDyI8pYWdsL6wAXg0YoKbOV4G01hsNEwt8ONPTfsOX1VOPKJOAXHnj+GE/86oXYpRNja0IBHKyoYavxAB+Dne/bwkJSGMNho2JEVR9C0qylyL5Xgbzpgzy/3wNnIN5TU0+Jy4YY9e/jj7ScuAIdbWnA/D0lphlffDYfDAavV2uZGoc1WacOhBw/xEJQ/uQFHrQOHVxxWuxKKYE8dPcpDUH7mAvBERQX2NTerXQr5gVfBpri4GLGxsZ6b2WwOdF3ko0NLDvEMqEBwAkf+5whsVbyeFAVfvcOBP5aX86sdAIqi4A/stdEEr4LNfffdh+bmZs+trq4u0HWRD5r3NqPqr1U8CypQXED5g+VqV0ER6E9HjsDqZjdsIDhF8EZNDb60WNQuhXzkVbAxGo2IiYlpc6PQdfAPB6HoOWI4UMQpqPxLJZr3sduagqfKZsMjR45wduEAMigKfrefl5wJdxx/pjHN3zajZm0NxMEfv0BSdAoOP8SxNhQ8j/EsqIBziuCD+npsa2xUuxTyAYONxlQ+WwnFyN6aQBOHoPrlajjqHWqXQhHA6nLhz5WV7K0JAqOi4OmjR9Uug3zAYKMhriYXKp+rZG9NkIhTUL2mWu0yKAK8UVMDC+dZCQqHCP52/DjqHNxpCVcMNhpy/LXjcFs5sDBoXEDFExW8+jcF3JMVFZxnM4jcIiipqlK7DOohBhsNqVhZcfqytRQ0LQdaUL+pXu0ySMNKLRZsP3WKU1IFkQvAyqNHudMSphhsNKKlvAVNZU0MNkGmGBXUvlmrdhmkYetqa2FU2F8TbIdtNnzV1KR2GdQDDDYaUftuLaBXu4rIIw5Bzboa7tlRwKyrqYGDn6+gMyoK3qnlTks4YrDRiNo3a9lboxJ7lR1NX3HPjvzvkNWKPZzmXxUOEayrqVG7DOoBBhsNcDY4Uf9xPa8LpRLFqKD2He7Zkf+9W1fHjlgVlTU1odLGy6eEGwYbDajfVM/rQqlIHIK6d3mZEfK/9SdOcH9FRToAG06cULsM6iYGGw1o/LwRShQHF6rp1Fen4HZyE0T+IyL4rLGRR5hVpFcUfMFrR4UdBhsNsGyzQOz8+VOT2ATN33AsBPnPUZsNJ51OtcuIaA4RfMrLK4QdBpswJyKwfM49CtXpgFPbT6ldBWnI9lP8PIWCnU1NcPKK6mGFwSbM2SpscNZzr05til6B5QsGTPKf7RYLojh/jersItjNM9PCikHtAjpjq7TBeZIb7c40bGlQuwTC6QHEjZ81oulrnvbtjePxbjSbuV/VmU8bGmDn/DUh4d8nTkDPkNml3gYDMkwmtcuAIj2YWcxqtSI2NhbNzc2IiYkJRF2wVdrw2ZDP4G5mFyCRltSagRteBmzRaldCRP4Uq9Nhb0GB6uEmZHeZnCedDDVEGmSJZ6gh0qJmtzskBryHbLAhIiIi6i4GGyIiItIMBhsiIiLSDK/OinI4HHD+4LiZ1WoNWEE/VIManALnciDSkqN2AAfVroKI/C4uTu0KAHgZbIqLi7FkyZJA19JGg6UB1+N6OKH+QCQi8qNKAHPULoKI/M5ggKW8HOjVS9UyvDrdu70eG7PZHNDTvZu+bsL6c9ezx4ZIY45mAA8sVbsKIvK7uDjsmjYNI1UONl712BiNRhiNxkDXcpaU7/8jIg2JAjBQ7SKISKs4eJiIiIg0g8GGiIiINIPBhoiIiDSDwYaIiIg0I2SDjaG3AbrYkC2PiHoo3gKYWtSugoj8LVanQ2+DV+ckBVTIXt0bOH2Fb+dJzmPTGXu1HWWXlKldBhmA1OtSkf37bLUrCQvH491oNnPHpTNPV1TguaoqzuQVAt4aORJDYmPVLiPk9TYYVL+yN+Dl6d5qMWWYYMpQ/00KZbEjYmHoY4DzBH/+VOUC+lzWB71Gqjt/Q7jg2d5du9xsxqqqKrXLiHgmRcFPzGYYdAzi4YItFeYURUH8uHhAUbuSCCdA/Jh4tasgDRkTz89TKMiNi2OoCTNsLQ1IOD8BipHJRk26aB1ih7Krmvwnw2SCOQTGK0Qyo6JgfEKC2mVQNzHYaED8uHiIvdtDpciPeuX1gqJnuCT/Gp+QwB9pFblEMJY9Z2GH3xkNSCpKgmLgRlUtikFB8vRktcsgDZpmNvMos4oEwGV9+qhdBnUTg40GGOINSLooia2pEnEKzNPNapdBGnSF2QyX2kVEsPPi4pAWFaV2GdRN3BRqRPLVyRxArBJTPxPPhqKAyIqOxrk8zVgVBkXBNSm8CHM4YrDRCPMVZnDXLvgUo4Lka5OhKEyVFBjXpqTAyM9X0DlFMN3MnthwxGCjEdH9ohE3Jo4tGmTiEKRcy706CpwZKSlwdH8eVfJRTnQ0RvZiT2w44mZQQ/rN73d6tBsFhwLEnBODxEmJaldCGnZuXBzPjgoyPYAF/fqxJzZM8buiISk/TYE+Xq92GZFDAfr9lj9+FHgLMjO5zxJEekXBL9LS1C6DeojBRkP0MXpk3JLByfqCRGfSIe0G/vhR4F2TkoIkTtYXFEZFwY1paUgyGtUuhXqIwUZjMn6dAXFy3y7QFKOCtJvSYEjgxoYCz6TT4baMDBjYOxhwDhHMy8xUuwzyAYONxsQMikHqz1LZaxNoAvS/t7/aVVAE+W2/fjw7KsAMioKpffrgPM42HNYYbDRoYPFAiJu9NoGiGBRkzMtAzIAYtUuhCJIaFYWF/fuDo+gCxyWCFTk5apdBPvIq2DgcDlit1jY3Cl0xA2OQeVsmL7MQIIpRQfb92WqXQRHorn79kMCxNgFhUBRcn5qKUXFxapdCPvIq2BQXFyM2NtZzM3PSopCXfX82g00g6IH+C/sjKoXTrFPwxRsMWDxgALvaA0BE8ODAgWqXQX6giHQ985PD4YDT6fT822q1wmw2o7m5GTEx7I4PVYf/5zAOLDwAuNWuRCN0QFRGFM7fcz4McdxrJnXY3G7kff459lmtnGzcT/QAFvbvj2IehtIEr4K/0WhETExMmxuFvqw7sxB/XjzAbbB/uIHha4Yz1JCqTDodXh4+nPPa+IkewKCYGPz3gAFql0J+wh5NDVP0Coa9NIwTyPmDAci4LQO9L+qtdiVEGJuQgHs5kNgvBMArw4fDpOPmUCvYkhrXa1gvDCweyJb2hQ4w9TUhZwW7qSl0/PeAARgcE8Nw4wM9gHv798fYhAS1SyE/4uYuAmTdlYWkwiQOJu4pBRjx+ggegqKQYtLp8PeRIzlpXw8ZFAX5cXE8BKVBDDYRQNErGLl2JKIyojjepgeG/mUoEi/ghS4p9OTGxeGVESPULiPs6AH0MRjw7qhRPASlQWzRCGHsY0Tu+lzoonQAd/C8owMyF2QifU662pUQdejalBQsys7m17obdIqC/x01Cukmk9qlUAAw2ESQXiN7YcRr3LvzhmJQkFSYhEGPDFK7FKIu/feAAbjCbOZhKS+VDBuGcRxXo1kMNhEm+YpkDHl6iNplhDTFoCB2RCxGvjkSOgO/IhT6dIqCV0eMwLj4eIabLiwfOBA/T0tTuwwKIP5qR6DM2zIx6DH2RLRHMSiIGRKD/A/zYUwyql0Okdd66fX4V24u8uPiGG46sCg7G/dm83IoWsdgE6Gy7sjC4CcGq11GSFEMCmKHxyL/43wYzQw1FH7iDQZ8kJeHMQw3Z3lwwAAs5iUTIgKDTQTrt6Afhv516OlPQaR/EvRA3Jg45H+Uj6hkXgeKwleCwYAP8vNRlJgY8V9r5fvbo4MG4X6e1h0xIv1zH/HSf5WOvPfzoI/TR/Q8N31v6ovRH42GsTd7aij89dLr8c/cXCzIzFS7FNUYAMTodHjn3HNxZ1aW2uVQEHl1EcwzWa1WxMbG8iKYGmI9YMVX075Cy/4WiDNCrkLzfawf/PhgZN6eyUtPkCaVVFXhlu++g1skYq6Ha1AUZERF4Z+5uRjRq5fa5VCQMdiQh9PixJ6b9qDuH3VqlxJwikGBPk6PEW+MQJ9L+6hdDlFA/aehAVfv2oUTTiec3f/JDysKgEuSkvD6yJHoY2QPbCRisKE2RATHXz2O7277Dm6rW3u9NwoAAVJmpGDIM0MQlcLxNBQZ6h0O/HbfPqyproYO0FzvjUFRYFQUPD54MOamp7MHNoIx2FC7bFU2fDv3W5z4fyc8YSDctfbSnPPcOUidkap2OUSqWF9Xh9nffKOp3hsFQFFSEkqGDUN2dLTa5ZDKGGyoQyKC468dx/7/2g/7MXvY7uIpBgXiEvSd3Rc5D+Wwl4YiXr3DgfsPHsSzlZXQKQocYRpw9AD6GI1YnpODOX37speGADDYkBfcNjcqn63EocWH4LQ4AZfaFXnJAMAJmK80I2d5DnoN5yBCoh86YLXivgMH8FpNDQyKEjY9OAZFQbROh/uzszE/MxOxer3aJVEIYbAhrzktThx55AgqHquAy+I63f8bgr04ilGBOARJFychZ1kOEgp4TRiizpRaLLj/4EGsP3EC+hANOK1z0kTrdJifmYmF/fujNwcHUzsYbKjbXFYXat6oQcUTFTj15SlPkFDV9796uhgdMuZmIOPXGYgdGqtuTURh5qDVij9XVuLZyko0ulwhse9i/P5Q2YjYWNzRrx+uT0tDL/bQUCcYbMgnlu0WVP6lErVv1sJR6whqyGkdOwMdkDgxEWk3piFtVhr0vfijR+SLFpcLb9TUYM2xY9jU0ACXSFB7clrDTJLBgKuTkzE3PR3jExI4hoa8wmBDfiFugWW7BXXv1KFmXQ2a9zQD+P6wkEv8stunGJXTp58LoOulg/kKM5KvTEafqX14wUqiAGl0OrHhxAm8U1eHt2trPT05RkWB3Q9B58znGhQdjRkpKZienIyChAToGWaom7wKNg6HA06n0/Nvq9UKs9nMYEMdctQ5YNluOX373ILGzxphr7K3PW1cDyg65fQvWyuBJ7y00sXq0OvcXkgYn4D4sfGIHxOP2KGxUPT8wSMKJrcI9lqt2G6xYLvFgs8aG1F66hSa3G33XIyKcubXGiICJ9pKNRpRkJCA8+PjMeb7W2oUz1ok33gVbBYvXowlS5acdT+DDXWH2+mGo9oBW5UN9io77JV2uKyu00HGdbpHRjEqMCYbEZUeBVOGCVHpUTDEG9QunYg6ccrpRJXd7rkdt9vhEIFDBDqcDjrROh3STSakR0UhIyoKaVFRMOp4uULyP/bYEBERkWZ4tStsNBph5Gl1REREFOLYD0hERESa0aPBC61Hr6xWq1+LISIiIupMdHR0p6f+9yjYtLS0AADMZnPPqiIiIiLqga7G9/ZoHhu32436+vouU5MvWgco19XVcYCyytgWoYHtEDrYFqGB7RA6gtkWAemx0el06NOnT4+L6o6YmBh+YEME2yI0sB1CB9siNLAdQkcotAUHDxMREZFmMNgQERGRZoRssDEYDFi0aBEMBs46qza2RWhgO4QOtkVoYDuEjlBqix4NHiYiIiIKRSHbY0NERETUXQw2REREpBkMNkQaISIYP348FEXBpk2b1C6HiDSgubkZd955J/R6PVavXq12OV4JarBxOp1YtmwZRowYgdzcXIwYMQLLli1rc+Xwznz11VeYNm0ahg0bhqFDh2LatGn46quvAly1NvW0LRwOB9auXYsrrrgC+fn5yM3NxfDhwzFnzhzs378/SNVri6/fi1bPPfccPvvsswBVqX2+toPVakVxcTHOP/98jBkzBoMGDcK4cePwpz/9KcCVa48vbeF0OvHkk09i9OjRGDVqFEaOHIkJEybg1VdfDULl2rJx40bk5eXho48+gtvt7vbyqm2zJYjmzJkjffv2lX379omIyL59+6Rv374yZ86cLpfdtWuXxMfHy8KFC8Xtdovb7Zbf/e53kpCQILt27Qp06ZrT07bYunWrAJBly5aJ0+kUEZHKykoZM2aMJCQkyO7duwNeu9b48r1oVVtbK6mpqTJ9+nQBIBs3bgxQtdrlSzs0NTXJhAkT5JZbbpGmpiYREbHZbPLLX/5SCgoKAlq3FvnSFr/5zW9EURRZt26d575HH31UAMjjjz8esJq1aPz48bJlyxYpKSkRAFJSUuL1smpus4MWbFo3iGd+sJ544gkBIFu3bu10+csuu0xSUlLEbrd77rPb7ZKamipTp04NSM1a5UtbbN26VQYOHHjW/e+9954AkHnz5vm9Xi3z9XvRas6cOXL77bfLokWLGGx6wNd2WLhwoQwZMsQT9lvV1NTIRx995Pd6tczXtoiPj5dRo0a1e39+fr5fa9U6h8MhItKjYKPmNjtoh6JauwGnTJnS5v7LLruszePtqa2txb///W9cdNFFMBqNnvuNRiMuvvhibNiwAbW1tQGoWpt8aYuCggJ8++23Z92flZUFADh58qS/yowIvrRFq61bt2L9+vVYunSp/wuMEL60g91ux5///GdcffXV0Ov1bR5LTk7GhRde6Odqtc3X70R8fDwcDkeb+9xuN1wuF0wmkx8r1b6ezkmj9jY7aMHmyy+/BADk5OS0uT8nJweKomDHjh0dLltaWgq3241Bgwad9djgwYPhdrtRVlbm34I1zJe2UBSlzQe11e7duwEAkydP9mOl2udLWwCAy+XCvHnz8PDDDyMxMTFgdWqdL+2wc+dO1NfXIyMjA4sXL8bYsWMxdOhQTJo0CatWrYJwqrBu8fU7sWzZMuzbtw/PPPMM3G43HA4H7rvvPthsNtxzzz0Bq5v+j9rb7KAFm5qaGphMprMSs9FoRExMDGpqajpdFgASEhLOeqz1vs6Wp7Z8aYv2iAhWrlyJgoIC3Hjjjf4sVfN8bYunnnoKcXFxuOmmmwJZpub50g6HDh0CANx///1oamrC5s2bsXv3btx66624/fbbcfPNNweydM3x9Tvxi1/8AmvXrsXDDz8Ms9mMPn364K233sL777+Pa6+9NpCl0/fU3mYHLdiISKeXGe9qWQA9Xp7a8qUt2rN8+XIcOXIEa9euDYnptMOJL21RVVWFP/7xj3j66af9XFXk8aUdrFYrACAlJQUPP/wwoqOjodfrceONN2LmzJl44YUXePZmN/j6+1RcXIyZM2fioYceQm1tLU6ePIm7774bV155JV5//XU/VkodUXubHbRgk5qaipaWFthstjb3OxwOWK1WpKSkdLosADQ0NJz1WGNjIwB0ujy15UtbnOmJJ57Aiy++iI0bN6Jfv37+LlXzfGmLu+++GzfddBNyc3MDXabm+dIOrXugo0ePhk7X9ie1oKAAwOlxUOQdX9ri22+/xQMPPICZM2di1qxZ0Ov1MBgMmDt3LgoLCzF79mxUV1cHehUintrb7KAFm/POOw8AcODAgTb3HzhwACKC0aNHd7hsfn4+dDpdu/Ok7Nu3DzqdDnl5ef4tWMN8aYsfWrx4MdasWYPNmzcjOzvb73VGAl/aYuPGjdiwYQPy8/M9t2effRYAcPPNNyM/Px/33ntv4IrXEF/a4dxzzwVwerzTmVoHE/dkDpBI5UtblJWVQUQwbNiwsx4bPnw4rFZrl2N0yHdqb7ODFmxmzZoFAHj//ffb3L9hwwYAwPXXX++57/jx421GtScnJ+PSSy/Fpk2b2kzQ5HQ6sXHjRkyZMgXJycmBLF9TfGkL4HQ34/z587Fp0yZs3LjRk7yrqqowffr0QJauOb60RVVVFb7++muUlpZ6br/+9a8BAH/9619RWlqKhx56KNCroAm+tENOTg5Gjx6NsrKyswJM60Z0woQJAalbi3xpi759+wL4v3FPP9QalLit8L+Q22YH9GTyM8yePVsyMjJk//79IiKyf/9+SU9PbzPp0pYtW0Sv18u0adPaLNs62c/vf/97z2Q/9957r8THx3OCvh7oaVvY7Xa5/vrrJSUlRZ577jl56aWXPLfHHntMsrOzg70qYc+X78WZOI9Nz/nSDp988omYTCZZsmSJ574NGzZIVFSUzJ49OzgroCE9bQuXyyUXXHCBmEwm+fDDDz33v/POO6LX66WoqEjcbnfwVkQjOpvHJhS32UENNg6HQ5YuXSrDhg2TUaNGybBhw6S4uNgzCZCISFlZmfTp00fmzp171vKlpaUydepUGTp0qJxzzjkydepUKS0tDeYqaEZP2+Ltt98WAB3eGGy6z9fvhcjpycvy8vIkLS1NAMigQYMkLy9PtmzZEqzVCHu+tsN//vMfmTx5smRnZ8vgwYMlNzdXnnzySXG5XMFcDU3wpS0sFosUFxdLbm6ujBw5UoYPHy55eXny8MMPy6lTp4K9KmFt6dKlkpeXJ1lZWQJAsrKyJC8vT5YvX+75m1DcZisinGSBiIiItIFX9yYiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs1gsCEiIiLNYLAhIiIizWCwISIiIs0wqF0AEUWWo0ePYvXq1bDb7cjOzsacOXPULomINITBhoiCpqysDLfddhveeecdJCcn47LLLoPJZMLPf/5ztUsjIo3goSgiCoqWlhZcc801WLp0KZKTkwEAY8aMQUlJicqVEZGWMNgQUVC88MILiI6OxsUXX+y578SJE6itrVWxKiLSGgYbIgqK119/HVdddVWb+7788ksMHjxYnYKISJMYbIgo4Ox2O7Zt24Yf/ehHnvuqqqqwfft2zJw5U8XKiEhrGGyIKOA+//xztLS0ID8/33PfqlWrkJeXhxkzZqhXGBFpDoMNEQXcJ598gtTUVGzcuBHA6bOj1q5di3Xr1kGv16tcHRFpiSIionYRRKRtP/nJTzB48GAUFhZi165dAIB58+bBbDarXBkRaQ2DDREFlIjAbDbj+eefx9VXX612OUSkcTwURUQBtWvXLtTX1+PCCy9UuxQiigAMNkQUUJ9//jlGjx7Nw05EFBQ8FEVEAWWxWNDc3Iy0tDS1SyGiCMBgQ0RERJrBQ1FERESkGQw2REREpBkMNkRERKQZDDZERESkGQw2REREpBkMNkRERKQZDDZERESkGQw2REREpBkMNkRERKQZ/x9kakXbCD3yYgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -714,7 +716,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAC6CAYAAAC9Wwe/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAolElEQVR4nO3deXhU5fk+8PvMkkkCk0B2CCEQwASRhAgYECSIgkgrYIVarNpKpbaoFLdaL9sKLQGx37qh0roB2traQl3an1qqYhGKokgCEUT2JYkhCQnZJrM+vz9iRgIJmWQyc5bcH665rnAmZ+Z535nMuec97zlHEREBERERkQGY1C6AiIiIqLsw2BAREZFhMNgQERGRYTDYEBERkWEw2BAREZFhMNgQERGRYTDYEBERkWEw2BAREZFhMNgQERGRYTDYEBERkWEw2BAREZFhMNiQ4WRlZWHy5MmYPHkyRo0aBUVRMG7cOP+yyZMnq11ip73zzjv+tuhBV+t94YUXkJWVhUGDBnX5ue+8807ceeedXV6/hdb6vLPt6o6+JNIlITKY/Px8/8+bNm0SAHL48OE279eTlrboRSD1PvTQQ+e8HmvWrJH09PQuP29DQ4M0NDR0ef0zaanPu9KuQPqyrdeASM8s6sYqou63YsWKoO4nfYuOjla7hJAwaruIuht3RZHhjB8//rz3v/zyyzCZTMjJycH7778PAPjxj3+MxYsXAwB27NiBkSNHYtiwYdi9ezcAoLy8HPPmzcPEiRMxYcIE3HbbbaitrW3z8c/cBbBq1SpMnToVGRkZeOmll1r9XkePuX//fkyePBljx47FzJkzUVhYeM763/ve9zBx4kRMnDgRixYtgsPh8N//6KOPIi8vD1OmTMFll12Gl19+ud0+efLJJzFlyhRceeWVGD9+PFavXt3p9nRU79lWr16NtWvXorCwEJMnT8YVV1zR6v72nut87X7qqacwaNCgVrsbz65/2rRpiIyMxNq1a8+pqTNtKCwsxLp167Bq1Sq43e5z7l+4cGGn3medbVdLrWPGjMHVV1+NgoICKIqCyZMno6SkJKC+7Og1INIltYeMiEKprV1RIiKXXnqpFBQUiIiIx+ORfv36SVpamv/+Bx98ULZt2yYiIl6vVy655BJZvHixiIj4fD6ZN2+ezJo1q93nXbNmjURERMi///1vERF55ZVXJCYmRjweT0CP6Xa7JTMzU+677z7//2fOnOnfLdKy/qJFi/xtmDlzptx5550iIrJ3716JjY0Vh8MhIiKfffbZeXc3PPbYY/7fbWpqkqFDh8rWrVsDbk9H9banvV1R7T1XR+3u6DE3bNggIiL/+Mc/5K233mr1O51pw+bNm+Xuu+8WEZGXXnpJli5d2mb7An2fdbZdbdU6Y8aMc2rt6HVrr7+I9IzBhgytvWDz2GOPSW5urv937r77bjGbzbJ9+3YREZk6dar4fD4REfnoo48EgHz55Zf+9Tdv3iwA5OjRo20+75o1ayQ2Ntb//7179woAKS0tDegxt2zZIgBk//79/vv/9re/+Tdcba2/fv16iYqKEp/PJ8ePH5eoqCh56qmnpLq6WkRE6urq2u2n9957T6ZPny4TJkyQ/Px8iY2NlUceeSTg9nRUb3vaCyF9+vTx//+LL77wP1dH7T7fY8bExJy3ls60YezYsXL69GkREfnnP/8pV1xxRZuPGej7rLPtCrTW8/VlCwYbMhrOsaEeac6cObj77rtx+PBhbNiwAYsWLUJRURE2bNiAyMhIjBgxwn80zNGjRwEAycnJ/vVbfj569CgGDhzY5nP06dPH/3NkZCQAwOl0BvSYpaWlAICkpCT//QkJCf6fW9b/0Y9+BJOpeY9yU1MTkpKSUFFRgQEDBmDr1q14/PHHsWTJEowePRpLlizBuHHjzqnz8OHDmDFjBp555hnMnz8fADB58mQ0NDQE3J4TJ06ct97Oio2N9f9ss9n8z9VRu898/rP17dv3vM8ZaBs+/PBD9OvXDzExMQCAoqKidp830PdZZ9vVmf5ury+JjIrBhnqkAQMGIC8vD3//+99x6NAhDBs2DHPmzMGjjz4Km82GuXPn+n83PT0dQPPcjpaNWXl5eav7OqujxzSbzQCAkydP+u+vrKz0r99yCO9f/vIXpKam+pefPHkSSUlJaGxsRFpaGtatWwen04kVK1Zg6tSpKC8vP2cS6o4dO+B0OnHttdf6l7lcrk61Jy0t7bz1dpeO2h2MQNvw3nvvYdKkSf7/v/baa/j973/f5mMG+j7rbLvC1d9EesTJw9RjzZkzB4888oh/FOM73/kODh06hNdff73VBOSxY8dizJgxeOaZZwAAIoLVq1fjmmuuaXe0piMdPWZeXh6GDx+OZ599FgDg9Xqxbt06//pjxoxBXl5eq0m+77//PmbPng0A2L59O+bPnw8Rgc1mw6RJk+B2u9s8J0tmZiYURcHmzZsBAEeOHEFRUVGn2tNRve2JjY1FXV0dAGDx4sX46KOPzvv7HbU7GIG2YcuWLfB4PACag8ill16K/Pz8dh83kPdZZ9vVVq1//vOfO99odP41INI8lXeFEYXMmjVrJCcnRwBIXl6evP32263uP3LkiACQPXv2+JddfvnlrSZstigrK5Prr79eJkyYIOPHj5dbb71Vampq2nzev/71r5KZmSk2m02uv/56KSsrk7y8PH8dLfMiOnrM/fv3S35+vowePVqmTZsmv/3tbwWA5Ofny4kTJ+Srr76SefPmyfjx4+Xyyy+XmTNnyrFjx/yPfeONN8r48eMlPz9fxo4dK2+88Ua7ffX444/LwIED5corr5QFCxZIdna2pKeny6pVqwJuT0f1tuXIkSMycuRImTBhglx99dUBPdf52r1q1SpJT0+X2NhYmTNnzjmvR35+vuzcubPdfuioDR6PR5KTk2Xr1q2ydu1a+dOf/tTuY53ZxkDeZ51t15m1futb35Lf//73rebYBPq6nf0aNDU1ddgmIi1TRERUylRERLry6aef4v7778d7772ndimorKxsNa/m1VdfxV133eWfn0XUU3FXFBFRgLZs2YIJEyaoXQYA4JZbbsHOnTsBAG63G2vWrMGsWbNUropIfZw8TEQUoJSUFEybNk3tMgAAs2fPxoIFC2C321FXV4exY8fikUceUbssItVxVxQREREZBndFERERkWEw2BAREZFhdCnYiAgcDge4F4uIiIi0pEvBpqmpCdHR0WhqaurueoiIiIi6jLuiiIiIyDAYbIiIiMgweB4bIvLzOX3wNnghHgEEUCwKTFEmmKPNapdGZHgenw91Xi88IvABsCgKIhQFvc3mNq/zRm0LKNi43W7/Rd8AwOFwhKwgIgotT70H9TvrUbejDg27GtB0pAnOE064yl3w1nrbXMcUbYI10Qpbqg2R6ZGIvjAa9tF22EfbEZEUEeYWEOmX0+dDcUMDPq2rQ2F9PQ47HDjudOIrlwvVHg/aOiQnQlGQaLWiv82GgTYbMqOjMdpux2i7HQNtNoaeswR0gr4lS5Zg6dKl5yxvbGxEVFRUSAojou7hc/pQ80ENKt+sxKl/n0LToSb/aIyIAG1nmfaZvl7X1fzRYU22os/kPkiYlYC4q+Ng7WPt/kYQ6ZRXBNtra/FmVRX+X1UV9jY2wiMCMwCTosDdhaOLIxQFrq/XizWbMT42FrPi43FNQgJSbbZuboH+BBRs2hqxiY+PZ7Ah0iify4fK1ytx8q8nceqdU/A5fFCsCsQdmlM0KBYF4hXABMReGovE7yYi+cZkhhzqkUQE79fU4M/l5Xi9shLVHg+sXQwxgWiZLOsDkN2rF+YkJuKHKSlIi4wMyfNpXZcuqeBwOBAdHc1gQ6QxTcebUPZsGUpWl8BzytP8idfZEZlgKfCP6iTfmIzU21Nhz7WHuQii8Ktxu7GuvBxPnjiBQ01NsCgKPCqc782iKPCK4Nvx8ViUmoopffvC1IN2VzHYEBlA45eNOPzLw6hYXwHFrDRP/tWAllEie54dGQ9noO/kvmqXRNTtKlwuFBw9ij+UlsIjEvbvEu2xAPAAGBwZiWWDB+N7SUk9IuAw2BDpmLPUiSNLj6Ds+TIoJu0EmnOYAXiBvlP7ImNlBkdwyBDqPB48euIEVh47BreIKqMzgVAACIAR0dH4vyFDcFVcnKEnHDPYEOmQz+3DsYeP4eiyo4AP2g00Z1EszeEr6ftJGPbEMFjjOQeH9EdE8HJ5ORYfOIBaj0czIzQdMaF5Hs5lsbF4ITMTw6Kj1S4pJBhsiHSmvqgee27cg8Y9jc2fUjqkWBSYY83IfD4TibMT1S6HKGClTid+tG8f3jl1Su1SusyiKDABWJmRgUUDBhhu9xSDDZFO+Dw+HCs4hiO/PdI8tuzpaA2N+3p8PPH6RFzwzAWwxnH0hrSrZZTm9v370eTzaXa3U2coAPJiYvByVhaGGmj0hsGGSAfcp9wovq4Ypzef1u0oTXsUi4KIfhHIfjsbvUb0UrsconO4fD7cuX8/ni0rU7uUbmdRFEQqCtZfdBGuiotTu5xuwWtFEWlcw54GfJr7KWq31Bou1ADN84OcZU7sGLsDlf+sVLscolYqXC5cXliIFwwYagDAI4IGnw9X79qFR48fRxfGOjSHwYZIw6reqsKOsTvgLHXqZoJwl3gAX5MPxbOKcfTho4b4cCX9K66vx6hPP8X2ujrdTBDuCvn6ds/Bg/jBF1/A7dP3NygGGyKNOrn+JHbP3A2fw6f/+TSB+PrT9fADh3HogUMMN6Sqz+rqMGHnTpS7XIaYTxOoV8rLcW1xMZw6DjcMNkQadPJvJ7Hnu3uazxrccz5T/Y4/chwH7z3IcEOq2FFXh/ydO9Hg9Rp6pKYtXgDvnDqFmbt36zbcMNgQaUzlG5XYM29Pjww0fgKcePQEDv/qsNqVUA+zu74eUwoL4fD5elyoaeEF8F51NeZ8/rkud0sx2BBpSN2OOnz+3c97dqg5w7GCYyh9vlTtMqiHKHe5MK2oqEeO1JzNC+DtqircdeCA2qV0GoMNkUY4v3Ji17d2NV8lm8HG78uffImaLTVql0EG5/T5MHP3blTq6EzCoeYF8HRpKZ4t1deXCwYbIg3wOX0ovqYYnipP+K/GrXUCFM8sRtOxJrUrIYMSEdy2bx921NX1qInCgVr45ZfYXFOjdhkBY7Ah0oADiw+gbmedsQ/p7iof4K3zNh8h5tbf/n7SvufKyrCuvJzfKdohAGYXF6Pc5VK7lIAw2BCp7NS7p1D6h1KO1JyHeAQNuxtw7OFjapdCBnPE4cBiHc4jCScfgDqvFz/58ktdHKnIYEOkIk+dB1/c/AX/EgPhA44sPYL6XfVqV0IGISLNJ6TTwcZabR4RvF5Zib9VVKhdSof4cUqkooP3HoS7wm3ISyWEhALsvXEvd0lRt/hjaSk+PH2a82oCpAC4bd8+ze+SCijYuN1uOByOVjciCk7tp7Uoe7aM82o6wwM0fN7QvOuOKAhVbjfuPXiQByB2ggBo9PnwwKFDapdyXgEFm4KCAkRHR/tv8fHxoa6LyPAO3XcIsKhdhQ75gCMPHYGnridcZ4JC5eFjx+DkSE2nuUWw9quvsKehQe1S2qVIADOB3G43PJ5vPkQcDgfi4+PR2NiIqKiokBZIZESn3j2FXVN3qV2GfpmBQb8ehEG/HqR2JaRDx5uaMOTjjzm3possioIZcXF4Y+RItUtpU0AjNlarFVFRUa1uRNQ1IoKD9xwEzGpXomNe4NjDx+Cq0Pa+ftKmh44c4S6oIHhE8GZVFT46fVrtUtrEycNEYVb9bjUadjXw8O4giVtQ+gzn2lDnlDqdWPfVV5wwHCQLgOXHtHn6BQYbojArWVXCuTXdQDyCkqdLeIQUdcpzZWUwKYraZeieB8C/qqpwvEl7ZwRnsCEKo6bjTaj6V1XzpwIFzV3hRtWbVWqXQTrh9vnwdEkJR2u6iVlR8GxZmdplnIPBhiiMyp4tg2Lmt8VuYwZOPHlC7SpIJ96sqkKF2612GYbhEcEzJSVw+bQ1aspgQxQmIoKyF3nemm7lBU5vPo2mE9obDiftWVtWxjn73eyUx4P/VFerXUYrDDZEYdKwuwGuUh7F0+3MaN69R3QeDq8XG6urOWe/m1kVBW9WVqpdRisMNkRhUvlmJRQrd0N1OwEqX9PWBytpz3vV1XBxbk23c4vgtcpK+DTUtww2RGFSsaEC4tbOH79h+ICa92vgqeeMbGrfG1VVsPJoqJCocLvxWV2d2mX4MdgQhYGr0oWGQu2eglzvxCOo+aBG7TJIw/5VWckzDYeIVVHwzqlTapfhx2BDFAb1O+rVLsHQlAgFdZ9q5xsjaUu5y4WveDRUyHhEsJ0jNkQ9S92OOs6vCSFxC+o+0c4HK2nLDg1tdI1IAHxcW6t2GX4MNkRhUPdJHcTLYfCQEaBuOzde1LYddXWI4PyakDrpduOkSxtHfTLYEIVB7fZaQFvnsDIcd6Ubzq+capdBGvRpXR3n14SBViYQa/qKNc5SJzzVPNKB9E28AleZNr7JGF3Nphr0zu6tdhmacNLuQ2M8v7sCwOcNDbyad4hZFAVHndr4YqHZYOMsdeLjYR/D18ivuUQUmL037FW7BE2ojAdu/BPgjFS7EuopTGi+croWaDbOe6o9DDVERF1QZ2eoofDyASjlHBsiIiIyAo8ISjhiQ0REREahlaOiAppj43a74fF8M4nX4XCErKAzVaAC9eCJzYiIOqPEBeCw2lVQUHr3BhIT1a6iUzwaOfIsoGBTUFCApUuXhrqWVk7XncYNuAEe8KgoIqJOKQUwX+0iKCgWC/Daa80BRye0EmwUkY4raWvEJj4+Ho2NjYiKigpJYQ2fN+Cti97iiA0RUSeV9Ad+tUztKigoOhyxGdWrF3aOHat2GYGN2FitVlit1lDXco7Er/8REVEnRAAYrHYR1NNYTdqYtquNKoiIiEjXUiIi1C4BAIMNERERBcmqKBhgs6ldBgAGGyIiIgqSAqAfR2zOz9LXAlO0ZssjItIsex1ga1K7CupJvCLor5ERG81eK8rW34a8/Xm8CCYZQtH0IrhOaOPkVUaWuzUXlljNfqyF1V5eBNPv3gMH8O/qal4IM4S8AIZEauM6Hpr+BLD1t8HWXxsJkCgYfSb1wclXTzb/9VNI2AbYEHtprNplaAYPivrGFX374r2aGrg1cp4Vo8q129UuAYCGd0URGYl9jB2KoqhdhnGZAPs4bXyokvaMttsZakIs3WZDrEUbYyUMNkRhYB9th3j4wRoqillBzJgYtcsgjbpYIyMJRmUCMC5GO39/DDZEYdD74t6AWe0qjEvcAvsl3HhR22ItFmRoZP6HEZkUBXkMNkQ9i6W3BbETY5uPiaRuZ4o2IXYC59dQ+65NSICVu4NDwiOCb8XHq12GH4MNUZgkXpvIv7hQMAPxM+JhimDnUvuuSUjgPJsQGRwZiQuio9Uuw4+fBERhEn9NPI+KCgUfkDA7Qe0qSOMmxMTAbub+4O5mVRRcp7GLdTLYEIVJVEYUorO0863GMExA3NVxaldBGmcxmTArIQEW7o7qVm4RzNTQbiiAwYYorPrd1o+TiLuRYlGQMDsB1jir2qWQDvwoJQUe7o7qVoMjIzEhVlvz2xhsiMIo5QcpUMz8xthdxCNIvSNV7TJIJ/L79MHQqCi1yzAMM4BFqakwaWwUjMGGKIysfa1IvjEZilVbHwR6FTU0Cn3y+6hdBumEoij4WWoqN3zdxKwo+EFKitplnIOvL1GYpd6eCnFzODxoZiD1Z6k8ozN1yk0pKYgwcdMXLKui4MbkZPS1am83MF9dojCzX2xH36v6QrFwgxwMa5wV/eb3U7sM0plYiwV3DxjAqW5B8onggYED1S6jTQw2RCoY8sgQiJejNl2mAIOXDYY5mpsn6ryfDxyIXjz0u8ssioIF/ftjqIbOXXOmgIKN2+2Gw+FodSOiruud3RtJ85I416YrTEDkoEikzNfevn3Sh1iLBb8eNIjf7LvIDODX6elql9GugF7XgoICREdH+2/xGjtmnUiPBi8bDHDQpvN8QMbKDJgs3CxR193evz+SIiIYbjrJDOCetDT0s9nULqVdikjHB/W73W54PB7//x0OB+Lj49HY2IgoHjpH1GVHlx/F4V8dBnxqV6IPikVB3yv7YuRbIzlpmIL2VlUVvrV7t9pl6IYZQFpkJD4fOxbRGt6VF1BYtVqtiIqKanUjouCl/TwNvUb24kTiAJkiTch8IZOhhrrFjPh43JyczLMRB8gH4OWsLE2HGoCTh4lUZbKYMPxPw9UuQzeGPTUMtv7aHQIn/Xli6FDEWSzcGHag5WR8E/v0UbuUDvG1JFJZ74t6Y/DywQC/NLZLsSiIvyYeyTcnq10KGUwfqxUvDR/O6W7nYQEwOCoKyzMy1C4lIAw2RBqQdm8aEuckNn+CUCuKRUFkRiSG/2k4d0FRSFwVF4flgwfzu0UbTACizGa8PXKk5ndBtWCwIdIARVGQtTYLvS7kfJtWTIApyoTst7JhiWHqo9C5f+BAfDcxkd8t2vCPESM0e86atjDYEGmEOdqMkf8aCXOsmVcAP8NFr12EqCE8YIFCS1EUrMnKwkW9enEy8RkeHToUV8bFqV1GpzDYEGlIZFokct7NgTmK4QYKMPyl4eh7RV+1K6EeIspsxjs5ORhos/X4cKMAuD8tDYtSU9UupdMYbIg0xj7Kjpz3c2CKMvXccKMAmS9kIvn7nCxM4ZUcEYHNublIjYjoseFGQfMRUCsyMnQ5r43BhkiDYsbGIPeDXJh7mXvWhGKl+Za1Lgv9buEFLkkdqTYb/nfxxRjUQ0du7k1Lw2NDh+oy1AAMNkSaZR9tx8XbLoatv61nTCi2NJ+A76LXL0LKTbwOFKmr/9fh5hK7vUcMnH79nQL/N2QIVup0pKZFQJdUOJvD4UB0dDQvqUAUBu5TbhRfV4zTm08b9tILikVBRL8IZL+djV4jeqldDpGfy+fDHfv347myMrVLCRmLoiBSUfD3ESMw3QDXguSIDZHGWeOsyNmYg9SFX0/i0+8XqbaZgJjxMRizcwxDDWlOhMmEP15wAZ4eNgwmGG/am0VRkGaz4dMxYwwRagCO2BDpSsVrFdh36z54a70Qj77Pldqye23Qbwch7d40Xq2bNO+T2lrcuHcvDjoc8KpdTJBMaB4Avq1fP/xuyBDYLcaZzMdgQ6QzrkoX9t++HxV/q2gevdFjvjEBvXN6Y/jLwzlKQ7rS5PVi6dGjWHnsGEyALgOORVGQ9PWlJK7oa7zTKTDYEOlUxesVOLDoAJwlTt3MvVEsChSbgkFLBmHA4gEcpSHd+qS2Fj/98kvsqK/3j35onUVRICJYmJqKgsGDDTVKcyYGGyId87l8KHu+DId/fRieGo9mvz4qVgVQgAGLB2Dg/QNhjbOqXRJR0EQEr1dW4r6DB3GoqUmzg6cWRYFXBPOSkrBs8GAMNvh2m8GGyAA89R6UPFmCE4+dgLvSDc18hTQBpggTUn6YgoEPDkTkgEi1KyLqdh6fDy+Vl2PF0aM40NQEi6LA0/lNa7ezKAp8IpiVkIAlgwYhu3dvtUsKCwYbIgPxuX2ofKMSJU+W4PSHp6FYFYg7vB+wLc8ZOTQSA342ACk3pcASa8whb6IziQg+qKnBUyUleL2yEgqav1+E8y+wJVQlWK24vX9/LOjfH6k2WxgrUB+DDZFBNextQMXfK1CxoQINuxq+OblDd4/kKIBiViAegW2ADQnXJSDx2kTETorV9Um+iIJR6nTi7xUV+EdFBbacPg1B86HinhA8l1VR4BZBH4sFsxMSMDshATPi4mA19cw5bAEFG7fbDY/nm5fD4XAgPj6ewYZIJ5wlTlT9qwrV71Wj9qNaOI87AXwz90U8ElDg8f++q/ljwxJnQcwlMYidFIuEmQmIvjCaYYboLNVuN945dQobT53Cttpa7Hc44EPz1VJMX89/CWR6nFVRoABwi0AA9DKZcLHdjomxsfh2fDzyYmJg5t9fYMFmyZIlWLp06TnLGWyI9Mld40b9Z/WoL6qHs8QJV5kLTcea4CpxwVvvhXibg45iUaBEKrD1s8E20AZbfxsi+kWg14hesI+2I6J/BIMMUSc1er0oqq/Hzvp6HHc6Uep04rjTiRNOJ057PPCINAcfRYFVUZBstSItMhIDbDb0i4jAsKgojLHbkREVBRP//s7BERsiIiIyjIBm9FmtVlitPDyTiIiItK1nziwiIiIiQ+rSMZgte68cDke3FkNERER0PpGRkeed29elYNPU1AQAiDfIlUCJiIhIHzqa39ul89j4fD7U1NR0mJqC0TJBuaqqihOUQ4j9HHrs4/BgP4cH+zn02MfnF5IRG5PJhLi4uC4X1RlRUVF8YcOA/Rx67OPwYD+HB/s59NjHXcPJw0RERGQYDDZERERkGJoNNhaLBQ899BAsFl48L5TYz6HHPg4P9nN4sJ9Dj30cnC5NHiYiIiLSIs2O2BARERF1FoMNERERGQaDDRERERkGgw2RykQE48aNg6Io+OCDD9Quh4hCqLGxEXfddRfMZjPWrl2rdjmGFNZg4/F4sHz5clx44YXIzs7GhRdeiOXLl8Pj8QS0/q5duzBjxgxkZWUhMzMTM2bMwK5du0Jctf50tZ/dbjfWr1+Pa665BqNGjUJ2djaGDx+O+fPn4+DBg2GqXj+CfT+3eO655/Dxxx+HqEp9C7aPHQ4HCgoKcMkll2D06NEYMmQIxo4di9/97nchrlxfgulnj8eDJ598Erm5uRg5ciRGjBiB8ePH45VXXglD5fqyadMm5OTk4L///S98Pl+n1+c2MEASRvPnz5eUlBQ5cOCAiIgcOHBAUlJSZP78+R2uW1xcLHa7Xe6//37x+Xzi8/nk5z//ucTExEhxcXGoS9eVrvbztm3bBIAsX75cPB6PiIiUlpbK6NGjJSYmRvbs2RPy2vUkmPdzi8rKSklKSpKZM2cKANm0aVOIqtWnYPq4oaFBxo8fLz/+8Y+loaFBREScTqf88Ic/lLy8vJDWrTfB9PPtt98uiqLIhg0b/MseffRRASCPP/54yGrWo3HjxsnWrVtlzZo1AkDWrFkT8LrcBgYubMGmZaN59hv9iSeeEACybdu2865/1VVXSWJiorhcLv8yl8slSUlJMn369JDUrEfB9PO2bdtk8ODB5yx/5513BIAsXLiw2+vVq2Dfzy3mz58vd9xxhzz00EMMNmcJto/vv/9+GTZsmD+kt6ioqJD//ve/3V6vXgXbz3a7XUaOHNnm8lGjRnVrrXrndrtFRLoUbLgNDFzYdkW1DEtOmzat1fKrrrqq1f1tqaysxH/+8x9cfvnlsFqt/uVWqxVTpkzBxo0bUVlZGYKq9SeYfs7Ly8O+ffvOWZ6WlgYAqK6u7q4ydS+Yfm6xbds2vPXWW1i2bFn3F2gAwfSxy+XCH//4R1x77bUwm82t7ktISMCkSZO6uVr9Cva9bLfb4Xa7Wy3z+Xzwer2w2WzdWKn+dfWEe9wGdk7Ygs1nn30GAMjIyGi1PCMjA4qiYOfOne2uW1hYCJ/PhyFDhpxz39ChQ+Hz+VBUVNS9BetUMP2sKEqrP5oWe/bsAQBMnTq1GyvVt2D6GQC8Xi8WLlyIlStXIjY2NmR16lkwfbx7927U1NSgf//+WLJkCcaMGYPMzExMnDgRq1evhvC8pH7BvpeXL1+OAwcO4JlnnoHP54Pb7caDDz4Ip9OJ++67L2R19yTcBnZO2IJNRUUFbDbbOQnearUiKioKFRUV510XAGJiYs65r2XZ+dbvSYLp57aICFatWoW8vDzcdNNN3VmqrgXbz0899RR69+6Nm2++OZRl6lowfXzkyBEAwC9/+Us0NDRgy5Yt2LNnD2677TbccccduPXWW0NZuq4E+17+wQ9+gPXr12PlypWIj49HXFwcXnvtNbz77ru47rrrQll6j8FtYOeELdiICBRF6fK6ALq8fk8STD+3ZcWKFTh+/DjWr1/P65acIZh+Lisrw29+8xs8/fTT3VyVsQTTxw6HAwCQmJiIlStXIjIyEmazGTfddBPmzp2LF198kUeTfC3Yz4yCggLMnTsXDz/8MCorK1FdXY177rkHs2bNwquvvtqNlfZc3AZ2TtiCTVJSEpqamuB0Olstd7vdcDgcSExMPO+6AHD69Olz7qutrQWA867fkwTTz2d74oknsG7dOmzatAkDBgzo7lJ1LZh+vueee3DzzTcjOzs71GXqWjB93PItNjc3FyZT64+5vLw8AM1znCi4ft63bx9+9atfYe7cuZg3bx7MZjMsFgsWLFiA/Px83HLLLSgvLw91EwyP28DOCVuwufjiiwEAhw4darX80KFDEBHk5ua2u+6oUaNgMpnaPJfKgQMHYDKZkJOT070F61Qw/XymJUuW4KWXXsKWLVuQnp7e7XXqXTD9vGnTJmzcuBGjRo3y3/7whz8AAG699VaMGjUKv/jFL0JXvE4E08cXXXQRgOa5TGdrmUzclfOIGFEw/VxUVAQRQVZW1jn3DR8+HA6Ho8M5OtQxbgM7J2zBZt68eQCAd999t9XyjRs3AgBuuOEG/7KTJ0+2mmWfkJCAK6+8Eh988EGrE0Z5PB5s2rQJ06ZNQ0JCQijL141g+hloHvK888478cEHH2DTpk3+bwFlZWWYOXNmKEvXlWD6uaysDJ9//jkKCwv9t5/85CcAgOeffx6FhYV4+OGHQ90EzQumjzMyMpCbm4uioqJzAkzLhnb8+PEhqVtvgunnlJQUAN/MaTpTS1DiZ3PncRsYpHAeW37LLbdI//795eDBgyIicvDgQenXr1+rk0Bt3bpVzGazzJgxo9W6LScneuCBB/wnJ/rFL34hdrudJyc6S1f72eVyyQ033CCJiYny3HPPycsvv+y/PfbYY5Kenh7upmhaMO/ns/E8Nm0Lpo8//PBDsdlssnTpUv+yjRs3SkREhNxyyy3haYBOdLWfvV6vXHrppWKz2eT999/3L3/zzTfFbDbL5MmTxefzha8hOnG+89hwGxi8sAYbt9sty5Ytk6ysLBk5cqRkZWVJQUGB/6RFIiJFRUUSFxcnCxYsOGf9wsJCmT59umRmZsoFF1wg06dPl8LCwnA2QRe62s9vvPGGAGj3xmDTWrDvZ5Hmk6Dl5ORIcnKyAJAhQ4ZITk6ObN26NVzN0LRg+/h///ufTJ06VdLT02Xo0KGSnZ0tTz75pHi93nA2Q/OC6ee6ujopKCiQ7OxsGTFihAwfPlxycnJk5cqVUl9fH+6maNqyZcskJydH0tLSBICkpaVJTk6OrFixwv873AYGTxHhCR2IiIjIGHh1byIiIjIMBhsiIiIyDAYbIiIiMgwGGyIiIjIMBhsiIiIyDAYbIiIiMgwGGyIiIjIMBhsiIiIyDAYbIiIiMgwGGyIiIjIMBhsiIiIyDIvaBRBRz1JSUoK1a9fC5XIhPT0d8+fPV7skIjIQBhsiCpuioiL89Kc/xZtvvomEhARcddVVsNls+P73v692aURkENwVRURh0dTUhO985ztYtmwZEhISAACjR4/GmjVrVK6MiIyEwYaIwuLFF19EZGQkpkyZ4l926tQpVFZWqlgVERkNgw0RhcWrr76K2bNnt1r22WefYejQoeoURESGxGBDRCHncrmwfft2XHbZZf5lZWVl2LFjB+bOnatiZURkNAw2RBRyn3zyCZqamjBq1Cj/stWrVyMnJwdz5sxRrzAiMhwGGyIKuQ8//BBJSUnYtGkTgOajo9avX48NGzbAbDarXB0RGYkiIqJ2EURkbN/+9rcxdOhQ5Ofno7i4GACwcOFCxMfHq1wZERkNgw0RhZSIID4+Hi+88AKuvfZatcshIoPjrigiCqni4mLU1NRg0qRJapdCRD0Agw0RhdQnn3yC3Nxc7nYiorDgrigiCqm6ujo0NjYiOTlZ7VKIqAdgsCEiIiLD4K4oIiIiMgwGGyIiIjIMBhsiIiIyDAYbIiIiMgwGGyIiIjIMBhsiIiIyDAYbIiIiMgwGGyIiIjIMBhsiIiIyjP8Pyb19MvHVNHcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAC6CAYAAAC9Wwe/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAolElEQVR4nO3deXhU5fk+8PvMkkkCk0B2CCEQwASRhAgYECSIgkgrYIVarNpKpbaoFLdaL9sKLQGx37qh0roB2traQl3an1qqYhGKokgCEUT2JYkhCQnZJrM+vz9iRgIJmWQyc5bcH665rnAmZ+Z535nMuec97zlHEREBERERkQGY1C6AiIiIqLsw2BAREZFhMNgQERGRYTDYEBERkWEw2BAREZFhMNgQERGRYTDYEBERkWEw2BAREZFhMNgQERGRYTDYEBERkWEw2BAREZFhMNiQ4WRlZWHy5MmYPHkyRo0aBUVRMG7cOP+yyZMnq11ip73zzjv+tuhBV+t94YUXkJWVhUGDBnX5ue+8807ceeedXV6/hdb6vLPt6o6+JNIlITKY/Px8/8+bNm0SAHL48OE279eTlrboRSD1PvTQQ+e8HmvWrJH09PQuP29DQ4M0NDR0ef0zaanPu9KuQPqyrdeASM8s6sYqou63YsWKoO4nfYuOjla7hJAwaruIuht3RZHhjB8//rz3v/zyyzCZTMjJycH7778PAPjxj3+MxYsXAwB27NiBkSNHYtiwYdi9ezcAoLy8HPPmzcPEiRMxYcIE3HbbbaitrW3z8c/cBbBq1SpMnToVGRkZeOmll1r9XkePuX//fkyePBljx47FzJkzUVhYeM763/ve9zBx4kRMnDgRixYtgsPh8N//6KOPIi8vD1OmTMFll12Gl19+ud0+efLJJzFlyhRceeWVGD9+PFavXt3p9nRU79lWr16NtWvXorCwEJMnT8YVV1zR6v72nut87X7qqacwaNCgVrsbz65/2rRpiIyMxNq1a8+pqTNtKCwsxLp167Bq1Sq43e5z7l+4cGGn3medbVdLrWPGjMHVV1+NgoICKIqCyZMno6SkJKC+7Og1INIltYeMiEKprV1RIiKXXnqpFBQUiIiIx+ORfv36SVpamv/+Bx98ULZt2yYiIl6vVy655BJZvHixiIj4fD6ZN2+ezJo1q93nXbNmjURERMi///1vERF55ZVXJCYmRjweT0CP6Xa7JTMzU+677z7//2fOnOnfLdKy/qJFi/xtmDlzptx5550iIrJ3716JjY0Vh8MhIiKfffbZeXc3PPbYY/7fbWpqkqFDh8rWrVsDbk9H9banvV1R7T1XR+3u6DE3bNggIiL/+Mc/5K233mr1O51pw+bNm+Xuu+8WEZGXXnpJli5d2mb7An2fdbZdbdU6Y8aMc2rt6HVrr7+I9IzBhgytvWDz2GOPSW5urv937r77bjGbzbJ9+3YREZk6dar4fD4REfnoo48EgHz55Zf+9Tdv3iwA5OjRo20+75o1ayQ2Ntb//7179woAKS0tDegxt2zZIgBk//79/vv/9re/+Tdcba2/fv16iYqKEp/PJ8ePH5eoqCh56qmnpLq6WkRE6urq2u2n9957T6ZPny4TJkyQ/Px8iY2NlUceeSTg9nRUb3vaCyF9+vTx//+LL77wP1dH7T7fY8bExJy3ls60YezYsXL69GkREfnnP/8pV1xxRZuPGej7rLPtCrTW8/VlCwYbMhrOsaEeac6cObj77rtx+PBhbNiwAYsWLUJRURE2bNiAyMhIjBgxwn80zNGjRwEAycnJ/vVbfj569CgGDhzY5nP06dPH/3NkZCQAwOl0BvSYpaWlAICkpCT//QkJCf6fW9b/0Y9+BJOpeY9yU1MTkpKSUFFRgQEDBmDr1q14/PHHsWTJEowePRpLlizBuHHjzqnz8OHDmDFjBp555hnMnz8fADB58mQ0NDQE3J4TJ06ct97Oio2N9f9ss9n8z9VRu898/rP17dv3vM8ZaBs+/PBD9OvXDzExMQCAoqKidp830PdZZ9vVmf5ury+JjIrBhnqkAQMGIC8vD3//+99x6NAhDBs2DHPmzMGjjz4Km82GuXPn+n83PT0dQPPcjpaNWXl5eav7OqujxzSbzQCAkydP+u+vrKz0r99yCO9f/vIXpKam+pefPHkSSUlJaGxsRFpaGtatWwen04kVK1Zg6tSpKC8vP2cS6o4dO+B0OnHttdf6l7lcrk61Jy0t7bz1dpeO2h2MQNvw3nvvYdKkSf7/v/baa/j973/f5mMG+j7rbLvC1d9EesTJw9RjzZkzB4888oh/FOM73/kODh06hNdff73VBOSxY8dizJgxeOaZZwAAIoLVq1fjmmuuaXe0piMdPWZeXh6GDx+OZ599FgDg9Xqxbt06//pjxoxBXl5eq0m+77//PmbPng0A2L59O+bPnw8Rgc1mw6RJk+B2u9s8J0tmZiYURcHmzZsBAEeOHEFRUVGn2tNRve2JjY1FXV0dAGDx4sX46KOPzvv7HbU7GIG2YcuWLfB4PACag8ill16K/Pz8dh83kPdZZ9vVVq1//vOfO99odP41INI8lXeFEYXMmjVrJCcnRwBIXl6evP32263uP3LkiACQPXv2+JddfvnlrSZstigrK5Prr79eJkyYIOPHj5dbb71Vampq2nzev/71r5KZmSk2m02uv/56KSsrk7y8PH8dLfMiOnrM/fv3S35+vowePVqmTZsmv/3tbwWA5Ofny4kTJ+Srr76SefPmyfjx4+Xyyy+XmTNnyrFjx/yPfeONN8r48eMlPz9fxo4dK2+88Ua7ffX444/LwIED5corr5QFCxZIdna2pKeny6pVqwJuT0f1tuXIkSMycuRImTBhglx99dUBPdf52r1q1SpJT0+X2NhYmTNnzjmvR35+vuzcubPdfuioDR6PR5KTk2Xr1q2ydu1a+dOf/tTuY53ZxkDeZ51t15m1futb35Lf//73rebYBPq6nf0aNDU1ddgmIi1TRERUylRERLry6aef4v7778d7772ndimorKxsNa/m1VdfxV133eWfn0XUU3FXFBFRgLZs2YIJEyaoXQYA4JZbbsHOnTsBAG63G2vWrMGsWbNUropIfZw8TEQUoJSUFEybNk3tMgAAs2fPxoIFC2C321FXV4exY8fikUceUbssItVxVxQREREZBndFERERkWEw2BAREZFhdCnYiAgcDge4F4uIiIi0pEvBpqmpCdHR0WhqaurueoiIiIi6jLuiiIiIyDAYbIiIiMgweB4bIvLzOX3wNnghHgEEUCwKTFEmmKPNapdGZHgenw91Xi88IvABsCgKIhQFvc3mNq/zRm0LKNi43W7/Rd8AwOFwhKwgIgotT70H9TvrUbejDg27GtB0pAnOE064yl3w1nrbXMcUbYI10Qpbqg2R6ZGIvjAa9tF22EfbEZEUEeYWEOmX0+dDcUMDPq2rQ2F9PQ47HDjudOIrlwvVHg/aOiQnQlGQaLWiv82GgTYbMqOjMdpux2i7HQNtNoaeswR0gr4lS5Zg6dKl5yxvbGxEVFRUSAojou7hc/pQ80ENKt+sxKl/n0LToSb/aIyIAG1nmfaZvl7X1fzRYU22os/kPkiYlYC4q+Ng7WPt/kYQ6ZRXBNtra/FmVRX+X1UV9jY2wiMCMwCTosDdhaOLIxQFrq/XizWbMT42FrPi43FNQgJSbbZuboH+BBRs2hqxiY+PZ7Ah0iify4fK1ytx8q8nceqdU/A5fFCsCsQdmlM0KBYF4hXABMReGovE7yYi+cZkhhzqkUQE79fU4M/l5Xi9shLVHg+sXQwxgWiZLOsDkN2rF+YkJuKHKSlIi4wMyfNpXZcuqeBwOBAdHc1gQ6QxTcebUPZsGUpWl8BzytP8idfZEZlgKfCP6iTfmIzU21Nhz7WHuQii8Ktxu7GuvBxPnjiBQ01NsCgKPCqc782iKPCK4Nvx8ViUmoopffvC1IN2VzHYEBlA45eNOPzLw6hYXwHFrDRP/tWAllEie54dGQ9noO/kvmqXRNTtKlwuFBw9ij+UlsIjEvbvEu2xAPAAGBwZiWWDB+N7SUk9IuAw2BDpmLPUiSNLj6Ds+TIoJu0EmnOYAXiBvlP7ImNlBkdwyBDqPB48euIEVh47BreIKqMzgVAACIAR0dH4vyFDcFVcnKEnHDPYEOmQz+3DsYeP4eiyo4AP2g00Z1EszeEr6ftJGPbEMFjjOQeH9EdE8HJ5ORYfOIBaj0czIzQdMaF5Hs5lsbF4ITMTw6Kj1S4pJBhsiHSmvqgee27cg8Y9jc2fUjqkWBSYY83IfD4TibMT1S6HKGClTid+tG8f3jl1Su1SusyiKDABWJmRgUUDBhhu9xSDDZFO+Dw+HCs4hiO/PdI8tuzpaA2N+3p8PPH6RFzwzAWwxnH0hrSrZZTm9v370eTzaXa3U2coAPJiYvByVhaGGmj0hsGGSAfcp9wovq4Ypzef1u0oTXsUi4KIfhHIfjsbvUb0UrsconO4fD7cuX8/ni0rU7uUbmdRFEQqCtZfdBGuiotTu5xuwWtFEWlcw54GfJr7KWq31Bou1ADN84OcZU7sGLsDlf+sVLscolYqXC5cXliIFwwYagDAI4IGnw9X79qFR48fRxfGOjSHwYZIw6reqsKOsTvgLHXqZoJwl3gAX5MPxbOKcfTho4b4cCX9K66vx6hPP8X2ujrdTBDuCvn6ds/Bg/jBF1/A7dP3NygGGyKNOrn+JHbP3A2fw6f/+TSB+PrT9fADh3HogUMMN6Sqz+rqMGHnTpS7XIaYTxOoV8rLcW1xMZw6DjcMNkQadPJvJ7Hnu3uazxrccz5T/Y4/chwH7z3IcEOq2FFXh/ydO9Hg9Rp6pKYtXgDvnDqFmbt36zbcMNgQaUzlG5XYM29Pjww0fgKcePQEDv/qsNqVUA+zu74eUwoL4fD5elyoaeEF8F51NeZ8/rkud0sx2BBpSN2OOnz+3c97dqg5w7GCYyh9vlTtMqiHKHe5MK2oqEeO1JzNC+DtqircdeCA2qV0GoMNkUY4v3Ji17d2NV8lm8HG78uffImaLTVql0EG5/T5MHP3blTq6EzCoeYF8HRpKZ4t1deXCwYbIg3wOX0ovqYYnipP+K/GrXUCFM8sRtOxJrUrIYMSEdy2bx921NX1qInCgVr45ZfYXFOjdhkBY7Ah0oADiw+gbmedsQ/p7iof4K3zNh8h5tbf/n7SvufKyrCuvJzfKdohAGYXF6Pc5VK7lIAw2BCp7NS7p1D6h1KO1JyHeAQNuxtw7OFjapdCBnPE4cBiHc4jCScfgDqvFz/58ktdHKnIYEOkIk+dB1/c/AX/EgPhA44sPYL6XfVqV0IGISLNJ6TTwcZabR4RvF5Zib9VVKhdSof4cUqkooP3HoS7wm3ISyWEhALsvXEvd0lRt/hjaSk+PH2a82oCpAC4bd8+ze+SCijYuN1uOByOVjciCk7tp7Uoe7aM82o6wwM0fN7QvOuOKAhVbjfuPXiQByB2ggBo9PnwwKFDapdyXgEFm4KCAkRHR/tv8fHxoa6LyPAO3XcIsKhdhQ75gCMPHYGnridcZ4JC5eFjx+DkSE2nuUWw9quvsKehQe1S2qVIADOB3G43PJ5vPkQcDgfi4+PR2NiIqKiokBZIZESn3j2FXVN3qV2GfpmBQb8ehEG/HqR2JaRDx5uaMOTjjzm3possioIZcXF4Y+RItUtpU0AjNlarFVFRUa1uRNQ1IoKD9xwEzGpXomNe4NjDx+Cq0Pa+ftKmh44c4S6oIHhE8GZVFT46fVrtUtrEycNEYVb9bjUadjXw8O4giVtQ+gzn2lDnlDqdWPfVV5wwHCQLgOXHtHn6BQYbojArWVXCuTXdQDyCkqdLeIQUdcpzZWUwKYraZeieB8C/qqpwvEl7ZwRnsCEKo6bjTaj6V1XzpwIFzV3hRtWbVWqXQTrh9vnwdEkJR2u6iVlR8GxZmdplnIPBhiiMyp4tg2Lmt8VuYwZOPHlC7SpIJ96sqkKF2612GYbhEcEzJSVw+bQ1aspgQxQmIoKyF3nemm7lBU5vPo2mE9obDiftWVtWxjn73eyUx4P/VFerXUYrDDZEYdKwuwGuUh7F0+3MaN69R3QeDq8XG6urOWe/m1kVBW9WVqpdRisMNkRhUvlmJRQrd0N1OwEqX9PWBytpz3vV1XBxbk23c4vgtcpK+DTUtww2RGFSsaEC4tbOH79h+ICa92vgqeeMbGrfG1VVsPJoqJCocLvxWV2d2mX4MdgQhYGr0oWGQu2eglzvxCOo+aBG7TJIw/5VWckzDYeIVVHwzqlTapfhx2BDFAb1O+rVLsHQlAgFdZ9q5xsjaUu5y4WveDRUyHhEsJ0jNkQ9S92OOs6vCSFxC+o+0c4HK2nLDg1tdI1IAHxcW6t2GX4MNkRhUPdJHcTLYfCQEaBuOzde1LYddXWI4PyakDrpduOkSxtHfTLYEIVB7fZaQFvnsDIcd6Ubzq+capdBGvRpXR3n14SBViYQa/qKNc5SJzzVPNKB9E28AleZNr7JGF3Nphr0zu6tdhmacNLuQ2M8v7sCwOcNDbyad4hZFAVHndr4YqHZYOMsdeLjYR/D18ivuUQUmL037FW7BE2ojAdu/BPgjFS7EuopTGi+croWaDbOe6o9DDVERF1QZ2eoofDyASjlHBsiIiIyAo8ISjhiQ0REREahlaOiAppj43a74fF8M4nX4XCErKAzVaAC9eCJzYiIOqPEBeCw2lVQUHr3BhIT1a6iUzwaOfIsoGBTUFCApUuXhrqWVk7XncYNuAEe8KgoIqJOKQUwX+0iKCgWC/Daa80BRye0EmwUkY4raWvEJj4+Ho2NjYiKigpJYQ2fN+Cti97iiA0RUSeV9Ad+tUztKigoOhyxGdWrF3aOHat2GYGN2FitVlit1lDXco7Er/8REVEnRAAYrHYR1NNYTdqYtquNKoiIiEjXUiIi1C4BAIMNERERBcmqKBhgs6ldBgAGGyIiIgqSAqAfR2zOz9LXAlO0ZssjItIsex1ga1K7CupJvCLor5ERG81eK8rW34a8/Xm8CCYZQtH0IrhOaOPkVUaWuzUXlljNfqyF1V5eBNPv3gMH8O/qal4IM4S8AIZEauM6Hpr+BLD1t8HWXxsJkCgYfSb1wclXTzb/9VNI2AbYEHtprNplaAYPivrGFX374r2aGrg1cp4Vo8q129UuAYCGd0URGYl9jB2KoqhdhnGZAPs4bXyokvaMttsZakIs3WZDrEUbYyUMNkRhYB9th3j4wRoqillBzJgYtcsgjbpYIyMJRmUCMC5GO39/DDZEYdD74t6AWe0qjEvcAvsl3HhR22ItFmRoZP6HEZkUBXkMNkQ9i6W3BbETY5uPiaRuZ4o2IXYC59dQ+65NSICVu4NDwiOCb8XHq12GH4MNUZgkXpvIv7hQMAPxM+JhimDnUvuuSUjgPJsQGRwZiQuio9Uuw4+fBERhEn9NPI+KCgUfkDA7Qe0qSOMmxMTAbub+4O5mVRRcp7GLdTLYEIVJVEYUorO0863GMExA3NVxaldBGmcxmTArIQEW7o7qVm4RzNTQbiiAwYYorPrd1o+TiLuRYlGQMDsB1jir2qWQDvwoJQUe7o7qVoMjIzEhVlvz2xhsiMIo5QcpUMz8xthdxCNIvSNV7TJIJ/L79MHQqCi1yzAMM4BFqakwaWwUjMGGKIysfa1IvjEZilVbHwR6FTU0Cn3y+6hdBumEoij4WWoqN3zdxKwo+EFKitplnIOvL1GYpd6eCnFzODxoZiD1Z6k8ozN1yk0pKYgwcdMXLKui4MbkZPS1am83MF9dojCzX2xH36v6QrFwgxwMa5wV/eb3U7sM0plYiwV3DxjAqW5B8onggYED1S6jTQw2RCoY8sgQiJejNl2mAIOXDYY5mpsn6ryfDxyIXjz0u8ssioIF/ftjqIbOXXOmgIKN2+2Gw+FodSOiruud3RtJ85I416YrTEDkoEikzNfevn3Sh1iLBb8eNIjf7LvIDODX6elql9GugF7XgoICREdH+2/xGjtmnUiPBi8bDHDQpvN8QMbKDJgs3CxR193evz+SIiIYbjrJDOCetDT0s9nULqVdikjHB/W73W54PB7//x0OB+Lj49HY2IgoHjpH1GVHlx/F4V8dBnxqV6IPikVB3yv7YuRbIzlpmIL2VlUVvrV7t9pl6IYZQFpkJD4fOxbRGt6VF1BYtVqtiIqKanUjouCl/TwNvUb24kTiAJkiTch8IZOhhrrFjPh43JyczLMRB8gH4OWsLE2HGoCTh4lUZbKYMPxPw9UuQzeGPTUMtv7aHQIn/Xli6FDEWSzcGHag5WR8E/v0UbuUDvG1JFJZ74t6Y/DywQC/NLZLsSiIvyYeyTcnq10KGUwfqxUvDR/O6W7nYQEwOCoKyzMy1C4lIAw2RBqQdm8aEuckNn+CUCuKRUFkRiSG/2k4d0FRSFwVF4flgwfzu0UbTACizGa8PXKk5ndBtWCwIdIARVGQtTYLvS7kfJtWTIApyoTst7JhiWHqo9C5f+BAfDcxkd8t2vCPESM0e86atjDYEGmEOdqMkf8aCXOsmVcAP8NFr12EqCE8YIFCS1EUrMnKwkW9enEy8RkeHToUV8bFqV1GpzDYEGlIZFokct7NgTmK4QYKMPyl4eh7RV+1K6EeIspsxjs5ORhos/X4cKMAuD8tDYtSU9UupdMYbIg0xj7Kjpz3c2CKMvXccKMAmS9kIvn7nCxM4ZUcEYHNublIjYjoseFGQfMRUCsyMnQ5r43BhkiDYsbGIPeDXJh7mXvWhGKl+Za1Lgv9buEFLkkdqTYb/nfxxRjUQ0du7k1Lw2NDh+oy1AAMNkSaZR9tx8XbLoatv61nTCi2NJ+A76LXL0LKTbwOFKmr/9fh5hK7vUcMnH79nQL/N2QIVup0pKZFQJdUOJvD4UB0dDQvqUAUBu5TbhRfV4zTm08b9tILikVBRL8IZL+djV4jeqldDpGfy+fDHfv347myMrVLCRmLoiBSUfD3ESMw3QDXguSIDZHGWeOsyNmYg9SFX0/i0+8XqbaZgJjxMRizcwxDDWlOhMmEP15wAZ4eNgwmGG/am0VRkGaz4dMxYwwRagCO2BDpSsVrFdh36z54a70Qj77Pldqye23Qbwch7d40Xq2bNO+T2lrcuHcvDjoc8KpdTJBMaB4Avq1fP/xuyBDYLcaZzMdgQ6QzrkoX9t++HxV/q2gevdFjvjEBvXN6Y/jLwzlKQ7rS5PVi6dGjWHnsGEyALgOORVGQ9PWlJK7oa7zTKTDYEOlUxesVOLDoAJwlTt3MvVEsChSbgkFLBmHA4gEcpSHd+qS2Fj/98kvsqK/3j35onUVRICJYmJqKgsGDDTVKcyYGGyId87l8KHu+DId/fRieGo9mvz4qVgVQgAGLB2Dg/QNhjbOqXRJR0EQEr1dW4r6DB3GoqUmzg6cWRYFXBPOSkrBs8GAMNvh2m8GGyAA89R6UPFmCE4+dgLvSDc18hTQBpggTUn6YgoEPDkTkgEi1KyLqdh6fDy+Vl2PF0aM40NQEi6LA0/lNa7ezKAp8IpiVkIAlgwYhu3dvtUsKCwYbIgPxuX2ofKMSJU+W4PSHp6FYFYg7vB+wLc8ZOTQSA342ACk3pcASa8whb6IziQg+qKnBUyUleL2yEgqav1+E8y+wJVQlWK24vX9/LOjfH6k2WxgrUB+DDZFBNextQMXfK1CxoQINuxq+OblDd4/kKIBiViAegW2ADQnXJSDx2kTETorV9Um+iIJR6nTi7xUV+EdFBbacPg1B86HinhA8l1VR4BZBH4sFsxMSMDshATPi4mA19cw5bAEFG7fbDY/nm5fD4XAgPj6ewYZIJ5wlTlT9qwrV71Wj9qNaOI87AXwz90U8ElDg8f++q/ljwxJnQcwlMYidFIuEmQmIvjCaYYboLNVuN945dQobT53Cttpa7Hc44EPz1VJMX89/CWR6nFVRoABwi0AA9DKZcLHdjomxsfh2fDzyYmJg5t9fYMFmyZIlWLp06TnLGWyI9Mld40b9Z/WoL6qHs8QJV5kLTcea4CpxwVvvhXibg45iUaBEKrD1s8E20AZbfxsi+kWg14hesI+2I6J/BIMMUSc1er0oqq/Hzvp6HHc6Uep04rjTiRNOJ057PPCINAcfRYFVUZBstSItMhIDbDb0i4jAsKgojLHbkREVBRP//s7BERsiIiIyjIBm9FmtVlitPDyTiIiItK1nziwiIiIiQ+rSMZgte68cDke3FkNERER0PpGRkeed29elYNPU1AQAiDfIlUCJiIhIHzqa39ul89j4fD7U1NR0mJqC0TJBuaqqihOUQ4j9HHrs4/BgP4cH+zn02MfnF5IRG5PJhLi4uC4X1RlRUVF8YcOA/Rx67OPwYD+HB/s59NjHXcPJw0RERGQYDDZERERkGJoNNhaLBQ899BAsFl48L5TYz6HHPg4P9nN4sJ9Dj30cnC5NHiYiIiLSIs2O2BARERF1FoMNERERGQaDDRERERkGgw2RykQE48aNg6Io+OCDD9Quh4hCqLGxEXfddRfMZjPWrl2rdjmGFNZg4/F4sHz5clx44YXIzs7GhRdeiOXLl8Pj8QS0/q5duzBjxgxkZWUhMzMTM2bMwK5du0Jctf50tZ/dbjfWr1+Pa665BqNGjUJ2djaGDx+O+fPn4+DBg2GqXj+CfT+3eO655/Dxxx+HqEp9C7aPHQ4HCgoKcMkll2D06NEYMmQIxo4di9/97nchrlxfgulnj8eDJ598Erm5uRg5ciRGjBiB8ePH45VXXglD5fqyadMm5OTk4L///S98Pl+n1+c2MEASRvPnz5eUlBQ5cOCAiIgcOHBAUlJSZP78+R2uW1xcLHa7Xe6//37x+Xzi8/nk5z//ucTExEhxcXGoS9eVrvbztm3bBIAsX75cPB6PiIiUlpbK6NGjJSYmRvbs2RPy2vUkmPdzi8rKSklKSpKZM2cKANm0aVOIqtWnYPq4oaFBxo8fLz/+8Y+loaFBREScTqf88Ic/lLy8vJDWrTfB9PPtt98uiqLIhg0b/MseffRRASCPP/54yGrWo3HjxsnWrVtlzZo1AkDWrFkT8LrcBgYubMGmZaN59hv9iSeeEACybdu2865/1VVXSWJiorhcLv8yl8slSUlJMn369JDUrEfB9PO2bdtk8ODB5yx/5513BIAsXLiw2+vVq2Dfzy3mz58vd9xxhzz00EMMNmcJto/vv/9+GTZsmD+kt6ioqJD//ve/3V6vXgXbz3a7XUaOHNnm8lGjRnVrrXrndrtFRLoUbLgNDFzYdkW1DEtOmzat1fKrrrqq1f1tqaysxH/+8x9cfvnlsFqt/uVWqxVTpkzBxo0bUVlZGYKq9SeYfs7Ly8O+ffvOWZ6WlgYAqK6u7q4ydS+Yfm6xbds2vPXWW1i2bFn3F2gAwfSxy+XCH//4R1x77bUwm82t7ktISMCkSZO6uVr9Cva9bLfb4Xa7Wy3z+Xzwer2w2WzdWKn+dfWEe9wGdk7Ygs1nn30GAMjIyGi1PCMjA4qiYOfOne2uW1hYCJ/PhyFDhpxz39ChQ+Hz+VBUVNS9BetUMP2sKEqrP5oWe/bsAQBMnTq1GyvVt2D6GQC8Xi8WLlyIlStXIjY2NmR16lkwfbx7927U1NSgf//+WLJkCcaMGYPMzExMnDgRq1evhvC8pH7BvpeXL1+OAwcO4JlnnoHP54Pb7caDDz4Ip9OJ++67L2R19yTcBnZO2IJNRUUFbDbbOQnearUiKioKFRUV510XAGJiYs65r2XZ+dbvSYLp57aICFatWoW8vDzcdNNN3VmqrgXbz0899RR69+6Nm2++OZRl6lowfXzkyBEAwC9/+Us0NDRgy5Yt2LNnD2677TbccccduPXWW0NZuq4E+17+wQ9+gPXr12PlypWIj49HXFwcXnvtNbz77ru47rrrQll6j8FtYOeELdiICBRF6fK6ALq8fk8STD+3ZcWKFTh+/DjWr1/P65acIZh+Lisrw29+8xs8/fTT3VyVsQTTxw6HAwCQmJiIlStXIjIyEmazGTfddBPmzp2LF198kUeTfC3Yz4yCggLMnTsXDz/8MCorK1FdXY177rkHs2bNwquvvtqNlfZc3AZ2TtiCTVJSEpqamuB0Olstd7vdcDgcSExMPO+6AHD69Olz7qutrQWA867fkwTTz2d74oknsG7dOmzatAkDBgzo7lJ1LZh+vueee3DzzTcjOzs71GXqWjB93PItNjc3FyZT64+5vLw8AM1znCi4ft63bx9+9atfYe7cuZg3bx7MZjMsFgsWLFiA/Px83HLLLSgvLw91EwyP28DOCVuwufjiiwEAhw4darX80KFDEBHk5ua2u+6oUaNgMpnaPJfKgQMHYDKZkJOT070F61Qw/XymJUuW4KWXXsKWLVuQnp7e7XXqXTD9vGnTJmzcuBGjRo3y3/7whz8AAG699VaMGjUKv/jFL0JXvE4E08cXXXQRgOa5TGdrmUzclfOIGFEw/VxUVAQRQVZW1jn3DR8+HA6Ho8M5OtQxbgM7J2zBZt68eQCAd999t9XyjRs3AgBuuOEG/7KTJ0+2mmWfkJCAK6+8Eh988EGrE0Z5PB5s2rQJ06ZNQ0JCQijL141g+hloHvK888478cEHH2DTpk3+bwFlZWWYOXNmKEvXlWD6uaysDJ9//jkKCwv9t5/85CcAgOeffx6FhYV4+OGHQ90EzQumjzMyMpCbm4uioqJzAkzLhnb8+PEhqVtvgunnlJQUAN/MaTpTS1DiZ3PncRsYpHAeW37LLbdI//795eDBgyIicvDgQenXr1+rk0Bt3bpVzGazzJgxo9W6LScneuCBB/wnJ/rFL34hdrudJyc6S1f72eVyyQ033CCJiYny3HPPycsvv+y/PfbYY5Kenh7upmhaMO/ns/E8Nm0Lpo8//PBDsdlssnTpUv+yjRs3SkREhNxyyy3haYBOdLWfvV6vXHrppWKz2eT999/3L3/zzTfFbDbL5MmTxefzha8hOnG+89hwGxi8sAYbt9sty5Ytk6ysLBk5cqRkZWVJQUGB/6RFIiJFRUUSFxcnCxYsOGf9wsJCmT59umRmZsoFF1wg06dPl8LCwnA2QRe62s9vvPGGAGj3xmDTWrDvZ5Hmk6Dl5ORIcnKyAJAhQ4ZITk6ObN26NVzN0LRg+/h///ufTJ06VdLT02Xo0KGSnZ0tTz75pHi93nA2Q/OC6ee6ujopKCiQ7OxsGTFihAwfPlxycnJk5cqVUl9fH+6maNqyZcskJydH0tLSBICkpaVJTk6OrFixwv873AYGTxHhCR2IiIjIGHh1byIiIjIMBhsiIiIyDAYbIiIiMgwGGyIiIjIMBhsiIiIyDAYbIiIiMgwGGyIiIjIMBhsiIiIyDAYbIiIiMgwGGyIiIjIMBhsiIiIyDIvaBRBRz1JSUoK1a9fC5XIhPT0d8+fPV7skIjIQBhsiCpuioiL89Kc/xZtvvomEhARcddVVsNls+P73v692aURkENwVRURh0dTUhO985ztYtmwZEhISAACjR4/GmjVrVK6MiIyEwYaIwuLFF19EZGQkpkyZ4l926tQpVFZWqlgVERkNgw0RhcWrr76K2bNnt1r22WefYejQoeoURESGxGBDRCHncrmwfft2XHbZZf5lZWVl2LFjB+bOnatiZURkNAw2RBRyn3zyCZqamjBq1Cj/stWrVyMnJwdz5sxRrzAiMhwGGyIKuQ8//BBJSUnYtGkTgOajo9avX48NGzbAbDarXB0RGYkiIqJ2EURkbN/+9rcxdOhQ5Ofno7i4GACwcOFCxMfHq1wZERkNgw0RhZSIID4+Hi+88AKuvfZatcshIoPjrigiCqni4mLU1NRg0qRJapdCRD0Agw0RhdQnn3yC3Nxc7nYiorDgrigiCqm6ujo0NjYiOTlZ7VKIqAdgsCEiIiLD4K4oIiIiMgwGGyIiIjIMBhsiIiIyDAYbIiIiMgwGGyIiIjIMBhsiIiIyDAYbIiIiMgwGGyIiIjIMBhsiIiIyjP8Pyb19MvHVNHcAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -724,7 +726,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAACLCAYAAAByfdO3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAifUlEQVR4nO3deXQUVdo/8G/1kk4iSYBsEAhBFpPIkmQChACSiLKICurAcXCbIYKOjPBTPC5znBnBISDMqwgouLO4jMyAjoyvo7hEEURBIFGGxSCLQAIkAiEk3Ukvz++PNv0SCEmTXqq68v14ckyquqqee6u76+HeW7cUEREQERER6YBB7QCIiIiI/IWJDREREekGExsiIiLSDSY2REREpBtMbIiIiEg3mNgQERGRbjCxISIiIt1gYkNERES6wcSGiIiIdIOJDREREekGExsiIiLSDSY2FNLS0tKQn5+P/Px8ZGZmQlEUDB482LMsOTkZaWlp6N69u9qhBsSHH37oKXcoaG28r776ql/O4/Tp0zF9+nSf9gFoq94vtUz+qksizRKiEJaXl+f5vaioSADIgQMHGq1fvny5pKSkBD22YGkod6jwJt4nnnii0bkVEb+cx5qaGqmpqfFpHw20Uu+tKZM3ddnUOSAKBWyxoZA2b948n9ZT2xIZGYnIyEi1w/ArPZaJyBdMbCik5ebmer1+yZIlGDlyJHr06IFVq1Z5lp/bNL9kyRKMGjUK4eHhWLFiBY4fP47f/OY3GDZsGIYNG4YZM2bAarV6tm1p/bnOP05TsTTsc9KkSRg2bBiGDh2Ke++9F2fOnPGsLy0tRX5+PgYOHIhx48ahuLj4gmM1F9czzzyDnJwcjBgxAldddRVef/31i9bf4sWLMWLECFx77bXIzc3FsmXLLrk83sR7rmXLlmHFihUoLi5Gfn4+rrnmmkbrW6q7i5X7ueeeQ/fu3ZGfn99k/Oee96Z4W47i4mKsXLkSS5Ysgd1uv2D9tGnTYDAYkJGRgc8++wwAcM899+CBBx4AAGzbtg39+vVD79698f333zdbrvPLdH6sAwYMwHXXXYfCwkIoioL8/HwcPXq0xbps6RwQaZraTUZE/tJUV5SIu9k9LCxMPvroIxEReeuttyQ6OlocDscFr1m7dq2IiLzzzjvy/vvvy6BBg2TGjBkiIuJwOGTcuHEyffp0ERFxOp3Nrm9KS7E07POBBx4QERGXyyWTJk2S8ePHi4iI3W6X1NRUefjhhz1/jxs3rlGXSHNx7d69W2JiYsRqtYqIyPbt25vtbli4cKHntTabTXr16iWbNm3yujzexNuUi3VFeVN3zZ2P8/fb1Hn/4IMPLojH23Js2LBBZs6cKSIiq1atktmzZzdZviFDhkhhYaEnzs6dO0tycrJn/eOPPy6bN2/2qlznl6mpWMeOHdsoVm8+E+yKolDFxIZ0o7nEpn379p6/9+zZIwCkrKys0Wuio6Mbbff1118LAPnhhx88y9asWSMRERHicrlaXN+U5cuXS0xMjOfv3bt3N4qlqX1u2LBBAMihQ4dk48aNAkBKS0s96//xj380umg1F9dPP/0kERER8txzz8mpU6dERKS6urrJWEVEPv30UxkzZowMHTpU8vLyJCYmRhYsWOB1ebyJtykXS2yaO4/enI+mEpvzz3tTvC3HwIEDpaqqSkRE/v3vf8s111zT5P4WLlwoWVlZIuJ+386cOVOMRqNs2bJFRERGjhzpibmlcp1fJm9i9eYzwcSGQpUpWC1DRGqKiYnx/G6xWAAAdXV1jV7ToUOHRn8fOnQIAHD33XfDYHD32tpsNiQkJKCioqLF9QkJCU3G0r59e8/v4eHhjWJp2GdiYqLnNQ2/Hzp0CGVlZQDQaN9xcXFex22xWLBp0yY8++yzmDVrFrKzszFr1iwMHjz4gjgPHDiAsWPHYunSpSgoKAAA5Ofno6amxuvyHDlypMV4L0Vz57G15+P8894Ub8rx5ZdfonPnzoiOjgYAlJSUXPSYEyZMwMyZM3HgwAGsXbsWM2bMQElJCdauXYvw8HD06dPHc8dVS+VqTayAd58JolDExIboIhpuh/373/+OLl26eJafOHECCQkJLa5vjZSUFADuMRUNF8jjx4971hmNRs8xGtZXVlZ6HXe7du2QnJyMlStXoq6uDvPmzcPIkSNx/PjxCwagbtu2DXV1dbj55ps9y+rr6y+pPMnJyS3G6y+BOB8NvCnHp59+iuHDh3v+fvfdd/H00083ub+uXbsiJycH//znP7F//3707t0bEyZMwDPPPAOLxYKJEye2ulzBrHMiLeLgYaKLGDBgAHJychoNmP3ss89w0003ebW+NQYOHIgBAwZg6dKlAAARwbJly3DjjTeiW7duyMnJQXp6Ol566SUAgNPpxMqVK72Oe8uWLSgoKICIwGKxYPjw4bDb7U3Ox5KamgpFUbBhwwYAwMGDB1FSUnJJ5fEm3qbExMSguroaAPDAAw/g66+/bnGbQJyPBt6UY+PGjXA4HADcSciQIUOQl5d30X1OmDABCxYs8LSW3XLLLdi/fz/+9a9/NRr0fqnlairWN99885LL3JpzQKQJaveFEfnD8uXLJSMjQwBITk6O/Oc//xERkbfffltSU1PFYrHIrbfeKuXl5ZKTk+N5XWlpaaPX5OXlyY4dOzz7PXbsmEyaNElyc3Pl6quvlnHjxslPP/3k9fpzeROLiEh5ebnceuutMnToUMnNzZUpU6bI6dOnPfspLS2VvLw8yc7OllGjRslf//pXASB5eXly5MiRZuMqLy+XO+64Q3JzcyUvL08GDhwo77333kXr9dlnn5Vu3brJtddeK1OnTpX+/ftLSkqKLFmyxOvyeBPv+Q4ePCj9+vWToUOHynXXXef1sZo7H0uWLJGUlBSJiYmRCRMmNHvem9JSORITE2XTpk2yYsUKeeONN5rdV0MZAciuXbs8y66++uomB59frFznl6mpWK+//np5+umnPWNsvK3L88+BzWZrsUxEWqCIiKiUUxER6cK3336LRx99FJ9++qnaoQBwdz2dO65m9erVePDBBz1jtIj0jF1RREQ+2rhxI4YOHap2GB6TJ0/Gjh07AAB2ux3Lly/H+PHjVY6KKDg4eJiIyEedOnXCqFGj1A7D46abbsLUqVMRFRWF6upqDBw4EAsWLFA7LKKgYFcUERER6Qa7ooiIiEg3mNgQERGRbrQqsRERWK1WsBeLiIiItKRViY3NZkNkZCRsNpu/4yEiIiJqNa/uirLb7Z4ZNQHAarUGLCAi0j5XnQu1pbVw1bjgsrkAI2CMMMKcYIalq6XJmYyJAkYEOHwYOHECsNkApxMIDwfatQN69wbCwtSOUDU1Tif2Wa2wOp2wuVwwGwyIMBjQxWJBok7rxavEprCwELNnzw50LESkUbWltTj92WlUb6vGmc1nULunFuJouivaGGNE9MBoRA2KQtSAKHQc3RHGSGOQIyZdq6kBPvoI+PZbYMsW9/+rqpp+rckEpKUBQ4YA2dnAiBFAr17BjTeIiqursaGqCtuqq7H5zBnss1pxsUEjCWYzBkVHY2BUFAZFReGaDh1gNoT+0FuvbvduqsUmNjYWtbW1iIiICGiARKQOl8OFn9f9jCOLj6DqiyrACCiKctGE5nxKmAKpFxjbGdF5Smck3ZeEyCsiW96Q6GL27AGWLQNefdWd3ISFAd4+mNVkcrfsOJ3A1VcDM2YAN9zgXh7irE4nVp84gUVHj6L47FmYFAUiAqcX2yoAzIqCehHEmc34Q1ISpiYlocsvT3wPRa2ax8ZqtSIyMpKJDZEOuepcOLzwMI4sPAL7CTtgBLz6hmyGYlYgdkH7/Pbo/mR3tL+qvT9Cpbbiiy+Av/wF2LABMJsBu923/RmN7gQnMRGYORN44IGQ7K6qcjhQeOgQXigrw1mnEwoAl4/7NCkKXCIYHxeHJ7t3R9927fwRalAxsSEij+pt1dh1+y5Y91l9Tmaa9EuS1GV6F/SY1wPGy9hFRc04exZ45BF3K43BALh8vWw3wWgEUlOBN98EMjP9v/8A+ejkSfxu925UOhxwBOAOZRMAKApmd++OR5KTYQqhLiomNkQEV50LB/96ED/N+8ndNh2IpOZcRsDSxYL019PRfnj7AB+MQlJREXDXXcCxY8A5QyECoqGb6vHH3T8abr2pcjjw0L59ePXYMRjgewtNSwwA+l12Gd5ITw+Z1hsmNkRtXH1FPUpGlaDm+5rAJzTn+uVbucf8Huj2SLcgHpg0TQSYN8+dYASqleZiDAZ3q8369UBsbPCO66XS2lqMKC7GMbs9IK00F2P65S7HVWlpmJSYGLTjtlbotC0Rkd/ZjtiwPXc7anfWBjepATz/1Nz/6H7s/+N+TvhJ7qTm4YfdSQ0Q3KSm4Xjffee+g6qsLLjHbsF3Z88id/v2oCc1AOAQgUMEt+/ejZc0Vi9NYWJD1EbVn6hHcV4x6g7VeX2nU6D8NP8nHJx1UNUYSAMefxx45hl1Y3A4gP37gbw8oLJS3Vh+sbe2FvnFxTgdoPE03hIA9/7wA1aUl6sWgzeY2BC1Qc5aJ0quKUHdT+onNQAAAQ49eQhHnz+qdiSklkWL3F1QWmi5cziAgweBkSPdE/6p6FhdHfKLi1HtcAS9UfViCvbuxf/+/LPaYVwUExuiNujAnw6gZneNNpKac+x7cB9qdteoHQYF286dwEMPqR1FYw4H8P33wKxZqoUgIpiydy8q7XYEePj0Jbtz925UejuHUJAxsSFqY6o2VeHIs0eCP6bGGwLsvnM3xKmthIsCyG4Hbr8d0OJjOJxOYMEC4JtvVDn8WydO4H9PnlS1+6kpAqDa6cS00lK1Q2kSExuiNsRZ68TuO3Zr9pMvDsHZHWdx+OnDaodCwbJggbvFJtC3dLeWweBOvILcJVVeV4f7fvghqMe8FA4R/LOiAmsrKtQO5QIa/XojokA4NOcQbIdt2mytaeByd5VZD/Bhu7pXWgo88UTw7366FE6ne7zNvHlBPez00lJYtVwvcE95NXXvXlRrLCllYkPURjhrnTi65Ki2k5pzlC3V/m2l5KPnn3e3iGid0+ke3BykVptDNhveqazUXBfU+QTuCQPfPH5c7VAaCYF3FBH5w4nVJ+CsDY2sRuyCspfK4LSGRrzUCjU1wCuv+P7cp2A5cwZYsyYoh3qprAxGLY45aoIAWHT0qKbmoWJiQ9RGHFl0xP0tFCKc1U5U/EN7/ffkJ3//O2ANoe5GRXG32gRYncuFZWVlmm+taSAA9tTWYlNVldqheDCxIWoDzmw9g5qSmpBKbKD8koyRPi1apI05a7zlcgHffgsUFwf0MO9UVOC0xsastMSkKHjuqHbmoDKpHUBz6srq4DgVWieYSIuOrTrm/rSH0sfJBZzdcRZVX1XBFKPpryq/MdWdgMVSq3YYgffzz+47oUKNyQSsXAmYzV5vUhYVhVOX8Nypt0+cgAEhMxQOgPsOqQ9OnoSIQNFAF5pmH4JZV1aHb3p/A1ettkeFExH5QxgqkYM7YESd2qGQn5TFxqL3G2+gNjxc7VCCYn9ODi7XwIOxNdsV5TjlYFJDRG2GCdVManTmVFRUm0lqAGBbdbXaIQDQcGJDREREoSFMUbDt7Fm1wwDAxIaIiIh8VC+CHWyxISIiIr2ocmpjyLNXtxrY7XY4zrn9zBqkuQcqUIGz0EbTFhFRIEXgKC5TOwjyq3319cCBA2qH0Vi7dkB8fEB2XRtKiU1hYSFmz54d6Fgaqaquwm24DY6Quj+ViIjoF2VlQEGB2lE0ZjIB777rTnD8TCtdQF7d7t1Ui01sbGxAb/eu+W8NPuj7AVtsiKhNiMBR9MOf1Q6D/GhfUhJumjNH7TAaC2CLzZDoaGz61a8Csu9L4VWLjdlshvkSJiTyl/hf/iMi0rtIAH3UDoL8KywMuPxytaMICgVAvAp5QlO00nJEREREIcqsKMiOilI7DABMbIiIiMhH9SJMbIiIiEg/mNi0wNTBBEOkZsMjIvIrB6LghEXtMMiPOlRXI9JmUzuMoEg0m5EYFqZ2GAA0/HRvS5IFOaU5fLo3kR/YDtvw/XXfqx3GpTEA0UOikfpCqtqRBI2jbjeMbeHp3gBw993A1q2AK8SeCfjxx0Dnzl69NAlA6SU+3fvrM2cwZe/eVganDrOi4DcJCWqH4aHZp3sTkX+VjC7BqU9PAdqYQ8sr/T7oh9jrvL8oUAhZtw4YP17tKLxnMgGjRwPvvx/Qw4gIen3zDfaHWEvPnkGDkBoZqXYYADTcFUVE/tVlepeQSmosXS3oOLqj2mFQoFx/vdctH5rgcADTpwf8MIqiYEbXrjAG/Ej+YQSQFxOjmaQGYGJD1GbEXheLsCRt9IG3yAh0mdEFikFROxIKFKMRuP9+d0tIKOjWDRg5MiiH+m1iIkxKaLz3nQBmdO2qdhiNMLEhaiMUo4KUP6e4Z9LSMgUwRZvQ+e4Q+tc8tc499wCXhcATshQF+MtfAENwLpntzWbc36WL5lttjACuiIjAjZcwhigYmNgQtSFJ9yQhZmgMFJOGsxsBUl9OhbmjNmYxpQCKiwNeeEHtKJpnMgH5+UF/5tOTl1+O5PBwTSc3AuDN9HSYg5TweUtb0RBRQCkGBWmr0jSb2CgmBfET4xH/az5Kpc249Vb3IGKtdkmFhQErVrhbbYIo0mjEG+np0Oo9Y0YAj3XrhgHR0WqHcgEmNkRtTMTlEej5Pz211yWlAMYoI3o/31vtSCiYFAV48UV3l5TWxpUoCrBwoXt8jQqGxsTg/2mwS8oIoGdEBP7SvbvaoTSJiQ1RG5R0X5K7VURL35gG4MrVVyIsPkQGOJP/JCYCb78dtDEsXjEa3a1JU6eqGsbcHj2QHRWlmcHEBgARRiPW9OkDi5bO1zm0GRURBZRiUJD+Zjo6jOigjWk6FeDKt69Ex5G8vbvNGjMGePNNbbTaGI3AqFHAqlWqxxNhNOKj/v2RGhGhenJjgHsyvvX9+6Nfu3aqxtIcJjZEbZQhzIC+7/V1JxNqtdwoAIzulpqECdqZuZRUcuut7uTGaFQvoTAYgLFjgXfeAczaGMDe3mzG55mZ6BsZqVpyYwQQYTDgk4wM5MbEqBKDt5jYELVhxggj+r7XF4l3JroXBPE7UzEpMF5mRL/3+yFhIpMa+sWkScB777nH3ARzQHFDwjB5sjupCQ8P3rG9EBcWhi+yspAXExP04XEmRUF8WBi+zMrCsPbtg3z0S8fEhqiNM5gNSF+ejj7v9oGpoylod0x1GNUBg34YhNgx2poDgzTg+uuBPXuAa64JzvFMJvet5+vWAa+8otk7tKJNJnyckYFlV1yBCIMh4K03DQnCbxMTsWfQIGRp5OndLeGzoojIw/6zHT/c/wMq3q5wtz37+REMikmBIdyA3kt7I/GORChaGE9B2iUCrFzpnqG4rs79WAN/Mpnc+7zjDmDxYqBDB//uP4AO2WyYvGcPik6fhgHw+23hRgDxYWFYmZaGUR1Da+wbExsiusDJT07iyMIjOPmfk1CMCsRxyV8T/8cAQABTexOSfp+ELtO7wNLZ4rdYqQ0oK3MnHi++CFRVubuNfHkquMkEOJ3usTQzZwIjRvgv1iASEaypqMCzR47gqzNnYFYU2C/9ku7R8G+ZpLAwzOjaFb9PSkKMRluvmuNVYmO32+E4J1O2Wq2IjY1lYkOkc9aDVpS/WI6yF8rgOO0AjO6H9DWb6CiAYlYg9e7XROVEoeuMroj/dTwMFvZ+kw9sNmDNGneSs3Wre1lYGFBf3/x2ZrM7EXI63a0y06a5H+eg0vw0gbDz7FksLSvDimPHYHW5YFIUiEizja4K3Hc51YtAATCqQwdM79oVYzp2hDGEW1O9SmxmzZqF2bNnX7CciQ1R2+Cqd6FmZw2qt1Wjels1znx1BrV7az3JSwNTBxOiBkYhelA02mW3Q9SAKIR31dYgTNKJw4eBb78Ftm0Dtmxx/37qVOPXWCxAaiqQmwsMGABkZwN9+2rmbqdAsDqdKD57Ftuqq7GtuhpfnTmD/TYbHOdc6hUACWYzcqKjMTAqCtm//CSE6WMOKbbYEFGriVPgsrmgmBQoYQrHzJC6RNytN06nO6kxamkGSnU5XC7UicCsKDAr+v6setV5ZjabYT4nw23IhaxWa2CiIqLQ0TBy0aZ2IES/UJSWu6faIAPcY2j8fE9A0IWHhzebmLVqVJDN5v4Gi9XYo8qJiIhI31rqLWrVXVEulwunT59uMWvyRUN3188//8zuriBivauD9a4O1rs6WO/q0Eu9B6TFxmAwoGOQ7muPiIgI6RMQqljv6mC9q4P1rg7Wuzr0Xu+895KIiIh0g4kNERER6YZmExuTyYQnnngCphCc9TCUsd7VwXpXB+tdHax3dbSVem/V4GEiIiIiLdJsiw0RERHRpWJiQ0RERLrBxIaIiIh0g4kNkcaJCAYPHgxFUfD555+rHQ4RaUxtbS0efPBBGI1GrFixQu1wVBfUxMbhcGDu3Lm48sor0b9/f1x55ZWYO3duowdsNue7777D2LFjkZaWhtTUVIwdOxbfffddgKMOfa2td7vdjjVr1uDGG29EZmYm+vfvj/T0dBQUFODHH38MUvShy9f3e4OXX34Z33zzTYCi1B9f691qtaKwsBCDBg1CdnY2evbsiYEDB+Jvf/tbgCMPbb7Uu8PhwOLFi5GVlYV+/fqhT58+yM3NxVtvvRWEyENbUVERMjIy8MUXX8Dlcl3y9rq8rkoQFRQUSKdOnWTfvn0iIrJv3z7p1KmTFBQUtLjtzp07JSoqSh599FFxuVzicrnkkUcekejoaNm5c2egQw9pra33zZs3CwCZO3euOBwOEREpKyuT7OxsiY6Oll27dgU89lDmy/u9QWVlpSQkJMi4ceMEgBQVFQUoWv3wpd5ramokNzdX7rnnHqmpqRERkbq6Ovnd734nOTk5AY071PlS73/4wx9EURRZu3atZ9kzzzwjAOTZZ58NWMx6MHjwYNm0aZMsX75cAMjy5cu93lav19WgJTYNF8nz36SLFi0SALJ58+Zmtx89erTEx8dLfX29Z1l9fb0kJCTImDFjAhKzHvhS75s3b5bLL7/8guUffvihAJBp06b5PV698PX93qCgoEDuv/9+eeKJJ5jYeMHXen/00Ueld+/enkS+QUVFhXzxxRd+j1cvfK33qKgo6devX5PLMzMz/Rqr3tjtdhGRViU2er2uBq0rqqFJcdSoUY2Wjx49utH6plRWVuLjjz/G1VdfDbPZ7FluNpsxYsQIrF+/HpWVlQGIOvT5Uu85OTnYu3fvBcuTk5MBAKdOnfJXmLrjS7032Lx5Mz744APMmTPH/wHqlC/1Xl9fjxdffBE333wzjEZjo3VxcXEYPny4n6PVD1/f71FRUbDb7Y2WuVwuOJ1OWCwWP0aqP62dbE/P19WgJTbbt28HAPTo0aPR8h49ekBRFOzYseOi2xYXF8PlcqFnz54XrOvVqxdcLhdKSkr8G7BO+FLviqI0esM32LVrFwBg5MiRfoxUX3ypdwBwOp2YNm0a5s+fj5iYmIDFqTe+1Pv333+P06dPIykpCbNmzcKAAQOQmpqKYcOGYdmyZRDOZXpRvr7f586di3379mHp0qVwuVyw2+14/PHHUVdXh4cffjhgcbdler6uBi2xqaiogMViuSD7NpvNiIiIQEVFRbPbAkB0dPQF6xqWNbd9W+ZLvTdFRLBkyRLk5OTgzjvv9GeouuJrvT/33HNo164d7rrrrkCGqTu+1PvBgwcBAH/6059QU1ODjRs3YteuXbj33ntx//33Y8qUKYEMPaT5+n7/7W9/izVr1mD+/PmIjY1Fx44d8e677+KTTz7Br3/960CG3mbp+boatMRGRKAoSqu3BdDq7dsyX+q9KfPmzcPhw4exZs0a3T9vxBe+1Ht5eTmefPJJPP/8836OSv98qXer1QoAiI+Px/z58xEeHg6j0Yg777wTEydOxGuvvRb6d4sEiK/fM4WFhZg4cSKeeuopVFZW4tSpU3jooYcwfvx4rF692o+RUgM9X1eDltgkJCTAZrOhrq6u0XK73Q6r1Yr4+PhmtwWAqqqqC9adOXMGAJrdvi3zpd7Pt2jRIqxcuRJFRUXo2rWrv0PVFV/q/aGHHsJdd92F/v37BzpM3fGl3hv+lZqVlQWDofFXY05ODgD3uCe6kC/1vnfvXvz5z3/GxIkTMWnSJBiNRphMJkydOhV5eXmYPHkyjh8/HugitDl6vq4GLbH51a9+BQDYv39/o+X79++HiCArK+ui22ZmZsJgMDQ5d8q+fftgMBiQkZHh34B1wpd6P9esWbOwatUqbNy4ESkpKX6PU298qfeioiKsX78emZmZnp8XXngBADBlyhRkZmbiscceC1zwIcyXeu/bty8A9/im8zUMJm7NPCFtgS/1XlJSAhFBWlraBevS09NhtVpbHKNDl07P19WgJTaTJk0CAHzyySeNlq9fvx4AcNttt3mWnThxotEI+bi4OFx77bX4/PPPG0325HA4UFRUhFGjRiEuLi6Q4YcsX+odcDdXTp8+HZ9//jmKioo8GXx5eTnGjRsXyNBDmi/1Xl5ejv/+978oLi72/Pz+978HALzyyisoLi7GU089FegihCRf6r1Hjx7IyspCSUnJBQlMw4U1Nzc3IHGHOl/qvVOnTgD+b4zTuRoSJX6/+65NXVeDeW/55MmTJSkpSX788UcREfnxxx+lc+fOjSZw2rRpkxiNRhk7dmyjbRsmEvrjH//omUjosccek6ioqJCeSCgYWlvv9fX1ctttt0l8fLy8/PLL8vrrr3t+Fi5cKCkpKcEuSkjx5f1+Ps5j4z1f6v3LL78Ui8Uis2fP9ixbv369hIWFyeTJk4NTgBDV2np3Op0yZMgQsVgs8tlnn3mWr1u3ToxGo+Tn54vL5QpeQUJUc/PYtLXralATG7vdLnPmzJG0tDTp16+fpKWlSWFhoWeCIRGRkpIS6dixo0ydOvWC7YuLi2XMmDGSmpoqV1xxhYwZM0aKi4uDWYSQ1Np6f++99wTARX+Y2DTP1/e7iHuCs4yMDElMTBQA0rNnT8nIyJBNmzYFqxghx9d6/+qrr2TkyJGSkpIivXr1kv79+8vixYvF6XQGsxghx5d6r66ulsLCQunfv7/06dNH0tPTJSMjQ+bPny9nz54NdlFCypw5cyQjI0OSk5MFgCQnJ0tGRobMmzfP85q2dl1VRDg5AxEREekDn+5NREREusHEhoiIiHSDiQ0RERHpBhMbIiIi0g0mNkRERKQbTGyIiIhIN5jYEBERkW4wsSEiIiLdYGJDREREusHEhoiIiHSDiQ0RERHphkntAIiobTl69ChWrFiB+vp6pKSkoKCgQO2QiEhHmNgQUdCUlJTgvvvuw7p16xAXF4fRo0fDYrHg9ttvVzs0ItIJdkURUVDYbDbccsstmDNnDuLi4gAA2dnZWL58ucqREZGeMLEhoqB47bXXEB4ejhEjRniWnTx5EpWVlSpGRUR6w8SGiIJi9erVuOmmmxot2759O3r16qVOQESkS0xsiCjg6uvrsWXLFlx11VWeZeXl5di2bRsmTpyoYmREpDdMbIgo4LZu3QqbzYbMzEzPsmXLliEjIwMTJkxQLzAi0h0mNkQUcF9++SUSEhJQVFQEwH131Jo1a7B27VoYjUaVoyMiPVFERNQOgoj07YYbbkCvXr2Ql5eHnTt3AgCmTZuG2NhYlSMjIr1hYkNEASUiiI2Nxauvvoqbb75Z7XCISOfYFUVEAbVz506cPn0aw4cPVzsUImoDmNgQUUBt3boVWVlZ7HYioqBgVxQRBVR1dTVqa2uRmJiodihE1AYwsSEiIiLdYFcUERER6QYTGyIiItINJjZERESkG0xsiIiISDeY2BAREZFuMLEhIiIi3WBiQ0RERLrBxIaIiIh0g4kNERER6cb/BxnirUFhCX1gAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAACLCAYAAAByfdO3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAifUlEQVR4nO3deXQUVdo/8G/1kk4iSYBsEAhBFpPIkmQChACSiLKICurAcXCbIYKOjPBTPC5znBnBISDMqwgouLO4jMyAjoyvo7hEEURBIFGGxSCLQAIkAiEk3Ukvz++PNv0SCEmTXqq68v14ckyquqqee6u76+HeW7cUEREQERER6YBB7QCIiIiI/IWJDREREekGExsiIiLSDSY2REREpBtMbIiIiEg3mNgQERGRbjCxISIiIt1gYkNERES6wcSGiIiIdIOJDREREekGExsiIiLSDSY2FNLS0tKQn5+P/Px8ZGZmQlEUDB482LMsOTkZaWlp6N69u9qhBsSHH37oKXcoaG28r776ql/O4/Tp0zF9+nSf9gFoq94vtUz+qksizRKiEJaXl+f5vaioSADIgQMHGq1fvny5pKSkBD22YGkod6jwJt4nnnii0bkVEb+cx5qaGqmpqfFpHw20Uu+tKZM3ddnUOSAKBWyxoZA2b948n9ZT2xIZGYnIyEi1w/ArPZaJyBdMbCik5ebmer1+yZIlGDlyJHr06IFVq1Z5lp/bNL9kyRKMGjUK4eHhWLFiBY4fP47f/OY3GDZsGIYNG4YZM2bAarV6tm1p/bnOP05TsTTsc9KkSRg2bBiGDh2Ke++9F2fOnPGsLy0tRX5+PgYOHIhx48ahuLj4gmM1F9czzzyDnJwcjBgxAldddRVef/31i9bf4sWLMWLECFx77bXIzc3FsmXLLrk83sR7rmXLlmHFihUoLi5Gfn4+rrnmmkbrW6q7i5X7ueeeQ/fu3ZGfn99k/Oee96Z4W47i4mKsXLkSS5Ysgd1uv2D9tGnTYDAYkJGRgc8++wwAcM899+CBBx4AAGzbtg39+vVD79698f333zdbrvPLdH6sAwYMwHXXXYfCwkIoioL8/HwcPXq0xbps6RwQaZraTUZE/tJUV5SIu9k9LCxMPvroIxEReeuttyQ6OlocDscFr1m7dq2IiLzzzjvy/vvvy6BBg2TGjBkiIuJwOGTcuHEyffp0ERFxOp3Nrm9KS7E07POBBx4QERGXyyWTJk2S8ePHi4iI3W6X1NRUefjhhz1/jxs3rlGXSHNx7d69W2JiYsRqtYqIyPbt25vtbli4cKHntTabTXr16iWbNm3yujzexNuUi3VFeVN3zZ2P8/fb1Hn/4IMPLojH23Js2LBBZs6cKSIiq1atktmzZzdZviFDhkhhYaEnzs6dO0tycrJn/eOPPy6bN2/2qlznl6mpWMeOHdsoVm8+E+yKolDFxIZ0o7nEpn379p6/9+zZIwCkrKys0Wuio6Mbbff1118LAPnhhx88y9asWSMRERHicrlaXN+U5cuXS0xMjOfv3bt3N4qlqX1u2LBBAMihQ4dk48aNAkBKS0s96//xj380umg1F9dPP/0kERER8txzz8mpU6dERKS6urrJWEVEPv30UxkzZowMHTpU8vLyJCYmRhYsWOB1ebyJtykXS2yaO4/enI+mEpvzz3tTvC3HwIEDpaqqSkRE/v3vf8s111zT5P4WLlwoWVlZIuJ+386cOVOMRqNs2bJFRERGjhzpibmlcp1fJm9i9eYzwcSGQpUpWC1DRGqKiYnx/G6xWAAAdXV1jV7ToUOHRn8fOnQIAHD33XfDYHD32tpsNiQkJKCioqLF9QkJCU3G0r59e8/v4eHhjWJp2GdiYqLnNQ2/Hzp0CGVlZQDQaN9xcXFex22xWLBp0yY8++yzmDVrFrKzszFr1iwMHjz4gjgPHDiAsWPHYunSpSgoKAAA5Ofno6amxuvyHDlypMV4L0Vz57G15+P8894Ub8rx5ZdfonPnzoiOjgYAlJSUXPSYEyZMwMyZM3HgwAGsXbsWM2bMQElJCdauXYvw8HD06dPHc8dVS+VqTayAd58JolDExIboIhpuh/373/+OLl26eJafOHECCQkJLa5vjZSUFADuMRUNF8jjx4971hmNRs8xGtZXVlZ6HXe7du2QnJyMlStXoq6uDvPmzcPIkSNx/PjxCwagbtu2DXV1dbj55ps9y+rr6y+pPMnJyS3G6y+BOB8NvCnHp59+iuHDh3v+fvfdd/H00083ub+uXbsiJycH//znP7F//3707t0bEyZMwDPPPAOLxYKJEye2ulzBrHMiLeLgYaKLGDBgAHJychoNmP3ss89w0003ebW+NQYOHIgBAwZg6dKlAAARwbJly3DjjTeiW7duyMnJQXp6Ol566SUAgNPpxMqVK72Oe8uWLSgoKICIwGKxYPjw4bDb7U3Ox5KamgpFUbBhwwYAwMGDB1FSUnJJ5fEm3qbExMSguroaAPDAAw/g66+/bnGbQJyPBt6UY+PGjXA4HADcSciQIUOQl5d30X1OmDABCxYs8LSW3XLLLdi/fz/+9a9/NRr0fqnlairWN99885LL3JpzQKQJaveFEfnD8uXLJSMjQwBITk6O/Oc//xERkbfffltSU1PFYrHIrbfeKuXl5ZKTk+N5XWlpaaPX5OXlyY4dOzz7PXbsmEyaNElyc3Pl6quvlnHjxslPP/3k9fpzeROLiEh5ebnceuutMnToUMnNzZUpU6bI6dOnPfspLS2VvLw8yc7OllGjRslf//pXASB5eXly5MiRZuMqLy+XO+64Q3JzcyUvL08GDhwo77333kXr9dlnn5Vu3brJtddeK1OnTpX+/ftLSkqKLFmyxOvyeBPv+Q4ePCj9+vWToUOHynXXXef1sZo7H0uWLJGUlBSJiYmRCRMmNHvem9JSORITE2XTpk2yYsUKeeONN5rdV0MZAciuXbs8y66++uomB59frFznl6mpWK+//np5+umnPWNsvK3L88+BzWZrsUxEWqCIiKiUUxER6cK3336LRx99FJ9++qnaoQBwdz2dO65m9erVePDBBz1jtIj0jF1RREQ+2rhxI4YOHap2GB6TJ0/Gjh07AAB2ux3Lly/H+PHjVY6KKDg4eJiIyEedOnXCqFGj1A7D46abbsLUqVMRFRWF6upqDBw4EAsWLFA7LKKgYFcUERER6Qa7ooiIiEg3mNgQERGRbrQqsRERWK1WsBeLiIiItKRViY3NZkNkZCRsNpu/4yEiIiJqNa/uirLb7Z4ZNQHAarUGLCAi0j5XnQu1pbVw1bjgsrkAI2CMMMKcYIalq6XJmYyJAkYEOHwYOHECsNkApxMIDwfatQN69wbCwtSOUDU1Tif2Wa2wOp2wuVwwGwyIMBjQxWJBok7rxavEprCwELNnzw50LESkUbWltTj92WlUb6vGmc1nULunFuJouivaGGNE9MBoRA2KQtSAKHQc3RHGSGOQIyZdq6kBPvoI+PZbYMsW9/+rqpp+rckEpKUBQ4YA2dnAiBFAr17BjTeIiqursaGqCtuqq7H5zBnss1pxsUEjCWYzBkVHY2BUFAZFReGaDh1gNoT+0FuvbvduqsUmNjYWtbW1iIiICGiARKQOl8OFn9f9jCOLj6DqiyrACCiKctGE5nxKmAKpFxjbGdF5Smck3ZeEyCsiW96Q6GL27AGWLQNefdWd3ISFAd4+mNVkcrfsOJ3A1VcDM2YAN9zgXh7irE4nVp84gUVHj6L47FmYFAUiAqcX2yoAzIqCehHEmc34Q1ISpiYlocsvT3wPRa2ax8ZqtSIyMpKJDZEOuepcOLzwMI4sPAL7CTtgBLz6hmyGYlYgdkH7/Pbo/mR3tL+qvT9Cpbbiiy+Av/wF2LABMJsBu923/RmN7gQnMRGYORN44IGQ7K6qcjhQeOgQXigrw1mnEwoAl4/7NCkKXCIYHxeHJ7t3R9927fwRalAxsSEij+pt1dh1+y5Y91l9Tmaa9EuS1GV6F/SY1wPGy9hFRc04exZ45BF3K43BALh8vWw3wWgEUlOBN98EMjP9v/8A+ejkSfxu925UOhxwBOAOZRMAKApmd++OR5KTYQqhLiomNkQEV50LB/96ED/N+8ndNh2IpOZcRsDSxYL019PRfnj7AB+MQlJREXDXXcCxY8A5QyECoqGb6vHH3T8abr2pcjjw0L59ePXYMRjgewtNSwwA+l12Gd5ITw+Z1hsmNkRtXH1FPUpGlaDm+5rAJzTn+uVbucf8Huj2SLcgHpg0TQSYN8+dYASqleZiDAZ3q8369UBsbPCO66XS2lqMKC7GMbs9IK00F2P65S7HVWlpmJSYGLTjtlbotC0Rkd/ZjtiwPXc7anfWBjepATz/1Nz/6H7s/+N+TvhJ7qTm4YfdSQ0Q3KSm4Xjffee+g6qsLLjHbsF3Z88id/v2oCc1AOAQgUMEt+/ejZc0Vi9NYWJD1EbVn6hHcV4x6g7VeX2nU6D8NP8nHJx1UNUYSAMefxx45hl1Y3A4gP37gbw8oLJS3Vh+sbe2FvnFxTgdoPE03hIA9/7wA1aUl6sWgzeY2BC1Qc5aJ0quKUHdT+onNQAAAQ49eQhHnz+qdiSklkWL3F1QWmi5cziAgweBkSPdE/6p6FhdHfKLi1HtcAS9UfViCvbuxf/+/LPaYVwUExuiNujAnw6gZneNNpKac+x7cB9qdteoHQYF286dwEMPqR1FYw4H8P33wKxZqoUgIpiydy8q7XYEePj0Jbtz925UejuHUJAxsSFqY6o2VeHIs0eCP6bGGwLsvnM3xKmthIsCyG4Hbr8d0OJjOJxOYMEC4JtvVDn8WydO4H9PnlS1+6kpAqDa6cS00lK1Q2kSExuiNsRZ68TuO3Zr9pMvDsHZHWdx+OnDaodCwbJggbvFJtC3dLeWweBOvILcJVVeV4f7fvghqMe8FA4R/LOiAmsrKtQO5QIa/XojokA4NOcQbIdt2mytaeByd5VZD/Bhu7pXWgo88UTw7366FE6ne7zNvHlBPez00lJYtVwvcE95NXXvXlRrLCllYkPURjhrnTi65Ki2k5pzlC3V/m2l5KPnn3e3iGid0+ke3BykVptDNhveqazUXBfU+QTuCQPfPH5c7VAaCYF3FBH5w4nVJ+CsDY2sRuyCspfK4LSGRrzUCjU1wCuv+P7cp2A5cwZYsyYoh3qprAxGLY45aoIAWHT0qKbmoWJiQ9RGHFl0xP0tFCKc1U5U/EN7/ffkJ3//O2ANoe5GRXG32gRYncuFZWVlmm+taSAA9tTWYlNVldqheDCxIWoDzmw9g5qSmpBKbKD8koyRPi1apI05a7zlcgHffgsUFwf0MO9UVOC0xsastMSkKHjuqHbmoDKpHUBz6srq4DgVWieYSIuOrTrm/rSH0sfJBZzdcRZVX1XBFKPpryq/MdWdgMVSq3YYgffzz+47oUKNyQSsXAmYzV5vUhYVhVOX8Nypt0+cgAEhMxQOgPsOqQ9OnoSIQNFAF5pmH4JZV1aHb3p/A1ettkeFExH5QxgqkYM7YESd2qGQn5TFxqL3G2+gNjxc7VCCYn9ODi7XwIOxNdsV5TjlYFJDRG2GCdVManTmVFRUm0lqAGBbdbXaIQDQcGJDREREoSFMUbDt7Fm1wwDAxIaIiIh8VC+CHWyxISIiIr2ocmpjyLNXtxrY7XY4zrn9zBqkuQcqUIGz0EbTFhFRIEXgKC5TOwjyq3319cCBA2qH0Vi7dkB8fEB2XRtKiU1hYSFmz54d6Fgaqaquwm24DY6Quj+ViIjoF2VlQEGB2lE0ZjIB777rTnD8TCtdQF7d7t1Ui01sbGxAb/eu+W8NPuj7AVtsiKhNiMBR9MOf1Q6D/GhfUhJumjNH7TAaC2CLzZDoaGz61a8Csu9L4VWLjdlshvkSJiTyl/hf/iMi0rtIAH3UDoL8KywMuPxytaMICgVAvAp5QlO00nJEREREIcqsKMiOilI7DABMbIiIiMhH9SJMbIiIiEg/mNi0wNTBBEOkZsMjIvIrB6LghEXtMMiPOlRXI9JmUzuMoEg0m5EYFqZ2GAA0/HRvS5IFOaU5fLo3kR/YDtvw/XXfqx3GpTEA0UOikfpCqtqRBI2jbjeMbeHp3gBw993A1q2AK8SeCfjxx0Dnzl69NAlA6SU+3fvrM2cwZe/eVganDrOi4DcJCWqH4aHZp3sTkX+VjC7BqU9PAdqYQ8sr/T7oh9jrvL8oUAhZtw4YP17tKLxnMgGjRwPvvx/Qw4gIen3zDfaHWEvPnkGDkBoZqXYYADTcFUVE/tVlepeQSmosXS3oOLqj2mFQoFx/vdctH5rgcADTpwf8MIqiYEbXrjAG/Ej+YQSQFxOjmaQGYGJD1GbEXheLsCRt9IG3yAh0mdEFikFROxIKFKMRuP9+d0tIKOjWDRg5MiiH+m1iIkxKaLz3nQBmdO2qdhiNMLEhaiMUo4KUP6e4Z9LSMgUwRZvQ+e4Q+tc8tc499wCXhcATshQF+MtfAENwLpntzWbc36WL5lttjACuiIjAjZcwhigYmNgQtSFJ9yQhZmgMFJOGsxsBUl9OhbmjNmYxpQCKiwNeeEHtKJpnMgH5+UF/5tOTl1+O5PBwTSc3AuDN9HSYg5TweUtb0RBRQCkGBWmr0jSb2CgmBfET4xH/az5Kpc249Vb3IGKtdkmFhQErVrhbbYIo0mjEG+np0Oo9Y0YAj3XrhgHR0WqHcgEmNkRtTMTlEej5Pz211yWlAMYoI3o/31vtSCiYFAV48UV3l5TWxpUoCrBwoXt8jQqGxsTg/2mwS8oIoGdEBP7SvbvaoTSJiQ1RG5R0X5K7VURL35gG4MrVVyIsPkQGOJP/JCYCb78dtDEsXjEa3a1JU6eqGsbcHj2QHRWlmcHEBgARRiPW9OkDi5bO1zm0GRURBZRiUJD+Zjo6jOigjWk6FeDKt69Ex5G8vbvNGjMGePNNbbTaGI3AqFHAqlWqxxNhNOKj/v2RGhGhenJjgHsyvvX9+6Nfu3aqxtIcJjZEbZQhzIC+7/V1JxNqtdwoAIzulpqECdqZuZRUcuut7uTGaFQvoTAYgLFjgXfeAczaGMDe3mzG55mZ6BsZqVpyYwQQYTDgk4wM5MbEqBKDt5jYELVhxggj+r7XF4l3JroXBPE7UzEpMF5mRL/3+yFhIpMa+sWkScB777nH3ARzQHFDwjB5sjupCQ8P3rG9EBcWhi+yspAXExP04XEmRUF8WBi+zMrCsPbtg3z0S8fEhqiNM5gNSF+ejj7v9oGpoylod0x1GNUBg34YhNgx2poDgzTg+uuBPXuAa64JzvFMJvet5+vWAa+8otk7tKJNJnyckYFlV1yBCIMh4K03DQnCbxMTsWfQIGRp5OndLeGzoojIw/6zHT/c/wMq3q5wtz37+REMikmBIdyA3kt7I/GORChaGE9B2iUCrFzpnqG4rs79WAN/Mpnc+7zjDmDxYqBDB//uP4AO2WyYvGcPik6fhgHw+23hRgDxYWFYmZaGUR1Da+wbExsiusDJT07iyMIjOPmfk1CMCsRxyV8T/8cAQABTexOSfp+ELtO7wNLZ4rdYqQ0oK3MnHi++CFRVubuNfHkquMkEOJ3usTQzZwIjRvgv1iASEaypqMCzR47gqzNnYFYU2C/9ku7R8G+ZpLAwzOjaFb9PSkKMRluvmuNVYmO32+E4J1O2Wq2IjY1lYkOkc9aDVpS/WI6yF8rgOO0AjO6H9DWb6CiAYlYg9e7XROVEoeuMroj/dTwMFvZ+kw9sNmDNGneSs3Wre1lYGFBf3/x2ZrM7EXI63a0y06a5H+eg0vw0gbDz7FksLSvDimPHYHW5YFIUiEizja4K3Hc51YtAATCqQwdM79oVYzp2hDGEW1O9SmxmzZqF2bNnX7CciQ1R2+Cqd6FmZw2qt1Wjels1znx1BrV7az3JSwNTBxOiBkYhelA02mW3Q9SAKIR31dYgTNKJw4eBb78Ftm0Dtmxx/37qVOPXWCxAaiqQmwsMGABkZwN9+2rmbqdAsDqdKD57Ftuqq7GtuhpfnTmD/TYbHOdc6hUACWYzcqKjMTAqCtm//CSE6WMOKbbYEFGriVPgsrmgmBQoYQrHzJC6RNytN06nO6kxamkGSnU5XC7UicCsKDAr+v6setV5ZjabYT4nw23IhaxWa2CiIqLQ0TBy0aZ2IES/UJSWu6faIAPcY2j8fE9A0IWHhzebmLVqVJDN5v4Gi9XYo8qJiIhI31rqLWrVXVEulwunT59uMWvyRUN3188//8zuriBivauD9a4O1rs6WO/q0Eu9B6TFxmAwoGOQ7muPiIgI6RMQqljv6mC9q4P1rg7Wuzr0Xu+895KIiIh0g4kNERER6YZmExuTyYQnnngCphCc9TCUsd7VwXpXB+tdHax3dbSVem/V4GEiIiIiLdJsiw0RERHRpWJiQ0RERLrBxIaIiIh0g4kNkcaJCAYPHgxFUfD555+rHQ4RaUxtbS0efPBBGI1GrFixQu1wVBfUxMbhcGDu3Lm48sor0b9/f1x55ZWYO3duowdsNue7777D2LFjkZaWhtTUVIwdOxbfffddgKMOfa2td7vdjjVr1uDGG29EZmYm+vfvj/T0dBQUFODHH38MUvShy9f3e4OXX34Z33zzTYCi1B9f691qtaKwsBCDBg1CdnY2evbsiYEDB+Jvf/tbgCMPbb7Uu8PhwOLFi5GVlYV+/fqhT58+yM3NxVtvvRWEyENbUVERMjIy8MUXX8Dlcl3y9rq8rkoQFRQUSKdOnWTfvn0iIrJv3z7p1KmTFBQUtLjtzp07JSoqSh599FFxuVzicrnkkUcekejoaNm5c2egQw9pra33zZs3CwCZO3euOBwOEREpKyuT7OxsiY6Oll27dgU89lDmy/u9QWVlpSQkJMi4ceMEgBQVFQUoWv3wpd5ramokNzdX7rnnHqmpqRERkbq6Ovnd734nOTk5AY071PlS73/4wx9EURRZu3atZ9kzzzwjAOTZZ58NWMx6MHjwYNm0aZMsX75cAMjy5cu93lav19WgJTYNF8nz36SLFi0SALJ58+Zmtx89erTEx8dLfX29Z1l9fb0kJCTImDFjAhKzHvhS75s3b5bLL7/8guUffvihAJBp06b5PV698PX93qCgoEDuv/9+eeKJJ5jYeMHXen/00Ueld+/enkS+QUVFhXzxxRd+j1cvfK33qKgo6devX5PLMzMz/Rqr3tjtdhGRViU2er2uBq0rqqFJcdSoUY2Wjx49utH6plRWVuLjjz/G1VdfDbPZ7FluNpsxYsQIrF+/HpWVlQGIOvT5Uu85OTnYu3fvBcuTk5MBAKdOnfJXmLrjS7032Lx5Mz744APMmTPH/wHqlC/1Xl9fjxdffBE333wzjEZjo3VxcXEYPny4n6PVD1/f71FRUbDb7Y2WuVwuOJ1OWCwWP0aqP62dbE/P19WgJTbbt28HAPTo0aPR8h49ekBRFOzYseOi2xYXF8PlcqFnz54XrOvVqxdcLhdKSkr8G7BO+FLviqI0esM32LVrFwBg5MiRfoxUX3ypdwBwOp2YNm0a5s+fj5iYmIDFqTe+1Pv333+P06dPIykpCbNmzcKAAQOQmpqKYcOGYdmyZRDOZXpRvr7f586di3379mHp0qVwuVyw2+14/PHHUVdXh4cffjhgcbdler6uBi2xqaiogMViuSD7NpvNiIiIQEVFRbPbAkB0dPQF6xqWNbd9W+ZLvTdFRLBkyRLk5OTgzjvv9GeouuJrvT/33HNo164d7rrrrkCGqTu+1PvBgwcBAH/6059QU1ODjRs3YteuXbj33ntx//33Y8qUKYEMPaT5+n7/7W9/izVr1mD+/PmIjY1Fx44d8e677+KTTz7Br3/960CG3mbp+boatMRGRKAoSqu3BdDq7dsyX+q9KfPmzcPhw4exZs0a3T9vxBe+1Ht5eTmefPJJPP/8836OSv98qXer1QoAiI+Px/z58xEeHg6j0Yg777wTEydOxGuvvRb6d4sEiK/fM4WFhZg4cSKeeuopVFZW4tSpU3jooYcwfvx4rF692o+RUgM9X1eDltgkJCTAZrOhrq6u0XK73Q6r1Yr4+PhmtwWAqqqqC9adOXMGAJrdvi3zpd7Pt2jRIqxcuRJFRUXo2rWrv0PVFV/q/aGHHsJdd92F/v37BzpM3fGl3hv+lZqVlQWDofFXY05ODgD3uCe6kC/1vnfvXvz5z3/GxIkTMWnSJBiNRphMJkydOhV5eXmYPHkyjh8/HugitDl6vq4GLbH51a9+BQDYv39/o+X79++HiCArK+ui22ZmZsJgMDQ5d8q+fftgMBiQkZHh34B1wpd6P9esWbOwatUqbNy4ESkpKX6PU298qfeioiKsX78emZmZnp8XXngBADBlyhRkZmbiscceC1zwIcyXeu/bty8A9/im8zUMJm7NPCFtgS/1XlJSAhFBWlraBevS09NhtVpbHKNDl07P19WgJTaTJk0CAHzyySeNlq9fvx4AcNttt3mWnThxotEI+bi4OFx77bX4/PPPG0325HA4UFRUhFGjRiEuLi6Q4YcsX+odcDdXTp8+HZ9//jmKioo8GXx5eTnGjRsXyNBDmi/1Xl5ejv/+978oLi72/Pz+978HALzyyisoLi7GU089FegihCRf6r1Hjx7IyspCSUnJBQlMw4U1Nzc3IHGHOl/qvVOnTgD+b4zTuRoSJX6/+65NXVeDeW/55MmTJSkpSX788UcREfnxxx+lc+fOjSZw2rRpkxiNRhk7dmyjbRsmEvrjH//omUjosccek6ioqJCeSCgYWlvv9fX1ctttt0l8fLy8/PLL8vrrr3t+Fi5cKCkpKcEuSkjx5f1+Ps5j4z1f6v3LL78Ui8Uis2fP9ixbv369hIWFyeTJk4NTgBDV2np3Op0yZMgQsVgs8tlnn3mWr1u3ToxGo+Tn54vL5QpeQUJUc/PYtLXralATG7vdLnPmzJG0tDTp16+fpKWlSWFhoWeCIRGRkpIS6dixo0ydOvWC7YuLi2XMmDGSmpoqV1xxhYwZM0aKi4uDWYSQ1Np6f++99wTARX+Y2DTP1/e7iHuCs4yMDElMTBQA0rNnT8nIyJBNmzYFqxghx9d6/+qrr2TkyJGSkpIivXr1kv79+8vixYvF6XQGsxghx5d6r66ulsLCQunfv7/06dNH0tPTJSMjQ+bPny9nz54NdlFCypw5cyQjI0OSk5MFgCQnJ0tGRobMmzfP85q2dl1VRDg5AxEREekDn+5NREREusHEhoiIiHSDiQ0RERHpBhMbIiIi0g0mNkRERKQbTGyIiIhIN5jYEBERkW4wsSEiIiLdYGJDREREusHEhoiIiHSDiQ0RERHphkntAIiobTl69ChWrFiB+vp6pKSkoKCgQO2QiEhHmNgQUdCUlJTgvvvuw7p16xAXF4fRo0fDYrHg9ttvVzs0ItIJdkURUVDYbDbccsstmDNnDuLi4gAA2dnZWL58ucqREZGeMLEhoqB47bXXEB4ejhEjRniWnTx5EpWVlSpGRUR6w8SGiIJi9erVuOmmmxot2759O3r16qVOQESkS0xsiCjg6uvrsWXLFlx11VWeZeXl5di2bRsmTpyoYmREpDdMbIgo4LZu3QqbzYbMzEzPsmXLliEjIwMTJkxQLzAi0h0mNkQUcF9++SUSEhJQVFQEwH131Jo1a7B27VoYjUaVoyMiPVFERNQOgoj07YYbbkCvXr2Ql5eHnTt3AgCmTZuG2NhYlSMjIr1hYkNEASUiiI2Nxauvvoqbb75Z7XCISOfYFUVEAbVz506cPn0aw4cPVzsUImoDmNgQUUBt3boVWVlZ7HYioqBgVxQRBVR1dTVqa2uRmJiodihE1AYwsSEiIiLdYFcUERER6QYTGyIiItINJjZERESkG0xsiIiISDeY2BAREZFuMLEhIiIi3WBiQ0RERLrBxIaIiIh0g4kNERER6cb/BxnirUFhCX1gAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -789,13 +791,6 @@ "\n", "When a number is provided for any of these parameters (e.g. `theta=8` and `zeta=8`), we are specifying that we want the grid to have that many surfaces (e.g. 8 $\\theta$ and 8 $\\zeta$ surfaces) which are spaced equidistant from one another with equal $d\\theta$ or $d\\zeta$ weight.\n", "Hence, each $\\theta$ surface should have $d\\theta = 2 \\pi / 8$.\n", - "The relevant code for this is below.\n", - "```python\n", - "t = np.linspace(0, 2 * np.pi, int(theta), endpoint=endpoint)\n", - "if self.sym and t.size > 1: # more on this later\n", - " t += t[1] / 2\n", - "dt = 2 * np.pi / t.size * np.ones_like(t)\n", - "```\n", "\n", "When we give arrays for any of these parameters (e.g. `theta=np.linspace(0, 2pi, 8)`), we are specifying that we want the grid to have surfaces at those coordinates of the given surface label.\n", "\n", @@ -809,17 +804,9 @@ "The process is the same for $\\zeta$ spacing.\n", "A visual is provided in the next cell.\n", "\n", - "The algorithm for this is below.\n", + "The algorithm for this is given in\n", "```python\n", - "# t is the supplied array for theta\n", - "# choose dt to be half the cyclic distance of the surrounding two nodes\n", - "SUP = 2 * np.pi # supremum\n", - "dt[0] = t[1] + (SUP - (t[-1] % SUP)) % SUP\n", - "dt[1:-1] = t[2:] - t[:-2]\n", - "dt[-1] = t[0] + (SUP - (t[-2] % SUP)) % SUP\n", - "dt /= 2\n", - "if t.size == 2:\n", - " dt[-1] = dt[0]\n", + "desc.grid._periodic_spacing\n", "```\n", "\n", "An advantage of this algorithm is that the nodes are assigned a good $d\\theta$ even if the input array is not evenly spaced." @@ -830,7 +817,11 @@ "id": "378f5e80-a393-41f5-a1fb-81ccce030d63", "metadata": {}, "source": [ - "#### Visual: $\\theta$ and $\\zeta$ spacing" + "#### Visual: $\\theta$ and $\\zeta$ spacing\n", + "\n", + "Here we are visualizing the $d\\theta$ spacing of a $\\theta$ curve (intersection of $\\rho$ and $\\zeta$ surface).\n", + "Let the node's coordinates be at the values given by the filled circles.\n", + "The $d\\theta$ spacing assigned to each node is the length of arc of the same color." ] }, { @@ -848,7 +839,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAF2CAYAAAB3QMMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA7EAAAOxAGVKw4bAABa6UlEQVR4nO3dd3xUVdrA8d9Meg9JCCX0XqU3QUEQEV0RWBT7rh1RESsorKALNhQLAtYVFRUVLBR9VZpiQZr0XiNJQBIIpCeTOe8fh8RA7p1MkplkJvN885lPIOfeO+dmkidnntMsSimFEEIIr2Ot7goIIYSoGAngQgjhpSSACyGEl5IALoQQXkoCuBBCeCkJ4EII4aUkgAshhJeSAC6EEF5KArgQQngpCeBCCOGlJIB7uOTkZMaMGcOFF15I//796d27N9deey2LFi3CZrMBcP/993P//fdX6nmefvppmjRpwoABA1xQa+eUVe93332XNm3a0KRJkyp93uo2btw4unTpQufOnXnooYequzouoZTivffeo3///gwcOJAuXbowZswY0tPTq7tq3k0Jj3X48GFVv359NXfu3OKv2Ww2NW3aNAWoQ4cOKaWUysrKUllZWZV+vilTpqj+/ftX+jrOOr/eRs//3nvvqcaNG7v1eT3JqlWrVFhYmMrOzlaFhYXq1Vdfre4quURGRoYKCwtTe/bsUUrp16BXr17qn//8ZzXXzLtJC9yD3XfffXTv3p0xY8YUf83Pz49JkybRuXPn4q+FhoYSGhpaDTWsnOqqtyd/v44cOUJcXBwhISFYrVbGjRtX3VVyiYCAAKZOnUqrVq0A/RrceOONfPPNNyhZT6/CJIB7qJMnT/LNN98wbNgww/I1a9bQqFEjXn/99XNSHyXTDrNmzeKyyy4jODiYefPmcezYMa6//nr69u1L//79ueKKK/jtt99M63D8+HGuu+46+vXrR79+/Rg3bhw5OTmGx44dOxar1UqnTp1YuXIlAHfddRfjx48HYOPGjXTs2JGWLVuybdu2UvWeO3cu8+bNY/PmzQwYMIBBgwadc/1Zs2YxePBgmjVrxgcffODwe+foPl31/Xr11VfPuc7mzZvp3LkzFovF8LqDBg2iZcuWfPfddyxcuJArr7ySpk2b8uGHHxbX+9133+XZZ5/l2LFjDBgwgLFjx5b5Ojiqf3nOM/veOvoelOfnIygoiEceeeScr2VnZxMfH1/8PRMVUN1vAYSxtWvXKkB99913ZR57furhvffeU4GBgWrRokVKKaW++OILtXTpUtW9e3c1fvz44uOmT5+uHnjgAcPrFBYWqp49e6px48YppXTqZtiwYer+++83rceFF16opk+fXnx8vXr1VMOGDYvLJ02apH777TfTepulUAIDA4u/Dx9//LGKjIxUNpvNsA6FhYXlus+Sz1GZ75dSOv1R8leq6LorVqxQSin14osvqvr166v58+crpZT67LPPVFRUlCosLDznnJIpI2deB7P6O3ue2ffW0feyIj8fJdntdtW9e3c1e/bsc77+1FNPqfbt26vGjRur1q1bF39+8cUXnbqur5EA7qHWrVunAPX999+XeaxRQIqMjDznmKI/CHv37i3+Wnp6utq0aZPhdYyOX7hwoQoJCVF2u92wHi+//LLq0qWLUkoHs4ceekj5+fmpdevWKaWUGjx48DnnOhvAo6Oji/+/e/duBajk5GTDOpT3Poueo7Lfr6J7Pj+Al6z7Dz/8oACVnp6ulFJq7969pe7l/ADuzOvgbP2NzouKiiou37Vr1zn1cfQ9qMjPR0kzZ85UI0eOPOfYJUuWqNWrV6vs7Gz1xhtvqNTU1HP6f0Rp/lXf5hfOaNWqFX5+fiQmJlbo/Fq1ap3z/yNHjgBQp06d4q9FRUXRpUsXw/OLjr/99tuxWnWmLTc3l/j4eE6cOEF8fHypc0aNGsVDDz3EoUOHWLRoEePGjWPLli0sWrSI4OBg2rdvX6G3y1FRUcX/DgoKAiAvL89hvZ29zyKV/X6ZKVl3f3//c74WEBAAmN9LyXqU9TqY1b+s86Kjo4vPCQ4OPqc+jr4Hn332mVPXN7JgwQJWrlzJ559/fs7PwxVXXIHVamXRokX07NmTX3/9lQYNGpheR4AEcA8VFRXF8OHDWbx4Mbfffvs5Zfn5+QwbNoxXXnmFNm3aOHW9xo0bAzpvGRkZCUBGRgaHDx+mY8eOpY4vGrr3ySefkJCQUPz1v/76y/SXs0GDBvTq1YvPP/+cgwcP0rJlS0aNGsXMmTMJCgrimmuucaqulVHe+6zMdQIDA8nNzS0+59SpUy65h5Iq8jpU5rySHH0PKnr9Tz/9lA8//JAvvviCoKAg9u3bR6NGjQgKCir+Q7Bo0SLmz5/Pjz/+SIsWLZyqq6+STkwPNmvWLLZs2cKbb75Z/LW8vDzGjx9PQECA08EboEePHnTv3p05c+YUf+3ZZ5/lyy+/NDy+e/fu9OrVi7lz5xZ/beXKlQwfPtzh84waNYoXXniB3r17AzBy5EgOHjzIV199RZ8+fRyeGxUVRUZGBgDjx49n7dq1ztzaOcp7n5W5TsuWLdmzZw/Z2dkAfPXVV+Wub1kq+jpU9LySHH0PKnL9Tz/9lDlz5jBv3jwKCgrIzMzkqaeeIiUlpfiYHTt2YLfbsVqt5OXlsWPHDqfr65OqO4cjHDt27Ji68847Vc+ePVX//v1Vr1691JNPPqlyc3OVUkrNmjVLNW7cWEVFRalRo0apBQsWqNatW6ugoCDVv39/9ccffxRfKyUlRY0ePVpdeOGFqm/fvuqee+5R+fn5SindeVTyOkXPff3116s+ffqoSy65RA0bNkwlJiY6rO/hw4cVoHbu3Fn8tUsuuaRU59b59S46t2PHjqpv375q6NCh59zL6NGjVUpKiurVq5cCVK9evdS+ffsM6+DoPl31/VJKqfz8fHXNNdeo1q1bq5EjR6pXXnlFAap///5q3rx559T9jz/+UJ06dSouP/9edu/erd55551z6rJ06dIyXwdH9Xf2PEffW0ffg/L8fKSkpCg/Pz8FlHoUzWdQSqnnn39eLV68WCml+wyKOkmFMYtSMghTCCG8kaRQhBDCS0kAF0IILyUBXAghvJQEcCGE8FISwIUQwkt5fABXSpGTkyMrlgkhxHk8PoDn5uYSGhp6zow3IYQQXhDAhRBCGJMALoQQXkoCuBBCeCkJ4EII4aUkgAshhJeSAC6EEF5KArgQQngpCeBCCOGlJIALIYSXkgAuhBBeSgK4EEJ4KQngQgjhpSSAC2FGKSgsrO5aCGHKv7orIIRHOHQIfvwRNm6EtWth507IydFB3GqFqCjo1g169tSfL7kEatWq7loLH+fxu9Ln5OQQGhpKdnY2ISEh1V0dUZMUFsKyZfDaa7BihQ7Ufn5QUGB+TmAg5OfrzzfdBPfeC127Vl2dhShBArjwTV9/DWPHQnKyDtoVSZUEBOhg36cPvPMOtGvn+noK4YDkwIVvSUuD66+H4cMhJUV/raJ57qKW+vr10LkzPP882GyuqKUQTpEWuPAdv/0GV10Fp0+7J9BarTqdsmwZxMe7/vpCnEda4MI3LF+uOx5PnXJfK9luhy1bdErl6FH3PIcQJUgAFzXfL7/AP/6hOx/tdvc+V0EBJCbqPxapqe59LuHzJICLmu3YMbjiCh1YqypbaLPB4cMwcqT7/2AInyYBXNRcSsGdd0J2dtUHUpsNfv4Z3nijap9X+BQJ4KLm+uQTWLq0+kaGKAUPP6wnCQnhBhLARc2Una0n2VQ3mw3GjavuWogaSgK4qJk+/RTOnKnuWugAvmyZzokL4WISwEXN9OqrVddpWRY/P3jrrequhaiBZCKPqHk2bIAePaq7FueqVUuPiAkMrO6aiBpEViMU3k0p+PNPvYpg0WPDhuquVWmnTkH79tClC3Tvrlc07NpVVjQUlSItcOE9zIK1N0+YadZMB3MJ6qICXBbAd+7cydixY7n88suZOHFiqfJXX32VtLQ0UlJSePDBB2nn5MptEsB92MmTf6/RXROCtbOKgnq3bjoV1LcvBAVVd62EB3JZCmXbtm1cdNFFhmUHDhxg2bJlfP/99xw5coR//etfrF692lVPLWqS/fth8WL9+Pln39wR5+BB/fj8c/3/8HC4/HIYNkzPKo2Nrd76CY/hsgA+evRodu3aZVi2cuVKunXrBkDjxo3ZvXs3+fn5BBp06BQUFGArMfEiJyfHVVUUnqiwUO+As3gxLFkCJj9DVSEfyDz7yAH80L8gRo8gIKCqKpaZCQsX6ofVCv366VUVhw2DVq2qqhbCA1VJJ2Zqairh4eHF/w8PDyctLY169eqVOnb69Ok89dRTVVEtUV0yM+GHH3TQXrrUbWmRfCAZ+BM4evZz0b9TgIyzj6Kg7WAfHkMRQG0g7uyjdonPdYAWQEsgHrBU7lb+ZrfDTz/px6OPQuvWOpAPG6ZXQfTzc9UzCS9QJQE8Li6OgwcPFv8/MzOTWJO3gZMmTWLChAnF/8/JyTE9VniR7Gz47DP9WLkS8vJcd2lgB7CtxGMncAwo6uDxA+oDDYCGQG8gCghHB+LwEo8IIBiwAzZ0YLed98gB0oDUEo/jZ+uRiv4DUXSHEfwdzIsebYELzj5PpezZAzNm6EdsLFx5pd7qbdAg3VoXNZrbArhSimPHjlGvXj0GDhzIokWLAEhMTKRNmzaG6ROAgIAAAgKq7M2pcLd9+/SCTu+9p4fSVVI28DvwM7AZHaz3owN1MNAO6AgMAZqgg3VDdIu4KsfM2oEkYF+Jx37gS+AAOrgHoIN4T6DH2c9t0H9sKiQtDT74QD9atoR77oF//1tGtdRgLhuFsmjRImbPnk1AQABjx46lQ4cO3HDDDfz++++AHoVy+vRpkpKSeOCBB2QUSk1WNH18zhz4/vtKXeoM8Avw09nHenSLuBHQDR2six4tqETwq0KF6GC+/uxjHfAHOqiHo++rH3AZ0IdK5tpDQvQWcmPH6lEtokaRceDCdY4f15v7vvmmHq9dAYXAWuBrYAW6lW0HWgMXn31cBDR2RX09SD6wHR3M1wGrgMPo9MtA9DuKy4DmlXmSnj31Al/XXgvBlU7eCA8gAVxUjlJ6uN+cObBo0d8b/ZZDDrAcHbQXAyfQrenLgf7ogF3HdTX2CgrdSv/u7GMVkIUO4EOAkcAAKviOIzYWbrsNxozRY86F15IALiqmsBDmz4eXXoJt28p9+ml0wP4KHaCy0Xng4WcfbXHhyI0aIB/4Ff29+gbYiv6jdi1wPbpTttzfL4tFjy+fNElPFhJeRwK4KB+l9HjtJ56AHTvKdaod+BH4H7AIPZpjIHA1MAxIcHFVa7LdwKfAJ8AedErpOnQwv4AKBPOrroJnnoEOHVxZTeFmEsCF89asgYkT4ddfy3VaIvA+8B5wCOgO3IoONi4fH9Gwoe6ss1jgyy9dffWKu/tuPSJn0yZIT3fZZRW6n2DB2Uci0B64B7gFnUN3msUCN98MTz8NjWtaL0PNJAFclG3rVt3iXrbM6VNs6CFzb6Pz27HATejAfYGr6lUUrIsWg+raFeLjdVlODiQk6GBZnT/i/v4wdKietAS6LgcPnru+i4uCuh34Df0O52P06JVbgHvRKSmnBQbqUStPPAG1a1e6XsJ9JIALc4cOwZNPwkcfOR0Es9AB5GX0KIqhwO3AP4BKrYQdHg4DB+rFnc4P1mYWLNBD6KpTSAjs3AlNmpgfc35Q/+03/S6nEuvAnES/DnOBg+hU1b3oVJXT4+EjIuCRR+DBB/W/hedRHi47O1sBKjs7u7qr4juOH1fq/vuVCghQSoeXMh/HQE0GFQMqGNQ9oPY5ea7po2FDpe69V6nvvlMqN7f892G3KzVsmFL+/pWrR0UfFotSc+dW7DVIS1Nq/nylrr1WqYiICtehENQyUFeAsoBqAOoVUNnluU7t2kq99ppSeXkVuxfhNtICF3/Ly4MXXtCPzEynTtkLvITOcYcD96FbehV+4929u17X46qroFMnnZetjOPH9XohGRl6HZGq4u+vR3asWlX5e8jP18vqLlmiUzFHjlToMgeA14C3gGjgMeBuINTZCzRtqn82Ro2q0PML15MALrSNG/W06+3bnTo8EZiCDtxNgYeBf1OOYFAkKAguvVQH7H/8Q+etXe233+CSS/QY9aoI4v7+enz1r7+6fulXpfSwzaLVG9etK/clUoAZwBtAJPAoMAYIc/YCo0bB7Nllp7CE+1XvG4CySQrFzXJzlZo0SSk/P6feTqeCeghUEKgmoD4EZavI2/tOnZR66y2lMjKq5j5XrlQqOFgpq9W9aRN/f6VatFAqKalq7isxUan//EepunXLXddjoB4GFQKqNqgXQGU5e35cnFKfflo19yhMSQD3ZRs2KNWhg1O/sJmgpoGKPPvL/iqo3PIGt8BApW66Salff9X56aq2dq3O57orJ261KtWrl1InTlT9veXl6YDav3+5630c1GOgwkA1BPUJKLuz548apftMRLWQAO6LytHqtoF6A1Tds7/gU0CdKW9ga9xYqWef9Yxf9JMn9R8R0J2Mrgjc/v76j9OLLypls1X3HSq1fbvu/C1n52cyqFtBAaovqA3Oniut8WojAdzXlKPVvR5UV1D+oO5Dv+V2OiBYLEoNHarUkiWeEdTOt3ixUg0a6Lo6mT4q9SgapdOvn1K7d1f3HZV25oweBePk6130WAeqD3rUym2gUpw9V1rjVU4CuK8oR6v7NKj7QVlBXQRqR3mCWlCQUuPHK7V/f3XfcdlsNqWWLlVqyBD9B8di0S1pR3+UisqDg5W66y6lNm+u7rsom92u1Jo1Sl19tdOvox3UR6ASQEWg8+N50hr3ODIKxRf88QfcckuZI0wUsBB4AL140gz0yBKnBsFZrXDrrTB1KjRoUKnqVosjR/RSARs36j06d+zQszltNggIgOhoPeOzZ0/9uX9/iIqq7lqX32+/6eUQfvrJqcOzgBfOPloD84DOzpw4ahTMnQtxcRWrp3CKBPCa7pNP9NKhubkODzuEHr/9LTpoz0Dv7+iUkSNh+nRo06YSFfVQSlV+HLenUQr+7//g8cdhyxanTtmHXgbhd2AS8AROzKxt0kQPd+zYsRKVFY7Ipnk1VWGh/gW94QaHwVuhp1x3RAfx1ehFp5wK3pdcAr//rtcBr4nBG2pe8AZ9T0OH6jVYPvrIqTXBW6JXknwR3Rrvgd5FyKHDh/VGy199Vbn6ClMSwGuiM2dg+HB47jmHh50ErkGvVTIWvapdf2eu36ULfPcdrFihUwrCO1mt+g/8rl3w+utlTszxQ6fXtqAnAPUAnkSn20xlZcGIETBtmm75C5eSFEpNs3+/noq+a5fDw1aiV6pTwAfAIGeu3aKF/kW85hrZ8bwmysyEV17R0+UzMhweagdmAY+jW+efA63Kuv411+jNrcOcnvMpyiC/hTXJ8uW6RewgeOcDE4BL0bugb8WJ4O3nB5Mn607Q0aMleNdU4eH6dd6zRzcCHLCiW+Nb0cvWdgM+K+v6n38O/fpBYqIraiuQAF4zKAWvvaa3xzp1yvSw/ehdzl9Hr9O9CL1Ot0MdO+r1Nv77X71uiaj56tXTeev586GW4y03WgA/AzcDo4FxlJFS2bxZL1j288+uqauPkwDu7fLy4M474YEHHK4f/R06Z6nQnU+3U8bwwKJW94YNeu1t4VssFrjxRj2csozWeDAwB/gI3SF+EeBwvcQTJ/Ta7u++66ra+iwJ4N7s+HEYNMjhL4JCjxy44uzjF5zIVZZsdQdWahsG4e2KWuMfflhma/wGYAN67HgXwOH+TQUFcMcdMG6cHmsvKkQCuLc6ckSvN/3LL6aH5KDf2j4GPAfMBxx2A0urWxixWOCmm3Rr/KqrHB7aBj1W/Cr0LkzPohsRpmbN0p2beXmuqq1PkVEo3ujAAf0W1EFn0FFgODrvvQC4vKxrduwI8+ZJ4BaOKaXHjo8b57C/RaH7WsYDt6FTLAGOrjt0qJ5PIL/j5SItcG+zZw9cfLHD4P0beuf3LGAdTgTvxx6TVrdwTsnW+KWXmh8G3I/e2PpjdGv8jKPrfvutbt1nZbmytjWeBHBvsn27XoMjOdn0kG/RwwK7AmspI98dEqKn2j//vOS6RfnUq6eD7gMPODxsGHoG5xagH/Cno4NXrNAt8TMOQ70oQQK4l0g8aEONGKk7Lk18gv6FGQV8DThcaqlBA71403XXubSewof4++uJP+++qxf8MtEdnRcvBHpTxhT8NWtInzSJ09Kx6RQJ4F5gxw7o2tOfMR1/xh5hHJbnADeiNxWeRxn5xj59YP16vaqeEJV1221682YHU/Ebo0dAtUEPM1xpclzahRcy6KabuGLrVjIliJdJAriH27tXjxRMS4O3vozn1r57KQyNKC5XwNPolQT/C8ykjBf11lv1L1vduu6stvA1ffuW2Y8SjU7x/QO4Evj+vPLjvXsz4MUX2ZSTw69nznDV9u1kO5jbICSAe7SDB/Vgk5JZkw/+L54be+2nICgcO7qXfyowF73Mp+nkHKv177e7MqNSuEPDhjotN3q06SGB6OGs/0Sn+/7v7NeTevak/0svsb3EcMLV6emM2L6dXAnipmQYoYdKTNSDTY6YTGm7us8x4n5vyAd2Gx+ipzGbio6GTz+Fyy5zfUWFOJ9S8OyzMGmS6SGF6OGFC4A3WrRg+rx5HCgoMDz2qthYFrZvT6CswVOKBHAPlJam09T79pkdoYCHsDCLBdYArrU72KyhTRu9qH7Llm6oqRAOLF6sp+NnZhoWFwLXxcay8PRpmDJFL3Rl4vr4eD5q2xZLTVyfvRLkT5qHsdn0O1Dz4A0wBXgVxYe81f4IWdYI48O6ddMzNSV4i+owbBisXKnfARrY37UrvyxcCEOG6K34HGzz9slff/GsrGJYigRwD/Pww3o4rLnn0d2V7wDXs2JbPENb7ieD84J4nz76QjExbqurEGXq0UN3mp+3N+b2rl3p//LLpAA89BBceSU8/bQeHWVi0qFDLE5NdW99vYwEcA/yzjt6VVhzs4GJwKvoDKK2Zk88lzXbT3rRyO+LL9Y75njjprui5uncGVavhjp1APijWzcGzJzJcbtdl1utekLQJZfoVMrevaaXunHXLnbIbM1ikgP3ED//rEecmPTjoEd33wo8g94HpbSuDf/ihxZjiVn6AYSGuqWeQlTY3r2sHz+eyx57jHSj8oICvY/rwYN6i7f69Q0v0yw4mHXduhHrYPKQr5AWuAdITNQbu5sH7++BO9CB2zh4A8S0jid06WcSvIVnatWKWp9/TojZsg0BAfDUUxAbq9fnSU83POxgbi7X7NhBQVEL3odJAK9mWVlw9dV6jXtju9BbD48Gppte5+KL9bLNwaHykgrP1SIsjJWdOhFv1noOC9Nr8xQW6tZ4To7hYavS03nowAE31tQ7yG97NVJKT4zcvNnsiFT0vLV2wLuYTdPp3RuWLpW9YoV3aBMWxvJOnYjx9zc+ICZGb6ycnKxb5CZT6l9PSuItBwu7+QIJ4NVo+nS9z6uxfPR8NRvwFXrjqtK6dtWLwkWYjCQUwhN1DA/n+06diPLzMz6gYUM9GWjzZnjzTdPr3LtvH2tMUi2+QAJ4NfnqK/jPf8xKFTAG2AQsAeoYHtWsmR5sYjLMVgiP1i0igqUdOxJgNjmnXTs9rnbhQtOxtTal+OeOHRzJdTCZrQaTAF4N9u2Dm292dMSL6FEnHwMXGB4RHq4nup03vFYIr9IvOpq5rRysWj94sO7hf/FFPTrFwImCAkZs306+D3ZqSgCvYoWFOu9tMrsYWAFMAF5A7yxYmsWid7Vq3949dRSiKt1erx73JySYH3DPPXo28X/+Y/qL80dmJs+YLRxUg0kAr2KzZjnah/gv4CZgJPCw6TWmTdOzlIWoKWY2b84gs1ygv7+e4JOXB888AyYt7emJiWzOyHBfJT2QBPAqtG8fPPGEWakd+BcQBLyN2YiT0aP16CohahJ/q5VP27enebBxZz2xsXq9lHXr4MMPDQ+xKcW/d+/2qVSKBPAqYrfrjUtMhrWit2L4Ab0xWi3DI7p0gf/9T6dQhKhpYgMC+LpjRyLMRqZ06AD33gvvvw+bNhkesiUry6dSKRLAq8hrr+np8sZ+R8+wnA70MTwiPh6+/lomWYqarX1YmF421uyA4cP1srPPP2+aD/elVIoE8CrgOHWSDlwHDAQeNTwiIAC++EIPjRWiprsqLo7pTZsaF1osevXCggLdoWTAl1IpEsDdrOzUyT1ADvABZi/HG2/oLQeF8BUTGzXiOrNNkqOj9fjw7783XUPcV1IpEsDdbNYsR6mTr9GbSr2H2WSdO+/UfwCE8CUWi4V3W7emnVnOsG9fGDoUZs6EkycND/GFVIosJ+tG+/ZBp05mre/T6DVOBgLGveqNG8O2bTJNXviudWfO0GfTJgyTIVlZcPvt0Ly5Hltr0LvfKSyMdd261dj9NGvmXXmAslMnE9Hrnbxseo1335XgLXxbz8hIHmvUyLgwLAwmToTfftMLAhmo6akUCeBu8r//OUqd/AS8gd5Zx3gu/JgxMGiQe+omhDeZ2qSJeSqlc2f45z9h7lzT9cOnJyayLzvbbfWrThLA3SAnR885MJYL3AlcAVxveETjxno1TSEEBFmtvNemjXmwuvVWCA6Gt982LLYpxX8OHXJb/aqTSwP4Z599xiOPPMLYsWP5yaB3uEmTJgwYMIABAwbw+uuvu/KpPcrrr0NSklnpf4EkYC5msy0ldSLEuRymUkJD9VvWb76BnTsND/n0xAk21cAOTZd1YmZkZNC/f382btxIbm4uPXr0YOvWrVhLdB5MnTqVqeZNU0Pe1omZnq6XeT11yqh0N9ARPevyfsPzx4zR7waFEOfKs9vpumEDO43SIUrBgw9Cdrb+BTKYzXlZrVp816lTFdS06risBb527Vpat26NxWIhJCSEsLAwDpy35dGaNWuYMWMGU6ZMIdlkJ42CggJycnLOeXiT5583C94AjwFtgbGGpZI6EcJckNXKPLNUisWid7Y/cACWLTM8//tTp1hp/svplVwWwFNTUwkPDy/+f0REBKmpqecc88wzz/Doo49y4403MmLECMPrTJ8+ndDQ0OJHbGysq6rodsnJ8OqrZqWr0JszvAgYr/UgqRMhHOvhKJXStKnu0HznHTh92vCQiQcP4uEjp8vFZQE8Li6OzBJrE2RkZBB33m4DvXr1AqBVq1YcOXLknOOLTJo0iezs7OJHWlqaq6rodk8/bTZs0I5eHnYIcJnhuTLqRAjnOByV8q9/QWCgaYfm+owMvjivYenNXBbAe/Xqxd69ewHIzc0lKyuLZs2akZKSAsCKFSv44YcfADhz5gx+fn6EGezCGxAQQEhIyDkPb7B3r/7Db2w+sAXd+i6tVi29/Z8QomxBViuvt2xpXBgWpqcvf/stJCYaHjLp4EFsNWSdFJcF8MjISCZMmMCECRN49NFHmT17NocPH2b48OEAxMbGMnfuXF566SUefvhh3nnnHSw1aF3U//xH77ZTWjYwCbgN6GB47hNPyL6WQpTHJbVqcVkt42WXufRSaNBALztrYE9ODvOOHXNj7aqOTKV3gY0boXt3s9LpwLPAPqBeqdIGDfSUe7N17IUQxjZlZNBt40bjwtWr4amn9Nvi5s1LFScEBrKvVy9CzNYe9xIykccFJk40KzkJPI9eJrZ08Ab9MybBW4jy6xoRwejatY0LL75YB+558wyLk/LzmWU+WcNrSACvpFWrYPlys9LX0SNOHjQsbdMGbrnFTRUTwgdMa9oUf6NUrNWqFyP6+WfYs8fw3GcTEzljs7m5hu4lAbySXnvNrCQTvdbJ/UCk4RHPPKP3axVCVEyL0FDuqGf87pY+fXQr6X//MyxOt9mYf/y4G2vnfhLAK+HPP2HxYrPSt9DrnowzLO3VS+8OJYSonCcbNybUaLlYi0UvN7tunV6X2cCcpCSvHhcuAbwS3npLLxtbWh56yOBdmK02+NxzsjmxEK5QLyiI8Q0aGBd26wbt28OCBYbFO7KzWWMy6ccbSACvoPx807kCwPtAKnryTmmXXw4DBrinXkL4okcbNqSWUT7SYoFrrtFrhh89anjubC/uzJQAXkFffAHG6TMbeuTJvwDjVsEzz7ivXkL4ouiAAJ4wm2Lfrx/Ex+tfWgNfpKaSkpfnxtq5jwTwCpozx6xkEXAYvXBVaSNGQJcu7qmTEL7s3oQE4gICShf4+cHIkXp2psHyHTaleOfsjHFvIwG8ArZtgzVrzErnAv8AjKf63nefmyolhI8L8fPj9rp1jQuvuEJ//uYbw+I3k5O9cnq9BPAKMF+vew/wI3C3YWnr1nDJJW6qlBCCu+vXN94mJTxc72L/xReGa14k5eezxIsWzisiAbyczpyBD403kUcPHWyEXnWwtLFjZeSJEO7UNCSEK2JijAtHjtQdV7/8Ylg8x2SPAk8mAbyc5s83TKOhx3y/D9yB0XrfoaEy61KIqjA2IcG4oEED6N0bvvrKsHj5qVPs8bLNjyWAl4NSjjovvwTS0asOlnbjjbLioBBVYUhMDE3NFhgaOhQ2b4YTJwyL3/CyVrgE8HL49VfYscOs9E1056XxX/+xxruoCSFczM9iYUz9+saFvXvrfLjJAkbvpaSQ50WdmRLAy+HLL81KHHde9ukDnTu7p05CiNJuq1uXIKMOp8BAPYvuu+/0W+rznC4sZHV6utvr5yoSwJ2kFHz9tVnpR+iWt/F2adL6FqJqxQUGcm18vHHh4MFw5IheiN/AYi/ack0CuJP27IH9+81KFwKjMOq8jIuDUaPcWDEhhKGxZmmUDh2gfn04u8Xj+ZakpXnNAlcSwJ1kvurgDmAXOoCXdvvtsmGDENWhV2QkXcPDSxdYLLoVvmKF4ZjwP/Py2GI81MzjSAB3knkAX4jebedCw9Ibb3RThYQQDlksFm6qU8e4cPBgOHUKNmwwLF7sJZN6JIA74cQJvZiZsYXASIy+lU2b6ndrQojqMSzOeDlnEhKgZUvTST3ekgeXAO6Eb74xW/d7N7Ads/TJVVfJzEshqlPzkBDahoYaF/bpA2vXGo5G2ZiZydHcXDfXrvIkgDvBPH2yCKgNXGRYOmyYmyokhHDasNhY44LevfXb6wMHDIuXekEaRQJ4GXJz9ZBRY4uAERiNPomK0htjCyGql2kapXVrqFVLt8INeMPiVhLAy7BqFWRlGZWcAP4ArjA8b+hQMFqaWAhRtXpFRlLb6JfRaoWePU0D+IpTp8j08F3rJYCXwTx9shr97etvWCrpEyE8g5/Fwj8cpVF27QKDfTHzlOKHU6fcXLvKkQDugFKwZIlZ6QqgGxBdqsTPT+97KYTwDFeZBfDu3fVIg3XrDIs9fTihBHAHDh0C8/1OVwKDDEsuvlin1oQQnmFwrVrGa6OEh0PHjqYBfI2Hr4siAdyBjRvNSv4E9gEDDUslfSKEZwn392eQWauqUyfYvt2w6EBuLukFBW6sWeVIAHfAPICvBAKBvoalV13lpgoJISrMdDRK+/Zw7BiYpEs2efC0egngDpjMskUH8D5A6QkCTZpA8+buq5MQomIGme2o0ratzoObLPa/ISPDfZWqJAngJpSCTZvMSn8EjHcn7t7dXTUSQlRG85AQovxKz9kgPFyve2ESwDdKAPc+hw7ptW5KSwOOAMaRuls3N1ZKCFFhFouFbhERxoXt20sAr0nM89+bz37ualgqAVwIz+UwgO/dC/n5pYo8uSNTArgJ8wD+B1AHvYRsaV2N47oQwgOYBvAOHaCgwHSXHk/tyJQAbsK8A3MT0MWwpGlTMJsvIISoft2MNngAvUNPZKSelWnAUzsyJYAbcNyB+QeSPhHCO5l2ZFoseghZYqLheZ6aB5cAbsC8AzMLvQO9cQtcArgQns1isdDVLI3SqJHe7NiABHAvYp7/3gIoJIAL4b26OwrgJi1wT+3IlABu4I8/zEp2AGFAU8NSCeBCeD7TjszGjSE93XBlQoDNHtiRKQG8hPx8WLAAPvrI7IhDQDPM9r+MiXFj5YQQLmHakdmokf5s0gp/6vBhfk5PRxlswVZdJIADR4/C5MlQrx7ccIPp64cO4E0MS7Kz9d6ZHvTaCiHOk1VYyPJTp4wDX3w8BAeb5sF/On2aizZvpt369byRlERWYaFb6+oMnw7gdju89hq0aAHPPw8nT5YVgA9hlj756y+48koYNMj09RdCVKPVp07RZt067t23D8M9yq1WaNjQ9Be46Jw92dncu28frX//nVXVvOGDzwbw/fuhXz8YPx7y8sC5nZMOYxbAiwL/mjXQrh289Za0xoXwBJk2G/fu3cslW7aQnJdnHLyLNGgAyckOr6fQwTwlP5+BW7Ywdu/eatt6zScD+Jo10LkzrF9fniCbDRzHLIVSxGbT6ZQxY+Df/3b2D4MQwh2O5+fTa9Mm3joblB0Gb9Az8U6edOraRdd6OzmZnps2cSwvr8L1rCifC+ArV8Kll0JOTnmD6+Gzn41b4OdTCubPh+uvBw9IlQnhc47l5dFn0yb25uTg9K96TIzZJBBTNmBfTg69N20ipYqDuE8F8A0bdJ7aZtP57/I5fPZzE6fPsNvhiy/grrsknSJEVTptszFwyxb+zMvDVp5fvpgYZzrDSrEpRVJ+Ppds3lyl48V9JoBnZcE//6mHCpY/eAMkAeFAVLnOstvhf/+DTz6pyHMKISpi3L597MvJKV/wBp1CKSiACsy8tCnFgdxc7jdZEMsdfCaAP/643qC4YsEbIB2o+EDve+7RuzYJIdxrWVoaHxw/Xv7gDX9P5qjgbvQ2pZj/118sSU2t0Pnl5RMBfM0amDWrsrnodCC6wmdnZ8Odd1bm+YUQZUkvKOC23bsrHtiKlhN1siPTiAW4fc8eTlVBKsUnAvjEiXqIZ+WkU5kAbrPB0qV65IsQwj3mJCdz0mYre7SJmYgI8POrVABXwCmbjdlJSRW+hrNqfADfvh1+/bUyqZMip4BalbpCQADMnl3ZegghjBQqxaykpIqlTopYrXpd8DNnKlUXm1K8npSErfKBx6EaH8DnzNGBs/LSqUwLHHTfyCefVDi9JoRwYFlaGscMtkQrt8BAw63Vyut4QQFL3fzLXqMDeEEBvP++/lx56VQ2gIPOwy9YUOnLCCHO83ZKCgZbNZSfiwK4H7pO7lSjA/iOHbrz0DXScUUAB53SEUK4jlKKX06fxiVz5lwUwAuBX06fduvqhTU6gG/c6IrOyyLZQGilr1JYCGvXVr42Qoi/JeXlccpV61YEBbkkgAOcLizkTzfOzvR35cU+++wz1q1bR3Z2Ntdddx0XX3zxOeWvvvoqaWlppKSk8OCDD9KuXTtXPn0pGzfqDmXX9SNYXHKVQ4f0PAGzdeWFEOWz0ZWbLbioBV5kY0YGjYKDXXa9klwWwDMyMnjuuefYuHEjubm59OjRg61bt2I92wQ+cOAAy5Yt4/vvv+fIkSP861//YvXq1a56ekO7drkq/+1aSsHBg9CpU3XXRIiaYV92NoEWC/muSFe4MIAHWizsy8lxybWMuCzBsHbtWlq3bo3FYiEkJISwsDAOHDhQXL5y5Uq6nd1zrHHjxuzevZt8g29SQUEBOTk55zwqKiurwqe6nRtfUyF8To4rh+sdOgRbt7rsci6t23lcFsBTU1MJL7FVUUREBKklppOeXx4eHk6awRCb6dOnExoaWvyILZoZVQFuHoJZKbJCoRCu49Jf9RMnylwTvDwKvaETMy4ujswSeaiMjAzi4uJMyzMzMw2D86RJk8jOzi5+GAV5Z4WEVPhUt/PkugnhbYJdN1oBevWCyy5z2eVCXFm387jsyr169WLv3r0A5ObmkpWVRbNmzUg5Ow5y4MCB/HF2u/fExETatGlDYGBgqesEBAQQEhJyzqOimjTRnZieKCGhumsgRM2REBhIgatauvn5eiSKC9iUIsFF1zLisk7MyMhIJkyYwIQJE8jOzmb27NkcPnyYG264gd9//53mzZszdOhQnn76aZKSkpgzZ46rntpUt26eOWkmPh7q1KnuWghRc3SLiMBliYr8fN2R6QJ2dN3cxaXDCK+99lquvfbac772+++/F//7gQcecOXTlalbN1duaRYAVH48p8UCPXtWvjZCiL+1Cg0l2Gol1xUdXy4M4EEWC21CKz9/xEyNnsjTpYsOmK4RjZ6NWTn+/tCjR6UvI4Qowc9ioXN4uGtmargwgF8QHo6f64JQKTU6gIeHwxVXuCoPXgtXBPCCAhg9utKXEUKc5+Y6dTwqgFuBW9ycK63RARzg/vtdNWQvmsoGcD8/GDAAWrd2QXWEEOe4qU4dglwx4sNFATzQauXmunUrXx8HanwAHzwYGjVyxZWiqWwALyyEceNcURchxPki/f35V926BFQmZaEUZGZWepxvgMXCLXXqEOXv0m7GUmp8ALdaYfJkV+TCo9GbOlSMnx+0aAFXXVXZegghzDzYoEHlLpCdDXl5f2+tVkHKFXVxQo0P4AC33w4XXaQ7ECuucjlwux0++qiydRBCONIqNJT/Nm1a8cBWtJVaJQK4FXi6SRPahIVV+Brlea4az2rVGztULnhGU9EA7ucHjz0mwweFqAoPN2hA5/Bw/Cvytrto5nfR7vTl5G+xcEFYGI82bFih88vLJwI46FmZlZs7FA+cBHLLdZa/P7RrB1OnVua5hRDO8rdamd+2LUEWS/kD3MmTusUXHV3u57WiVx+c364d/m6cPn/+c/qMW2+FZ56p6NlNz35OdPoMf3/dgbp8ObhpOWAhhIG2YWF8e8EFBJQ3iJ88CVFR5R57bEW3vr+94ALaV0HqpOTz+pTHH4dnn63ImU3Ofj7k1NH+/rrT8pdf9NR5IUTVuig6mu87dSLYanV+r8yTJ8ud//YDgqxWvrvgAi6uQMu9MnwugANMnAgff6x3xHE+L14LiKSsAF6Udhs+XAdvNw8DFUI4cHF0NL917UrL0FDngl1aWrny335Ai5AQfu3ShQG1alW0mhXmkwEc4PrrYc+ev1eNLLu/w4JOoxw2PcLfX6fOPv9cPyrYDyKEcKELwsPZ0r07TzRuXJzqMHXsmFNvmf3PpmYmNmrElh496FxN+yP6bAAHqFcPli6Fzz6Drl311wICHJ3RBLMWuL+/nvW5Zw+MGuXiigohKiXQauW/TZuyoVs3rnaUIjlyBBo3Ni0uCtzDYmNZ360b05o1c83szwry6QAOuuV9zTWwYYPeBPmWWxylVZpiFsDbtIGZM6F2bXfVVAhRWV0iIpjdqpVx4enT+mEydbuWvz+TGzfmzz59WNShA109YFdymVZSQteu8M47EBYGr71mdERTYL7hubt26X0uZacdITzbxowM44IjR/Rnkxb4h23bcmUlZ2i6ms+3wI1ccIFZSWsgFfirVElhoUv3QRVCuInDAB4cbJoDv6AKhwc6SwK4gW7dzEq6nP38h2Hpxo3uqI0QwpVMA3hiok6fGHRy1g4IoIEbt0arKAngBtq3N9sSLx5IwCyAb9jgxkoJIVxiY4nN1c+RmGiaPukWEYHFjRszVJQEcAMBAdCpk1lpF6QFLoR3+is/n6N5JlsjHjli2oHZ3QM6LI1IADdhnkbpCmwyLNmxQ3dkCiE8k2n65NQpOH5cT5820C083I21qjgJ4CYc58H3A2dKlUhHphCebYNZAN+xQ39u396w2J07y1eGBHATZXdkbjEslTy4EJ7LtAW+Y4fOfxsEak/twAQJ4KbMOzIbATGAccJb8uBCeC7TDswdO6BDB8MiT+3ABAngpsw7Mi3AhcBPhudJABfCM5l2YBYUwO7deuF+A57agQkSwB0yT6MMBFYBpbe73779712ZhBCeY83p08YF+/bpIG7WAvfQDkyQAO6QeQAfhN5ebXOpErsdvv3WbVUSQlTQktRU44KdOyEyEkw2IfbUDkyQAO6QeQDvAMQBKw1LFy92U4WEEBVSqBRLi/a7PN/WrdC2rd5K7Tye3IEJEsAdat8ejN89WdFplBWG5337LeTnu7FiQohy+e30adJsttIFNhts2gTduxue1zsy0mM7MEECuEMBAXD55WalA4E1QOlInZEBP/7oxooJIcplsVnre9s2yMqCPn0Mi//hYasPnk8CeBmuusqsZCCQDfxuWCppFCE8x2Kz/PfatdCwISQkGBZLAPdyV1xhmBoDWqDHhH9neN6SJaCUGysmhHDK3uxs9pitcbF2LfTqZVjUIyKC+h6c/wYJ4GWKi4O+fY1KLMDVwBeG5x05ot+dCSGq1xKz9Elysl6BsHdvw+JhHt76BgngThk2zKxkFLAL2GlYKmkUIaqfw/RJaKjpDi7D4uLcWCvXkADuBPMA3heoCyw0LJUALkT1Siso4GezCTy//abHChvsZN4oKIiOHrgDz/kkgDuhVSto3dqoxA8YiVkAX79ev0sTQlSPb9LSsBsVnDkDW7bAhRcanjcsLs6jhw8WkQDuJMdplG3AHsPShcaxXQhRBT4/ccK4YPVqvXXaRRcZFntD/hskgDvNfDjhRUBtYJFh6RtvyGgUIarDkdxclpl1YH7/vR6dYJAmifDzo390tHsr5yISwJ3Upw8Y/1H2B0YAnxuet2uXTOoRojq8lZxsnD5JStLLxw4ebHje5TExBBqPHfY43lFLD+DvD1deaVZ6PXphK+PteObMcU+dhBDG8ux23k5JMS5cvhxq1YIePQyLvSV9AhLAy+Xqq81K+qMn9rxlWPrll9KZKURVWnTiBCcKCkoXKKXTJwMH6lbZefyAoRLAa6Yrr4TatY1KLMBdwIdAVqlSmw3eece9dRNC/G1OUpJxwc6dujVlkj4ZUbs2sQbDCj2VBPByCAqCO+4wK/03kAN8Zlj65pt6zXghhHttyczklzOlNx0H4Lvv9N6XrVoZFo+tX9+NNXM9CeDldPfdevRRabXRY8LfNDwvOVmvjyKEcK+5Zq3vjAz44Qf9Vtrgl7hNaCgDvGT0SREJ4OXUuDH84x9mpXejVyc03rFeOjOFcK/TNhvzjx83Lly2TK9Md8UVhsVj69f3isk7JUkAr4CxY81KBuCoM3PFCr13qhDCPT48dowsu8HgwcJCPZpg6FDDsd+hViu31K1bBTV0LQngFXDZZdCsmVGJBd0K/xC9Z2Zpc+e6rVpC+DSlFHPMhnutWQMnTsCIEYbFN9WpQ5TBqBRPJwG8AqxWuOces9I70IHcOF/y7rtg9g5PCFFxX6emsis727hw4UK97onJxg33eFnnZREJ4BV06616VEpp0cC9wMvoHXvOlZUF06a5tWpC+Byb3c4Thw4ZF+7apWdejhplWHxhZCSdPXjneUckgFdQbCxcd51Z6XggEzAe/P3mm3DwoHvqJYQv+vD4cfPW96JF0KIFdOpkWDzWpFXuDSSAV4J5Z2Y8cCcwA6NNjwsK4Mkn3VcvIXxJbmEhUw4fNi78809YtQquucZw6GDtgABGGc/O8woSwCuhZ0/o3t2s9BHgGDDfsPTjj/VyxEKIypmTnMyfeXnGhfPmQYMGMGiQYfEd9eoR5CULVxnx3pp7iHvvNStpBNwEPAcUlipVCp54wn31EsIXnLbZmH7kiHHhwYO69f3vf4OfX6liP+CuevXcWj93kwBeSTfeCC1bmpVOAPYDnxqWfvMN/PSTmyomhA948c8/OWmzGRfOmwdNm0L//obFt9WrR5OQEPdVrgpIAK+kgABHo0raADcDTwC5hkdMmCAbPghREcfy8pj555/GhXv26LHft92mx/2eJ9hqZUqTJu6tYBWQAO4Co0ZB165mpdOA48Asw9K1a2XzYyEqYtqRI2QbzboEeO89aNPGdM/LcQkJJBiPA/YqLg3gkydPZvr06dxxxx0kG8yIWr16NZ07d2bAgAEMGDCAn3/+2ZVPX22sVnjuObPShsDDwHQg1fCIJ57QM32FEM45kJPDm2YbNmzfDr//rlvfBiNPov39mdiokZtrWDVcFsBXrlzJ8ePHmTRpEjfffDOPP/644XGvvPIKq1evZvXq1fTr189VT1/tBg827ehG58KDgKcNS3fu1HtnCiHKppTikQMHsBnlHu12mD1bj/k2GSI2sVEjannRmt+OuCyAr1ixgu5nv2E9e/Zk+fLlhsfNnz+fF198kRkzZpBnMPSnoKCAnJyccx7e4tlnzUoi0MF7LrDX8IgJE8BsIpkQ4m8L/vqLr1KN383y7bewdy/cf79h67t+YCD3e/HEnfO5LICnpqYSHh4OQEhICOnp6aWOadu2LZMnT+aRRx6hVq1aTJo0qdQx06dPJzQ0tPgR60XbG/XoYTpbF7gdaIVujZeWlQW3364bEEIIY8fy8rhv3z7jwjNn4K23YPhwaN7c8JApTZoQajCk0FtZlHJ+DERhYSF9+/Yt9fVOnToRFxdHo0aNuPvuu8nJyaFFixYkmS2sDuzevZubbrqJDRs2nPP1goICbCWGBeXk5BAbG0t2djYhXjDkZ88eaN/eLKf9DXAlsBwwzrfMnu1ohqcQvkspxcgdO8xb3y+/rEeefPABnG1MltQqJIQdPXrg78UTd85XrvUT/fz8WLt2rWHZypUrWbBgAQDr16/n0ksvBSA3N5fs7GxiYmJ47rnnuOeee4iKiuLw4cM0MRjGExAQQIAX56dat9Z9J2+/bVQ6FBiGXnJ2KxBa6ojHHtNLFjdt6tZqCuF1HKZO9uzRW15NmGAYvAGmNW1ao4I3lLMFXpbJkycTHh7OwYMHmTp1KvXr1+eDDz5g8+bNzJw5k/nz57N8+XI6duzI5s2bmTp1Ks1N3uoUycnJITQ01Gta4ABJSXrtnFzDod9HgXbAGOAFw/MvuQSWLzccviqETzqWl0f79euNJ+3Y7XDffXq25WuvGea+u0dEsK5rV6/bcacsLg3g7uCNARxg4kR4/nmz0jfQS86uB4wHkEsqRQitzNTJsmUwc6Ze5rNFC8NDlnfqxKBatdxYy+ohAdxNTp+GDh3g6FGjUjt6+7UMYB1QOmUUFgbbtkkqRYhPjh/nhl27jAuPH9e9/0OHmi5MNDIujkUdOrixhtVH3qS7SVSUWR4c9Lf9bWAnMNPwCBmVIkQZo07sdv02NzYW7rjD8JBYf3/mtGrlxhpWLwngbnT55bpD01hr4ElgKmD8A7pqlUzwEb5LKcXYffvMF6v68ku9JvPjj5ttj8XrLVtSJzDQjbWsXhLA3WzmTL0csbHH0GPDbwYKDI94+GE4b6SlED7htaQkvjTLeycm6jHfN9+s1zwxMDIujtHx8W6sYfWTAO5mUVH658xYAPAJekjhZMMjcnP1vIRjx9xSPSE80g8nT/LQ/v3GhTYbPPOM7iC66SbDQ4pSJzVt1Mn5JIBXgaFDHaVS2qFXKnwB+M7wiKQkGDECzDYdEaIm2ZedzeidOzHt/vnoI73uxOOPg7/xVJaanjopIgG8ijhOpdwGXIdOpRivsLZ2LYwZI2uHi5rttM3G1du3c8os771tm55peeed0Lix4SG+kDopIgG8ijhOpViAN9GLXt2E0RZsoDcYeeUVN1ROCA9QqBQ37txpvrt8WhpMnQq9e8PIkYaH+ErqpIgE8CrkOJUSid56bQ16H01jjzwC33/v+roJUd0mHTzIspMnjQsLCnTwDgnRqROTacq+kjopIgG8ir30EpivZtkdHbyfBFYZHmG3w+jResVMIWqKj44f53mz7dEA5s6F/fvhv/81XetkhA+lTopIAK9i0dGOJvgAPAiMAEahN0QuLT0dhg3Tsz2F8Hbrz5zhjj17zA/44Qc95vvRR02nJsf6+zPXh1InRSSAV4OhQ/U2asYswPtAE+AfwCnDo/bsgRtukK3YhHdLyctj+Pbt5JpNOd6/X79tveYaGDjQ8BA/YEG7dj6VOikiAbya/Pe/cNVVZqVhwGL0WinXYjbJ55tv4J57ZGSK8E4nCwq4Yts2kvPzjQ9IT4cpU/REnbvvNr3OzBYtuDQmxj2V9HASwKuJ1Qrz50O7dmZHJABfA78ADwDGUfrtt+GBBySIC+9y2mbj8q1b2ZyZaXxATo7urFQKnnxSLxVr4Pa6dWvUFmnlJQG8GkVGwuLFYL7KZXfgA/RemrNNrzNrll7HXoK48AaZNhtXbt3K+owM4wNsNnjqKUhJ0YtVmbSuL4yMZLYP5r1LkgBezZo3h88/N21goDsz/4tuhS81vc6MGXqUlRCeLKewkGHbt/PLmTPGByilZ71t2aKnyzdsaHhYg6AgvujQgSAf3/XEt+/eQwwapLfzMzcJ+Bc6mK80PerVmYr1k5Lw8CXehY8qzC7kp3t2sCEx3fyg996D777TaROT/GKI1crXHTr4ZKfl+SSAe4j77jNd0hg9MuVt4Gr0npq/lToiJtrOS2wm65l9HJp8SIK48Ci2TBvbrtxG0Nsn+WxKEOFGqe+vv4YPP9RLcPbpY3qteW3a0DUiwn2V9SISwD2ExaK3UevXz+wIP+BD4BL05sibiktqxyheZgvNM/XA8MRnEjnw8AEJ4sIj2E7b2DpkK+mr0wEI3pzHwqdDCM0pcdDKlfDqq3DrrXDFFabXmty4Mdf62GQdRySAe5DAQFi0yDTtBwQCnwPdgMuAHdSLt/OK5Q8apZ87q+foy0fZd+8+lF2CuKg+BScL2HLpFs78em7OO2h9Dl9OCyU0F72D9/Tpen2Tm282vdbVsbE81aSJeyvsZWRPTA+0eTP07Qtma/pAJjAEq/UQL9eawwVp0abXqnNTHVq93Qq/YNNeUiHcIjcxl21XbSNra5bpMd+2+ZEX9j4N//ynntRgMqKkfWgov3XtSoTJ8rG+SlrgHqhzZz1z2LyPJpxGDZbQxC+K6Wl3k0ii6bWOzz/O5gGbyUuRxcRF1Un/OZ2N3Tc6DN7/x/8xY/dTXNvoJkLvNA/eTYOD+b8LLpDgbUACuIe67DJYuNB4vfpWze287n+YmQXPEUMMD/AAezFf3Srj9ww2dt/ImfUmQ7eEcKHkt5PZMnALBSeMZxADLGMZL/ACN3ADYw7/m6Wzogm3lw7gDYOCWNmpEw2Cg91ZZa8lAdyDXXUVLFhw7hjx9m3svGLZTMThM0QRxUu8RHOa8yAPspnNptfKT87nj4v+4PhHx91fceGT7AV29t2/j7137UUVmGdmF7OYF3mRm7mZ27kdCxYsS06zdG40kSVCUr3AQFZ26kQTH0mdVoQEcA/3z3/qDUgsFujcUfGyZQsh+/9uSYcSyjM8Qw968BiP8TM/m15L5Sl23bSLAxMOoAo9uutDeJmCtAK2Xr6VpNeTTI9RKN7nfV7mZf7Nv7mVW7Hwd6tbLTzF0nejibZYqR0QwIpOnWgRGloV1fda0onpJb78wk70tK1Y/kg3LC+kkJd5mW/5lkd5lMu53OH1Yq6Iod3H7fCPkryiqJzM7Zlsv3o7uQdzTY8poICXeIkf+IFxjONqrjY9NvDBOoQ/3ZALTNb9Fn+TAO5Fjn1wjN237sZst1eF4h3e4WM+5m7uZjSjz2nhnC+0TSgdFncgtKW0ckTFpH6dyq6bdlGYab6ucSaZPMmT7GIXU5hCb3qbHhsQH0Cn5Z0I7yjB2xkSwL3MX5/+xc4bd5ptmwnAZ3zGG7zBYAbzMA8TiPmUY/9of9otaEfMEN9cjlNUjLIrEp9N5NDkQw6PO8YxJjKRLLJ4hmdoSUvTYwPrB9JpRSfC2oS5uro1lgRwL3TiqxPsvHanw46itaxlGtNoSEOe5mlqU9vhNeuPrU+z55vhHy4pFeFY9v5s9ty2h9NrHG8JtYc9PM7j1KIWz/Gcw5/BoEZBdF7ZmZDm8jteHtKJ6YVqD69Nh686YAkyT4/0pjdzmEMWWYxhDDvY4fCayXOS2XDBBk6tMt4BSAhlVxx97SgbLthQZvD+ju94gAdoQQte4zWHwTu4WTBdfuoiwbsCpAXuxdJ/TGf7yO3YTtpMj8kkk2lMYxObeJAHGcrQMq8rrXFxPmdb3XnkMYtZLGMZ13ANd3EX/pj/HIV3Dafj4o4EJQS5uso+QQK4l8s5mMO2YdvI3mE6755CCvkf/+NjPmYEIxjDGId5cYDgpsG0frc1tS4x3W1C+ABlVyS9nsTBiQex55j0np+VRBJTmUoKKUxgAhdxkcPj46+Lp/W7rfELlWUeKkoCeA1gy7Cx66ZdpC1Oc3jcSlYygxkkkMBkJtOEJmVeW1rjvivnQA67b9vN6Z8ct7oBfuRHXuAFEkhgClNIwME2ZxZoOr0pjSY28unddFxBAngNoeyKw1MOc2TaEYfHJZHENKZxkIPcwz1czdUOhxqCtMZ9jbIrkmafbXVnO251F1DAW7zFQhZyFVdxH/c5fHfnF+5H24/bEndVnKur7ZMkgNcwf336F7tv3e3w7a4NG+/zPh/xEb3pzaM8Si3KDs51b61Lk6eaENxQ1qWoqU7/epoDjx4otfyrkf3s5zmeI4kkHuIhBjPY4fHBzYLpuLgjYe1lmKCrSACvgTI2ZbB9+Hby/nS8AuEWtvAsz5JPPhOZSE96lnltS5CFhPsSaPx4YwJiA1xVZVHNsnZkcfCJg2Wm4UC3uj/iI+Yzn7a05TEeoyGmi9gDED0wmvaftZefGReTAF5D5R/PZ/vI7WW2pDLJ5GVeZiUruZIruYu7iCSyzOv7RfrRaEIjGjzQAL8w6YTyVrlHcjk89TDHPjhmOsO3pH3sK25138EdjGAEfjh+/RPuT6D5S82xBsioZVeTAF6D2fPs7L13L8fePebwOIViJSuZzWwUirGM5VIuLTM3DhBYN5DGTzam3h315BfUi+Sn5pP4TCJJs5NQ+WWHgAIK+JAP+ZiPaUc7HuMxGtDA4TmWAAst57Sk/h31XVVtcR4J4DWcUorkOckceOQA9lzHTawMMnibt1nCErrSlfGML/OtcZHg5sE0ndaU+GvjsVi9c2RBXkoeGRszyNyYSea2TArPFGLPt2MNthIYH0h4l3AiukUQ3iUc/wjvHJVjy7Rx9OWj/DnjTwozHKzHUMJmNvMar5FMMndyJyMYgbWMOYBBDYNo+3FbovtFu6DWwowEcB+RvSeb3bftdqpzagc7mMlM/uRPbuRGruf6MseNFwnvEk7TaU2JuTzGKwJ5wckCjs07RtLrSeQe0qvpWQItepmCkr8ZfmCxWFA2BRaI7BtJg3ENiBse5xXvPAqzC0n5XwpHph2h4Lj5RgslHeMYb/AGP/Ij3enOeMY7Hh54Vr276tF8RnP8I73zj5w3kQDuQ1Sh4uirRzk06VCZrXEbNhaxiHnMoza1uYu76Etfp9IqACEtQqh/T33q/rsuATGe13GVl5zHof8c4vj843ptdOcao3+zAnYIiAugwfgGNHykIdYgzwvk2XuzSZ6bzLF5x7Clm8/YLSmHHD7hExawgDrUYSxj6U3vMl/7oIZBtH63NTGDZWG0qiIB3AeVpzV+nOPMZS4/8iPtac/d3E1HOjr9XNZgK/HXx1N/bH0iu5fdOepuSimOf3icfffuw55r1y3qyvLTf7Dazm/rEfdot9lJW5pG8uxkTi13fm0bhWI5y3mLt8ghh1u4hRGMIICy/wBLq7t6SAD3UeVpjQPsYhdv8zZ/8Ad96MOd3ElTmpbrOSN6RFB/bH3iR8fjF1L1I1cK0grYdfMuTn570vUX9wMUNH6iMU2ealIt6aO8lDxS3kkh5a0U8o46v4m1QrGe9cxjHrvZzRVcwW3cRgxlt6Sl1V29JID7uOy92ey+1bnWeNEv+tu8zQEOMJjB3Mqt1KVuuZ7Tv5Y/dW+rS/0x9QltUTWbSeSl5LF5wGZyD+a6ptVtxgrxo+Np836bKsmNK6U4/dNpkuYkkfpFarnuTaFYxzre5312sYse9OAO7qAVrZw6X1rd1U8CuNCt8deOcugJ51rjduysYhX/43+c4ASXcRnXci2NaFTu5466OIq4q+OIHRbrtmCe/1c+m/psIi8xz73Bu4gf1B5Vm3YftcPi5/qWuCpUnFl3hrTFaZz48gQ5e3LKdz6KtazlAz5gN7vpRS9u4Rba0c6p84ManW11Xyqt7uomAVwUy96bzZ479zi1eBHoscHf8i2f8zlHOcqFXMhoRtORjk53dpYU2jaU2GGxxA2LI7JXpEuCnz3fzsZeG8nenl01wbuIFRo82IAWL7ZwyeUKswo5tfwUqYtTSVuaRsFfzo0kKcmOvThw72EPvenNLdxCW9o6dwEr1L/r7OJm0ur2CBLAxTmUUqQtS+PQ44fI2p7l1DmFFPIrv/Ipn7KDHbSlLaMZTT/6lTlLz0xAXACx/4gldlgstQbXqvBqiIemHuLIf484NcvQ5SzQ+cfORF8UXaHT85LzSFuaRuriVNJXpDv17shIBhl8y7csZjFJJHEhF3ILt9Ca1k5fI/bqWJpNbybrmHgYCeDCkCpUHP/4OIf+c4i8I853iG1jG5/yKb/yK/Wox3CGM5jBRBNd4bpYgizUGlSLmMtjiOgRQXincKc6QTM2Z7Cx+8byDxF0FSsENQii566eTq15XZBWQMbGDM6sPUPa0jQy1mdU6un3sY+v+IoVrMCKlcu4jKu5ulydz1EXR9HsuWZE9YmqVF2Ee0gAFw7Z8+wkv5GsJ4CkOv+2PZFEFrKQ5Swnn3wu5EKGMpSe9Kxwq7yYH4S1CyOiWwQR3SMI7xZeKqgrpdhwwQaydmeBc8Of3cPvbCplxrmplKJgXfzYkFGuP5Rm8snnJ37iK75iBztoRCOGM5zLuIwwnG89h10QRrNnmxEzNEbW7PZgEsCFU2wZNv586U+OvnSUwkznm7Q55PATP/Et37KFLcQQwxCGcDmXV6jT01RRUO8eQUS3CJRdsX/cftddvxIswRbafdKO7F3ZxVP1cw/nuuz6hRSyiU2sZCVrWEMOOfSlL8MZThe6lKs/IrhpME3/25T46713SQRfIgFclEv+X/kcmX6E5LnJerp5OSSRxP+d/UgllXa04yIuoi99nV5zRWh27GxnOytZyY/8SDrptKY1AxnIJVzicBNhIwHxATT+T2Pq31Ufa6DnzSgVxiSAiwrJOZTD4SmHOf7x8XLnmAspZCMbWc5y1rKWDDJoTGP6nv1oQ5syF0vyRfnks41t/M7v/MiP/MVfNKYxgxjEJVxS5uqARvyi/Gj4UEMaPNjAaxfo8mUSwEWl5CXlkfx2MilvpZCfkl/u8wspZBvb+Jmf+YVfOMYxYonlQi6kJz3pSEei8M0ONIUikUTWn/3YwhbyyKMhDbmIixjEIJrStEJDNsO7hJNwbwLx18XLeu5eTAK4cAl7gZ3Ur1NJnpNM+qr0Cl1DoTjAAX45+7GPfQA0pSkXnP3oRCdiiXVhzT2HQpFEErvZzR/8wQY28Bd/EUYY3ehGd7rTgx7lnvlaxBJkIX50PAljE4joGSGdkzWABHDhclk7s0h+I5lj7x+j8EzFx/Cd4Qzb2MbWsx972YsdOwkkcAEX0JKWNDv7EUGEC++gaqSRxu4SH3vYQwYZ+OFHK1rR4+xHW9pWauROcNNg6o+pT93b6hIY59yywMI7uDSAL1myhPHjx/PRRx/Ru3fvUuUFBQU88sgj1K1bl8OHDzNjxgwiIx2v3iYB3HvZMm389fFfJM1OImurc5OCHMkmmx3sKA7oBzhAFvq6ccTRjGY0pWnx5zrUIYKICqUYXKWQQo5xjKMcJYmk4s+HOMQJTgDQkIa0pjVtzn60oAVBBFXuiS0Qc0UMCWMTiBkS45Yp/aL6uazXIj09HX9/fxo2NB9N8OGHHxIfH8/jjz/O+++/z0svvcRTTz3lqioID+Mf7k/9u+pT7856nPntDElzkkj7Oq1cwxBLCiW0uFUKOuVwghMc5CCHOMQBDrCe9SxiEbazg7+DCab22Y944ov/HUccoYQSQkjx5xBCCCbYYQeqHTuFFJJPPqfPfqSTzmlOc4Yzxf9OI40kkkghhcKzvbyRRNKABiSQwDCG0Za2tKKVS989BCYEUuemOtS/uz4hTaXBU9O5PIUyYMAAnnvuOcMW+I033sgtt9zCkCFD2LVrF3fccQe//PLLOccUFBRgs/098yInJ4fY2FhpgdcQ9jw76avT9Zoei9PKteypswooIJlkjnOcEyU+/uKv4s85mC8AFUwwQQQVB+uSHwrjX5cAAogmmiiiiCaaWtQiocRHAxq4Lc0T3iW8eA2Z8C7hktv2IVU6big1NZXw8HAAIiIiSE1NLXXM9OnTpVVeg1mDrMQMiSFmSAzqdUXm5kzSluj1PjI3ZrrkOQIIoPHZDzM5Zz+yyS7+d8mPXHLxc/ARQEBxsI4iimCCqyxVYwm0UGtgLWKHxRL7j1iCGwZXyfMKz1OuAF5YWEjfvn1Lfb1Tp068+eabZZ4fFxdHZqb+Jc3IyCAuLq7UMZMmTWLChAnF/y9qgYuax2KxENElgoguETR5sgm5R3NJW5pG2uI0Tq045dRu6RVVlDJxZtMCT+Af60/slbqVXeuyWjJmWwDlDOB+fn6sXbu2XE+Qm5tLdnY2MTExDBo0iI0bNzJkyBDWr1/PpZdeWur4gIAAAgI8bw9F4X7BDYJJGJNAwpgEbJk2Tn1/ilMrTunp55szUXkePWDKpfxr+eu1XnpEEDM0hsg+kVj9ZXKTOJdLc+AzZ85k1qxZDBkyhDFjxtC5c2c++OADNm/ezMyZMykoKODRRx8lISGBAwcO8MILL8goFOEUe4Gd7J3Z5ywAVVOCenGwPrswV0S3CIKbBEsuW5RJxoELr+WNQV2CtXAlCeCiRrHb7Bz78Bh7b9tb3VU5lx/03NWTkBYhEqyFy0hSTdQoVn8rdW+uS0C85/SjWAIsxF8XT2jLUAnewqUkgIsax+pvJeG+BCz+nhEsVYEi4b6E6q6GqIEkgIsaqd4d9fCI7KAVQtuHEtnLcWe9EBUhAVzUSEH1gmj4SEMqu3tbpdmh5astJXUi3EICuKixmkxtQkizkGoL4hZ/C/XuqketQbWqpwKixpMALmosv2A/2s5vC/ZqeHKr3qas+YvNq+HJha+QAC5qtMiekbR4uUXZB7qSFayBVjp82UGmvAu3kgAuarwGDzSgyX+bVM2TWfWwwY7LOhLZUzouhXtJABc+ocnkJjR/6Ww6w00/9RZ/C36hfnRa3olaAyXvLdxPArjwGQ0fakjn1Z0JSghyS8dm1MVR9NjRg+h+0a6/uBAGJIALnxLdP5qeu3pSf0x9QKc7KsUPrKFWWr3Vik7LOxHcSNbmFlVH1kIRPitrl958OeWdFOy5drAATuz2ZgmwoAoUQQ2CSBiXQN1bZbNgUT0kgAufZ8u0ceLTE5xafYozv50h92AuRjunWQIthHUII7J3JLFXxhJzeQwWq0zQEdVHArgQ57Fl2sjelU1hZiEqX2ENtuIf609o61CsAZJ1FJ5DBqkKcR7/cH8ie8gQQOH5pDkhhBBeSgK4EEJ4KQngQgjhpSSACyGEl5IALoQQXkoCuBBCeCkJ4EII4aUkgAshhJeSAC6EEF5KArgQQngpCeBCCOGlPH4tlKK1tnJycqq5JkIIUbWCg4OxWMxXvPT4AJ6bmwtAbGxsNddECCGqVlmrsHr8crJ2u5309PQy/xK5W05ODrGxsaSlpfncsra+eu++et8g9+4p9+71LXCr1UpMTEx1V6NYSEhItb+o1cVX791X7xvk3j393qUTUwghvJQEcCGE8FISwJ3k7+/PlClT8Pf3+KyTy/nqvfvqfYPcu7fcu8d3YgohhDAmLXAhhPBSEsCFEMJLSQAXQggv5flZ+mq2ZMkSxo8fz0cffUTv3r1LlRcUFPDII49Qt25dDh8+zIwZM4iMjKyGmrre5MmTCQkJ4dChQzz99NPUr1//nPLVq1czfvx4oqOjAZg2bRr9+vWrhpq6xmeffca6devIzs7muuuu4+KLLz6n/NVXXyUtLY2UlBQefPBB2rVrV001da2y7rtJkyY0adIEgFGjRnHfffdVQy3dY+fOnYwdO5bLL7+ciRMnlir3+NdcCVOnTp1S33zzjerfv7/67bffDI9599131bRp05RSSs2bN089+eSTVVlFt1mxYoW64447lFJKrV69Wt1yyy2ljlm1apVatWpVFdfMPc6cOaO6dOmi7Ha7ys7OVu3bt1eFhYXF5fv371eDBw9WSil1+PBh1b9//2qqqWuVdd9KKTVlypTqqVwVWLBggZo8ebJ69tlnS5V5w2suKRQHoqOjGTp0qMNjVqxYQffu3QHo2bMny5cvr4qquZ2z9zV//nxefPFFZsyYQV5eXlVW0aXWrl1L69atsVgshISEEBYWxoEDB4rLV65cSbdu3QBo3Lgxu3fvJj8/v7qq6zJl3TfAmjVrmDFjBlOmTCE5Obmaauoeo0ePxs/Pz7DMG15zCeCVlJqaSnh4OAARERGkpqZWc41co+R9hYSEkJ6eXuqYtm3bMnnyZB555BFq1arFpEmTqriWrlPyfqH0a3l+eXh4OGlpaVVaR3co674BnnnmGR599FFuvPFGRowYUdVVrDbe8Jr7fA68sLCQvn37lvp6p06dePPNN8s8Py4ujszMTAAyMjKIi4tzeR3dxdG9l7yvnJyc4jx3SXXq1Cn+d79+/XjjjTfcVld3K3m/UPq1jIuL4+DBg8X/z8zMrBErZJZ13wC9evUCoFWrVhw5coTMzMxzAltN5Q2vuc8HcD8/P9auXVuuc3Jzc8nOziYmJoZBgwaxceNGhgwZwvr167n00kvdVFPXc3TvK1euZMGCBQDn3FfJe3/uuee45557iIqK4vDhw8UdXd6oV69exZ1Yubm5ZGVl0axZM1JSUqhXrx4DBw5k0aJFACQmJtKmTRsCAwOrs8ouUdZ9r1ixArvdzuDBgzlz5gx+fn6EhYVVc63dRynFsWPHvOY1l5mYZZg5cyazZs1iyJAhjBkzhs6dO/PBBx+wefNmZs6cSUFBAY8++igJCQkcOHCAF154oUaNQgkPD+fgwYNMnTqV+vXrn3Pv8+fPZ/ny5XTs2JHNmzczdepUmjdvXt3VrrDPPvuMjRs3kp2dzahRo2jQoAE33HADv//+O6BHJJw+fZqkpCQeeOABzxuRUEGO7nvz5s08/fTT9O3bl927dzNy5Mgy+4W8yaJFi5g9ezYBAQGMHTuWDh06eNVrLgFcCCG8lHRiCiGEl5IALoQQXkoCuBBCeCkJ4EII4aUkgAshhJeSAC6EEF5KArgQQngpCeBCCOGlJIALIYSXkgAuhBBe6v8B7kfdE4n0jvIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAF2CAYAAAB3QMMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA7EAAAOxAGVKw4bAABZKUlEQVR4nO3dd3xUVd7H8c9Meq+EEiChd+lNUBBERFcEF8W+a0fsawGFFXRBURQLAtZdVFRUsFD0UWmKBWnSe42kAAkE0pPJnOePQyKQeyeTZCaZSX5vXvOK5Ny5OUPMN2dOtSilFEIIIbyOtaYrIIQQonIkwIUQwktJgAshhJeSABdCCC8lAS6EEF5KAlwIIbyUBLgQQngpCXAhhPBSEuBCCOGlJMCFEMJL+dZ0BYR3SklJ4dlnn2XLli34+flRUFBA06ZNGT16NFdffTW+vr488MADAMycObOGa2vswQcfZPXq1SilGDRoEDNmzKjpKlWZUoq5c+cyd+5cfHx8OHnyJL1792batGlERkbWdPWEqykhKujQoUOqUaNGas6cOaWfs9lsasqUKQpQBw8eVEoplZOTo3Jycmqolo6tXLlShYSEqNzcXFVcXKxee+21mq6SS2RlZamQkBC1e/dupZT+HvTu3Vv9/e9/r+GaCXeQLhRRYffffz89evRgzJgxpZ/z8fFhwoQJdOnSpfRzwcHBBAcH10ANy3f48GFiY2MJCgrCarXy4IMP1nSVXMLPz4/JkyfTunVrQH8PbrrpJr755huU7FtX60iAiwo5ceIE33zzDcOHDzcsX716NU2bNuWNN94gMTGRgQMHAvDee+/Rtm1bEhMTmTlzJpdddhmBgYHMnTuXtLQ0brjhBvr168eAAQO44oor+O233wB47bXXzrnPpk2b6NKlCxaLxfC+gwcPplWrVnz33XcsWLCAK6+8kmbNmvHhhx+W1vG9997j+eefJy0tjYEDBzJ27FgAjh49yvXXX0///v3p378/Dz74IHl5eeXWvyLPGzJkCM2bN+eDDz4459/N0b+Bo/ufLyAggMcee+ycz+Xm5hIXF1f6byZqkZp+CyC8y5o1axSgvvvuu3KvnTRpkhowYEDp3//3v/8pf39/tXDhQqWUUl988YVasmSJ6tGjh3r44YdLr5s6dap66KGHTO+zcuVKdfb/uiX3Xb58uVJKqZdeekk1atRIzZs3Tyml1GeffaYiIiJUcXHxOc9JSEgo/XtxcbHq1auXevDBB5VSukto+PDh6oEHHii3/s4+r+Tf7OOPP1bh4eHKZrOVfm2zfwNn6uWI3W5XPXr0ULNmzTrn888884zq0KGDSkhIUG3atCn9+NJLLzl1X+EZJMBFhaxdu1YB6vvvvy/3WqMADw8PP+eakl8Ie/bsKf1cZmam2rhxo+l9jAI8MjKy9O8//PCDAlRmZqZSSqk9e/YoQKWkpJzznLMD3KgeCxYsUEFBQcput1eo/kbPi4iIKC3fuXPnOfVx9G/gzP0dmTFjhrrmmmvOuXbx4sVq1apVKjc3V7355psqPT39nPEM4T1kFoqokNatW+Pj40NSUlKlnh8VFXXO3w8fPgxA/fr1Sz8XERFB165dK3TfiIiI0v/29fU953N+fn4AFBQUmD6/pB533HEHVqvuWczPzycuLo7jx48TFxfnsP7lPe/sGSCBgYHn1MfRv8Fnn33m1P2NzJ8/nxUrVvD555+f031yxRVXYLVaWbhwIb169eLXX3+lcePGpvcRnksCXFRIREQEI0aMYNGiRdxxxx3nlBUWFjJ8+HBeffVV2rZt69T9EhISAN3PGx4eDkBWVhaHDh2iU6dOAPj7+5Ofn1/6nJMnT7ripZwjMTERgE8++YT4+PjSzx87dsxhSFb2eWdz9G9Q2ft/+umnfPjhh3zxxRcEBASwd+9emjZtSkBAQOkvgoULFzJv3jx+/PFHWrZs6VRdhWeRQUxRYTNnzmTz5s289dZbpZ8rKCjg4Ycfxs/Pz+nwBujZsyc9evRg9uzZpZ97/vnn+fLLL0v/3qpVK3bv3k1ubi4AX331VdVfxHl69OhB7969mTNnTunnVqxYwYgRI9zyvLM5+jeozP0//fRTZs+ezdy5cykqKiI7O5tnnnmG1NTU0mu2b9+O3W7HarVSUFDA9u3bna6v8CA13YcjvFNaWpq66667VK9evdSAAQNU79691dNPP63y8/OVUkrNnDlTJSQkqIiICDVq1Cg1f/581aZNGxUQEKAGDBig/vjjj9J7paamqtGjR6sLL7xQ9evXT917772qsLCwtLywsFBde+21qk2bNuqaa65Rr776qgLUgAED1Ny5c0vvO3r0aPXHH3+ozp07l5anpqaq3r17K0D17t1b7dq1S7377rvn1GXJkiWlr+mGG25Qffv2VZdccokaPny4SkpKUkoph/V39nmjR48uU5+9e/eW+2/g6P7nS01NVT4+Pgoo8yiZn6+UUi+88IJatGiRUkqPGZQMkgrvYlFKJocKIYQ3ki4UIYTwUhLgQgjhpSTAhRDCS0mACyGEl5IAF0IIL+XxAa6UIi8vT3ZSE0KI83h8gOfn5xMcHHzOSjwhhBBeEOBCCCGMSYALIYSXkgAXQggvJQEuhBBeSgJcCCG8lAS4EEJ4KQlwIYTwUhLgQgjhpSTAhRDCS0mACyGEl5IAF0IILyUBLoQQXkoCXAgzSkFxcU3XQghTvjVdASE8wsGD8OOPsGEDrFkDO3ZAXp4OcasVIiKge3fo1Ut/vOQSiIqq6VqLOs7jT6XPy8sjODiY3NxcgoKCaro6ojYpLoalS+H112H5ch3UPj5QVGT+HH9/KCzUH2++Ge67D7p1q746C3EWCXBRN339NYwdCykpOrQr01Xi56fDvm9fePddaN/e9fUUwgHpAxd1S0YG3HADjBgBqan6c5Xt5y5pqa9bB126wAsvgM3miloK4RRpgYu647ff4Kqr4NQp9wSt1aq7U5Yuhbg4199fiPNIC1zUDcuW6YHHkyfd10q222HzZt2lcuSIe76GEGeRABe13y+/wN/+pgcf7Xb3fq2iIkhK0r8s0tPd+7VEnScBLmq3tDS44godrNXVW2izwaFDcM017v+FIeo0CXBReykFd90FubnVH6Q2G/z8M7z5ZvV+XVGnSICL2uuTT2DJkpqbGaIUPPqoXiQkhBtIgIvaKTdXL7KpaTYbPPhgTddC1FIS4KJ2+vRTOH26pmuhA3zpUt0nLoSLSYCL2um116pv0LI8Pj7w9ts1XQtRC8lCHlH7rF8PPXvWdC3OFRWlZ8T4+9d0TUQtIrsRCu+mFPz5p95FsOSxfn1N16qskyehQwfo2hV69NA7GnbrJjsaiiqRFrjwHmZh7c0LZpo312EuoS4qwWUBvmPHDsaOHcvll1/O+PHjy5S/9tprZGRkkJqayiOPPEJ7J3dukwCvw06c+GuP7toQ1s4qCfXu3XVXUL9+EBBQ07USHshlXShbt27loosuMizbv38/S5cu5fvvv+fw4cP84x//YNWqVa760qI22bcPFi3Sj59/rpsn4hw4oB+ff67/HhoKl18Ow4frVaUxMTVbP+ExXBbgo0ePZufOnYZlK1asoHv37gAkJCSwa9cuCgsL8TcY0CkqKsJ21sKLvLw8V1VReKLiYn0CzqJFsHgxmPw/VB0KgewzjzzAB/0DYvQIAPyqq2LZ2bBggX5YrdC/v95VcfhwaN26umohPFC1DGKmp6cTGhpa+vfQ0FAyMjJo2LBhmWunTp3KM888Ux3VEjUlOxt++EGH9pIlbusWKQRSgD+BI2c+lvx3KpB15lES2g7O4TEUBtQDYs886p31sT7QEmgFxAGWqr2Uv9jt8NNP+vH449CmjQ7y4cP1Log+Pq76SsILVEuAx8bGcuDAgdK/Z2dnE2PyNnDChAmMGzeu9O95eXmm1wovkpsLn32mHytWQEGB624NbAe2nvXYAaQBJQM8PkAjoDHQBOgDRACh6CAOPesRBgQCdsCGDnbbeY88IANIP+tx9Ew90tG/IEpeYRh/hXnJox1wwZmvUyW7d8P06foREwNXXqmPehs8WLfWRa3mtgBXSpGWlkbDhg0ZNGgQCxcuBCApKYm2bdsadp8A+Pn54edXbW9Ohbvt3as3dPrf//RUuirKBX4HfgY2ocN6HzqoA4H2QCdgKJCIDusm6BZxdc6ZtQPJwN6zHvuAL4H96HD3Q4d4L6DnmY9t0b9sKiUjAz74QD9atYJ774V//lNmtdRiLpuFsnDhQmbNmoWfnx9jx46lY8eO3Hjjjfz++++AnoVy6tQpkpOTeeihh2QWSm1Wsnx89mz4/vsq3eo08Avw05nHOnSLuCnQHR3WJY+WVCH8qlExOszXnXmsBf5Ah3oo+nX1By4D+lLFvvagIH2E3NixelaLqFVkHrhwnaNH9eG+b72l52tXQjGwBvgaWI5uZduBNsDFZx4XAQmuqK8HKQS2ocN8LbASOITufhmEfkdxGdCiKl+kVy+9wdd110FglTtvhAeQABdVo5Se7jd7Nixc+NdBvxWQByxDh/Yi4Di6NX05MAAd2PVdV2OvoNCt9O/OPFYCOegAHwpcAwykku84YmLg9tthzBg951x4LQlwUTnFxTBvHrz8MmzdWuGnn0IH9lfogMpF9wOPOPNohwtnbtQChcCv6H+rb4At6F9q1wE3oAdlK/zvZbHo+eUTJujFQsLrSICLilFKz9d+6inYvr1CT7UDPwL/BRaiZ3MMAq4GhgPxLq5qbbYL+BT4BNiN7lK6Hh3mF1CJML/qKnjuOejY0ZXVFG4mAS6ct3o1jB8Pv/5aoaclAe8D/wMOAj2A29Bh4/L5EU2a6ME6iwW+/NLVd6+8e+7RM3I2boTMTJfdVqHHCeafeSQBHYB7gVvRfehOs1jgllvg2WchobaNMtROEuCifFu26Bb30qVOP8WGnjL3Drp/Owa4GR3cF7iqXiVhXbIZVLduEBeny/LyID5eh2VN/i/u6wvDhulFS6DrcuDAufu7uCjU7cBv6Hc4H6Nnr9wK3IfuknKav7+etfLUU1CvXpXrJdxHAlyYO3gQnn4aPvrI6RDMQQfIK+hZFMOAO4C/AVXaCTs0FAYN0ps7nR/WZubP11PoalJQEOzYAYmJ5tecH+q//abf5VRhH5gT6O/DHOAAuqvqPnRXldPz4cPC4LHH4JFH9H8Lz6M8XG5urgJUbm5uTVel7jh6VKkHHlDKz08pHS/lPtJATQQVDSoQ1L2g9jr5XNNHkyZK3XefUt99p1R+fsVfh92u1PDhSvn6Vq0elX1YLErNmVO570FGhlLz5il13XVKhYVVug7FoJaCugKUBVRjUK+Cyq3IferVU+r115UqKKjcaxFuIy1w8ZeCAnjxRf3IznbqKXuAl9F93KHA/eiWXqXfePfooff1uOoq6NxZ98tWxdGjer+QrCy9j0h18fXVMztWrqz6aygs1NvqLl6su2IOH67UbfYDrwNvA5HAE8A9QLCzN2jWTP+/MWpUpb6+cD0JcKFt2KCXXW/b5tTlScAkdHA3Ax4F/kkFwqBEQABceqkO7L/9Tfdbu9pvv8Ell+g56tUR4r6+en71r7+6futXpfS0zZLdG9eurfAtUoHpwJtAOPA4MAYIcfYGo0bBrFnld2EJ96vZNwDlky4UN8vPV2rCBKV8fJx6O50O6l+gAkAlgvoQlK0yb+87d1bq7beVysqqnte5YoVSgYFKWa3u7Tbx9VWqZUulkpOr53UlJSn1738r1aBBheuaBupRUEGg6oF6EVSOs8+PjVXq00+r5zUKUxLgddn69Up17OjUD2w2qCmgws/8sL8GKr+i4ebvr9TNNyv166+6f7q6rVmj+3Pd1SdutSrVu7dSx49X/2srKNCBOmBAhet9FNQToEJANQH1CSi7s88fNUqPmYgaIQFeF1Wg1W0D9SaoBmd+wCeBOl3RYEtIUOr55z3jB/3ECf1LBPQgoyuC29dX/3J66SWlbLaafoVKbdumB38rOPiZAuo2UIDqB2q9s8+V1niNkQCvayrQ6l4HqhsoX1D3o99yOx0IFotSw4YptXixZ4Ta+RYtUqpxY11XJ7uPyjxKZun076/Url01/YrKOn1az4Jx8vtd8lgLqi961srtoFKdfa60xqudBHhdUYFW9ylQD4CygroI1PaKhFpAgFIPP6zUvn01/YrLZ7MptWSJUkOH6l84FotuSTv6pVRSHhio1N13K7VpU02/ivLZ7UqtXq3U1Vc7/X20g/oIVDyoMHT/eIG0xj2OzEKpC/74A269tdwZJgpYADyE3jxpOnpmiVOT4KxWuO02mDwZGjeuUnVrxOHDequADRv0GZ3bt+vVnDYb+PlBZKRe8dmrl/44YABERNR0rSvut9/0dgg//eTU5TnAi2cebYC5QBdnnjhqFMyZA7GxlauncIoEeG33ySd669D8fIeXHUTP3/4WHdrT0ec7OuWaa2DqVGjbtgoV9VBKVX0et6dRCv7v/+DJJ2HzZqeeshe9DcLvwATgKZxYWZuYqKc7dupUhcoKR+TQvNqquFj/gN54o8PwVugl153QIb4KvemUU+F9ySXw++96H/DaGN5Q+8Ib9GsaNkzvwfLRR07tCd4KvZPkS+jWeE/0KUIOHTqkD1r+6quq1VeYkgCvjU6fhhEjYNo0h5edAK5F71UyFr2r3QBn7t+1K3z3HSxfrrsUhHeyWvUv+J074Y03yl2Y44PuXtuMXgDUE3ga3d1mKicHRo6EKVN0y1+4lHSh1Db79uml6Dt3OrxsBXqnOgV8AAx25t4tW+ofxGuvlRPPa6PsbHj1Vb1cPivL4aV2YCbwJLp1/jnQurz7X3utPtw6xOk1n6Ic8lNYmyxbplvEDsK7EBgHXIo+BX0LToS3jw9MnKgHQUePlvCurUJD9fd5927dCHDAim6Nb0FvW9sd+Ky8+3/+OfTvD0lJrqitQAK8dlAKXn9dH4918qTpZfvQp5y/gd6neyF6n26HOnXS+2385z963xJR+zVsqPut582DKMdHbrQEfgZuAUYDD1JOl8qmTXrDsp9/dk1d6zgJcG9XUAB33QUPPeRw/+jv0H2WCj34dAflTA8saXWvX6/33hZ1i8UCN92kp1OW0xoPBGYDH6EHxC8CHO6XePy43tv9vfdcVds6SwLcmx09CoMHO/xBUOiZA1ecefyCE32VZ7e6/at0DIPwdiWt8Q8/LLc1fiOwHj13vCvg8PymoiK480548EE9115UigS4tzp8WO83/csvppfkod/aPgFMA+YBDoeBpdUtjFgscPPNujV+1VUOL22Lnit+FfoUpufRjQhTM2fqwc2CAlfVtk6RWSjeaP9+/RbUwWDQEWAEut97PnB5effs1AnmzpXgFo4ppeeOP/igw/EWhR5reRi4Hd3F4ufovsOG6fUE8jNeIdIC9za7d8PFFzsM79/QJ7/nAGtxIryfeEJa3cI5Z7fGL73U/DLgAfTB1h+jW+OnHd3322916z4nx5W1rfUkwL3Jtm16D46UFNNLvkVPC+wGrKGc/u6gIL3U/oUXpK9bVEzDhjp0H3rI4WXD0Ss4NwP9gT8dXbx8uW6Jn3YY9eIsEuBeIumADTXyGj1waeIT9A/MKOBrwOFWS40b682brr/epfUUdYivr1748957esMvEz3Q/eLFQB/KWYK/ejWZEyZwSgY2nSIB7gW2b4duvXwZ0+ln7GHGsTwbuAl9qPBcyulv7NsX1q3Tu+oJUVW3364Pb3awFD8BPQOqLXqa4QqT6zIuvJDBN9/MFVu2kC0hXi4JcA+3Z4+eKZiRAW9/Gcdt/fZQHBxWWq6AZ9E7Cf4HmEE539TbbtM/bA0auLPaoq7p16/ccZRIdBff34Arge/PKz/apw8DX3qJjXl5/Hr6NFdt20aug7UNQgLcox04oCebnN1r8sH/xXFT730UBYRiR4/yTwbmoLf5NF2cY7X+9XZXVlQKd2jSRHfLjR5teok/ejrr39Hdff935vPJvXox4OWX2XbWdMJVmZmM3LaNfAlxUzKN0EMlJenJJodNlrRd3TeN2N+b8IHdxofoZcymIiPh00/hsstcX1EhzqcUPP88TJhgekkxenrhfODNli2ZOncu+4uKDK+9KiaGBR064C978JQhAe6BMjJ0N/XevWZXKOBfWJjJfKsf19kdHNbQtq3eVL9VKzfUVAgHFi3Sy/Gzsw2Li4HrY2JYcOoUTJqkN7oycUNcHB+1a4elNu7PXgXyK83D2Gz6Hah5eANMAl5D8SFvdzhMjjXM+LLu3fVKTQlvUROGD4cVK/Q7QAP7unXjlwULYOhQfRSfg2PePjl2jOdlF8MyJMA9zKOP6umw5l5AD1e+C9zA8q1xDGu1jyzOC/G+ffWNoqPdVlchytWzpx40P+9szG3dujHglVdIBfjXv+DKK+HZZ/XsKBMTDh5kUXq6e+vrZSTAPci77+pdYc3NAsYDr6F7ELXVu+O4rPk+Mktmfl98sT4xxxsP3RW1T5cusGoV1K8PwB/duzNwxgyO2u263GrVC4IuuUR3pezZY3qrm3buZLus1iwlfeAe4uef9YwTk3Ec9Ozu24Dn0OeglNWtyTF+aDmW6CUfQHCwW+opRKXt2cO6hx/msieeINOovKhIn+N64IA+4q1RI8PbNA8MZG337sQ4WDxUV0gL3AMkJemD3c3D+3vgTnRwG4c3QHSbOIKXfCbhLTxT69ZEff45QWbbNvj5wTPPQEyM3p8nM9PwsgP5+Vy7fTtFJS34OkwCvIbl5MDVV+s97o3tRB89PBqYanqfiy/W2zYHBsu3VHiuliEhrOjcmTiz1nNIiN6bp7hYt8bz8gwvW5mZyb/273djTb2D/LTXIKX0wshNm8yuSEevW2sPvIfZMp0+fWDJEjkrVniHtiEhLOvcmWhfX+MLoqP1wcopKbpFbrKk/o3kZN52sLFbXSABXoOmTtXnvBorRK9XswFfoQ+uKqtbN70pXJjJTEIhPFGn0FC+79yZCB8f4wuaNNGLgTZtgrfeMr3PfXv3stqkq6UukACvIV99Bf/+t1mpAsYAG4HFQH3Dq5o315NNTKbZCuHRuoeFsaRTJ/zMFue0b6/n1S5YYDq31qYUf9++ncP5Dhaz1WIS4DVg71645RZHV7yEnnXyMXCB4RWhoXqh23nTa4XwKv0jI5nT2sGu9UOG6BH+l17Ss1MMHC8qYuS2bRTWwUFNCfBqVlys+71NVhcDy4FxwIvokwXLslj0qVYdOrinjkJUpzsaNuSB+HjzC+69V68m/ve/TX9w/sjO5jmzjYNqMQnwajZzpqNziI8BNwPXAI+a3mPKFL1KWYjaYkaLFgw26wv09dULfAoK4LnnwKSlPTUpiU1ZWe6rpAeSAK9Ge/fCU0+ZldqBfwABwDuYzTgZPVrPrhKiNvG1Wvm0QwdaBBoP1hMTo/dLWbsWPvzQ8BKbUvxz16461ZUiAV5N7HZ9cInJtFb0UQw/oA9GizK8omtX+O9/dReKELVNjJ8fX3fqRJjZzJSOHeG+++D992HjRsNLNufk1KmuFAnwavL663q5vLHf0SsspwJ9Da+Ii4Ovv5ZFlqJ26xASoreNNbtgxAi97ewLL5j2h9elrhQJ8GrguOskE7geGAQ8bniFnx988YWeGitEbXdVbCxTmzUzLrRY9O6FRUV6QMlAXepKkQB3s/K7Tu4F8oAPMPt2vPmmPnJQiLpifNOmXG92SHJkpJ4f/v33pnuI15WuFAlwN5s501HXydfoQ6X+h9linbvu0r8AhKhLLBYL77VpQ3uzPsN+/WDYMJgxA06cMLykLnSlyHaybrR3L3TubNb6PoXe42QQYDyqnpAAW7fKMnlRd609fZq+Gzdi2BmSkwN33AEtWui5tQaj+51DQljbvXutPU+zdr4qD1B+18l49H4nr5je4733JLxF3dYrPJwnmjY1LgwJgfHj4bff9IZABmp7V4oEuJv897+Ouk5+At5En6xjvBZ+zBgYPNg9dRPCm0xOTDTvSunSBf7+d5gzx3T/8KlJSezNzXVb/WqSBLgb5OXpNQfG8oG7gCuAGwyvSEjQu2kKISDAauV/bduah9Vtt0FgILzzjmGxTSn+ffCg2+pXk1wa4J999hmPPfYYY8eO5SeD0eHExEQGDhzIwIEDeeONN1z5pT3KG29AcrJZ6X+AZGAOZqstpetEiHM57EoJDtZvWb/5BnbsMLzk0+PH2VgLBzRdNoiZlZXFgAED2LBhA/n5+fTs2ZMtW7ZgPWvwYPLkyUw2b5oa8rZBzMxMvc3ryZNGpbuATuhVlw8YPn/MGP1uUAhxrgK7nW7r17PDqDtEKXjkEcjN1T9ABqs5L4uK4rvOnauhptXHZS3wNWvW0KZNGywWC0FBQYSEhLD/vCOPVq9ezfTp05k0aRIpJidpFBUVkZeXd87Dm7zwgll4AzwBtAPGGpZK14kQ5gKsVuaadaVYLPpk+/37YelSw+d/f/IkK8x/OL2SywI8PT2d0NDQ0r+HhYWRnp5+zjXPPfccjz/+ODfddBMjR440vM/UqVMJDg4ufcTExLiqim6XkgKvvWZWuhJ9OMNLgPFeD9J1IoRjPR11pTRrpgc0330XTp0yvGT8gQN4+MzpCnFZgMfGxpJ91t4EWVlZxJ532kDv3r0BaN26NYcPHz7n+hITJkwgNze39JGRkeGqKrrds8+aTRu0o7eHHQpcZvhcmXUihHMczkr5xz/A3990QHNdVhZfnNew9GYuC/DevXuzZ88eAPLz88nJyaF58+akpqYCsHz5cn744QcATp8+jY+PDyEGp/D6+fkRFBR0zsMb7Nmjf/EbmwdsRre+y4qK0sf/CSHKF2C18karVsaFISF6+fK330JSkuElEw4cwFZL9klxWYCHh4czbtw4xo0bx+OPP86sWbM4dOgQI0aMACAmJoY5c+bw8ssv8+ijj/Luu+9iqUX7ov773/q0nbJygQnA7UBHw+c+9ZScaylERVwSFcVlUcbbLnPppdC4sd521sDuvDzmpqW5sXbVR5bSu8CGDdCjh1npVOB5YC/QsExp48Z6yb3ZPvZCCGMbs7LovmGDceGqVfDMM/ptcYsWZYrj/f3Z27s3QWZ7j3sJWcjjAuPHm5WcAF5AbxNbNrxB/z8m4S1ExXULC2N0vXrGhRdfrIN77lzD4uTCQmaaL9bwGhLgVbRyJSxbZlb6BnrGySOGpW3bwq23uqliQtQBU5o1w9eoK9Zq1ZsR/fwz7N5t+Nznk5I4bbO5uYbuJQFeRa+/blaSjd7r5AEg3PCK557T57UKISqnZXAwdzY0fndL3766lfTf/xoWZ9pszDt61I21cz8J8Cr4809YtMis9G30vicPGpb27q1PhxJCVM3TCQkEG20Xa7Ho7WbXrtX7MhuYnZzs1fPCJcCr4O239baxZRWgpwzejdlug9OmyeHEQrhCw4AAHm7c2Liwe3fo0AHmzzcs3p6by2qTRT/eQAK8kgoLTdcKAO8D6ejFO2VdfjkMHOieeglRFz3epAlRRv2RFgtce63eM/zIEcPnzvLiwUwJ8Er64gsw7j6zoWee/AMwbhU895z76iVEXRTp58dTZkvs+/eHuDj9Q2vgi/R0UgsK3Fg795EAr6TZs81KFgKH0BtXlTVyJHTt6p46CVGX3RcfT6yfX9kCHx+45hq9OtNg+w6bUrx7ZsW4t5EAr4StW2H1arPSOcDfAOOlvvff76ZKCVHHBfn4cEeDBsaFV1yhP37zjWHxWykpXrm8XgK8Esz3694N/AjcY1japg1ccombKiWE4J5GjYyPSQkN1afYf/GF4Z4XyYWFLPaijfNKSIBX0OnT8KHxIfLoqYNN0bsOljV2rMw8EcKdmgUFcUV0tHHhNdfogatffjEsnm1yRoEnkwCvoHnzDLvR0HO+3wfuxGi/7+BgWXUpRHUYGx9vXNC4MfTpA199ZVi87ORJdnvZ4ccS4BWglKPByy+BTPSug2XddJPsOChEdRgaHU0zsw2Ghg2DTZvg+HHD4je9rBUuAV4Bv/4K27eblb6FHrw0/u0/1vgUNSGEi/lYLIxp1Mi4sE8f3R9usoHR/1JTKfCiwUwJ8Ar48kuzEseDl337Qpcu7qmTEKKs2xs0IMBowMnfX6+i++47/Zb6PKeKi1mVmen2+rmKBLiTlIKvvzYr/Qjd8jY+Lk1a30JUr1h/f66LizMuHDIEDh/WG/EbWORFR65JgDtp927Yt8+sdAEwCqPBy9hYGDXKjRUTQhgaa9aN0rEjNGoEZ454PN/ijAyv2eBKAtxJ5rsObgd2ogO8rDvukAMbhKgJvcPD6RYaWrbAYtGt8OXLDeeE/1lQwGbjqWYeRwLcSeYBvgB92s6FhqU33eSmCgkhHLJYLNxcv75x4ZAhcPIkrF9vWLzISxb1SIA74fhxvZmZsQXANRj9UzZrpt+tCSFqxvBY4+2ciY+HVq1MF/V4Sz+4BLgTvvnGbN/vXcA2zLpPrrpKVl4KUZNaBAXRLjjYuLBvX1izxnA2yobsbI7k57u5dlUnAe4E8+6ThUA94CLD0uHD3VQhIYTThsfEGBf06aPfXu/fb1i8xAu6USTAy5Gfr6eMGlsIjMRo9klEhD4YWwhRs0y7Udq0gago3Qo34A2bW0mAl2PlSsjJMSo5DvwBXGH4vGHDwGhrYiFE9eodHk49ox9GqxV69TIN8OUnT5Lt4afWS4CXw7z7ZBX6n2+AYal0nwjhGXwsFv7mqBtl504wOBezQCl+OHnSzbWrGglwB5SCxYvNSpcD3YHIMiU+PvrcSyGEZ7jKLMB79NAzDdauNSz29OmEEuAOHDwI5uedrgAGG5ZcfLHuWhNCeIYhUVHGe6OEhkKnTqYBvtrD90WRAHdgwwazkj+BvcAgw1LpPhHCs4T6+jLYrFXVuTNs22ZYtD8/n8yiIjfWrGokwB0wD/AVgD/Qz7D0qqvcVCEhRKWZzkbp0AHS0sCku2SjBy+rlwB3wGSVLTrA+wJlFwgkJkKLFu6rkxCicgabnajSrp3uBzfZ7H99Vpb7KlVFEuAmlIKNG81KfwSMTyfu0cNdNRJCVEWLoCAifMqu2SA0VO97YRLgGyTAvc/Bg3qvm7IygMOAcVJ37+7GSgkhKs1isdA9LMy4sEMHCfDaxLz/e9OZj90MSyXAhfBcDgN8zx4oLCxT5MkDmRLgJswD/A+gPnoL2bK6Gee6EMIDmAZ4x45QVGR6So+nDmRKgJswH8DcCHQ1LGnWDMzWCwghal53owMeQJ/QEx6uV2Ua8NSBTAlwA44HMP9Auk+E8E6mA5kWi55ClpRk+DxP7QeXADdgPoCZgz6B3rgFLgEuhGezWCx0M+tGadpUH3ZsQALci5j3f28GFBLgQnivHo4C3KQF7qkDmRLgBv74w6xkOxACNDMslQAXwvOZDmQmJEBmpuHOhACbPHAgUwL8LIWFMH8+fPSR2RUHgeaYnX8ZHe3GygkhXMJ0ILNpU/3RpBX+zKFD/JyZiTI4gq2mSIADR47AxInQsCHceKPp9w8d4ImGJbm5+uxMD/reCiHOk1NczLKTJ42DLy4OAgNN+8F/OnWKizZtov26dbyZnExOcbFb6+qMOh3gdju8/jq0bAkvvAAnTpQXwAcx6z45dgyuvBIGDzb9/gshatCqkydpu3Yt9+3di+EZ5VYrNGli+gNc8pzdubnct3cvbX7/nZU1fOBDnQ3wffugf394+GEoKADnTk46hFmAlwT/6tXQvj28/ba0xoXwBNk2G/ft2cMlmzeTUlBgHN4lGjeGlBSH91PoME8tLGTQ5s2M3bOnxo5eq5MBvno1dOkC69ZVJGRzgaOYdaGUsNl0d8qYMfDPfzr7i0EI4Q5HCwvpvXEjb58JZYfhDXol3okTTt275F7vpKTQa+NG0goKKl3PyqpzAb5iBVx6KeTlVTRcD535aNwCP59SMG8e3HADeEBXmRB1TlpBAX03bmRPXh5O/6hHR5stAjFlA/bm5dFn40ZSqznE61SAr1+v+6ltNt3/XTGHznxMdPoZdjt88QXcfbd0pwhRnU7ZbAzavJk/CwqwVeSHLzramcGwMmxKkVxYyCWbNlXrfPE6E+A5OfD3v+upghUPb4BkIBSIqNCz7Hb473/hk08q8zWFEJXx4N697M3Lq1h4g+5CKSqCSqy8tCnF/vx8HjDZEMsd6kyAP/mkPqC4cuENkAlUfqL3vffqU5uEEO61NCODD44erXh4w1+LOSp5Gr1NKeYdO8bi9PRKPb+i6kSAr14NM2dWtS86E4is9LNzc+Guu6ry9YUQ5cksKuL2XbsqH2wl24k6OZBpxALcsXs3J6uhK6VOBPj48XqKZ9VkUpUAt9lgyRI980UI4R6zU1I4YbOVP9vETFgY+PhUKcAVcNJmY1ZycqXv4axaH+DbtsGvv1al66TESSCqSnfw84NZs6paDyGEkWKlmJmcXLmukxJWq94X/PTpKtXFphRvJCdjq3rwOFTrA3z2bB2cVZdJVVrgoMdGPvmk0t1rQggHlmZkkGZwJFqF+fsbHq1WUUeLilji5h/2Wh3gRUXw/vv6Y9VlUtUAB90PP39+lW8jhDjPO6mpGBzVUHEuCnAfdJ3cqVYH+PbtevDQNTJxRYCD7tIRQriOUopfTp3CJWvmXBTgxcAvp065dffCWh3gGza4YvCyRC4QXOW7FBfDmjVVr40Q4i/JBQWcdNW+FQEBLglwgFPFxfzpxtWZvq682WeffcbatWvJzc3l+uuv5+KLLz6n/LXXXiMjI4PU1FQeeeQR2rdv78ovX8aGDXpA2XXjCBaX3OXgQb1OwGxfeSFExWxw5WELLmqBl9iQlUXTwECX3e9sLgvwrKwspk2bxoYNG8jPz6dnz55s2bIF65km8P79+1m6dCnff/89hw8f5h//+AerVq1y1Zc3tHOnq/q/XUspOHAAOneu6ZoIUTvszc3F32Kh0BXdFS4McH+Lhb15eS65lxGXdTCsWbOGNm3aYLFYCAoKIiQkhP3795eWr1ixgu5nzhxLSEhg165dFBr8IxUVFZGXl3fOo7Jycir9VLdz4/dUiDonz5XT9Q4ehC1bXHY7l9btPC4L8PT0dELPOqooLCyM9LOWk55fHhoaSobBFJupU6cSHBxc+ogpWRlVCW6eglklskOhEK7j0h/148fL3RO8Ioq9YRAzNjaW7LP6obKysoiNjTUtz87ONgznCRMmkJubW/owCnlnBQVV+qlu58l1E8LbBLputgL07g2XXeay2wW5sm7ncdmde/fuzZ49ewDIz88nJyeH5s2bk3pmHuSgQYP448xx70lJSbRt2xZ/f/8y9/Hz8yMoKOicR2UlJupBTE8UH1/TNRCi9oj396fIVS3dwkI9E8UFbEoR76J7GXHZIGZ4eDjjxo1j3Lhx5ObmMmvWLA4dOsSNN97I77//TosWLRg2bBjPPvssycnJzJ4921Vf2lT37p65aCYuDurXr+laCFF7dA8Lw2UdFYWFeiDTBezourmLS6cRXnfddVx33XXnfO73338v/e+HHnrIlV+uXN27u/JIMz+g6vM5LRbo1avqtRFC/KV1cDCBViv5rhj4cmGAB1gstA2u+voRM7V6IU/XrjowXSMSvRqzanx9oWfPKt9GCHEWH4uFLqGhrlmp4cIAvyA0FB/XhVAZtTrAQ0Phiitc1Q8ehSsCvKgIRo+u8m2EEOe5pX59jwpwK3Crm/tKa3WAAzzwgKum7EVS1QD38YGBA6FNGxdURwhxjpvr1yfAFTM+XBTg/lYrtzRoUPX6OFDrA3zIEGja1BV3iqSqAV5cDA8+6Iq6CCHOF+7ryz8aNMCvKl0WSkF2dpXn+fpZLNxavz4Rvi4dZiyj1ge41QoTJ7qiLzwSfahD5fj4QMuWcNVVVa2HEMLMI40bV+0GublQUPDX0WqVpFxRFyfU+gAHuOMOuOgiPYBYeVXrA7fb4aOPqloHIYQjrYOD+U+zZpUPtpKj1KoQ4Fbg2cRE2oaEVPoeFflatZ7Vqg92qFp4RlLZAPfxgSeekOmDQlSHRxs3pktoKL6VedtdsvK75HT6CvK1WLggJITHmzSp1PMrqk4EOOhVmVVbOxQHnADyK/QsX19o3x4mT67K1xZCOMvXamVeu3YEWCwVD7gTJ3SLLzKywl/Xit59cF779vi6cfn8+V+zzrjtNnjuuco+u9mZj0lOP8PXVw+gLlsGbtoOWAhhoF1ICN9ecAF+FQ3xEycgIqLCc4+t6Nb3txdcQIdq6Do5++vWKU8+Cc8/X5lnJp75eNCpq3199aDlL7/opfNCiOp1UWQk33fuTKDV6vxZmSdOVLj/2wcIsFr57oILuLgSLfeqqHMBDjB+PHz8sT4Rx/l+8SggnPICvKTbbcQIHd5ungYqhHDg4shIfuvWjVbBwc6FXUZGhfq/fYCWQUH82rUrA6OiKlvNSquTAQ5www2we/dfu0aWP95hQXejHDK9wtdXd519/rl+VHIcRAjhQheEhrK5Rw+eSkgo7eowlZbm1Ftm3zNdM+ObNmVzz550qaHzEetsgAM0bAhLlsBnn0G3bvpzfn6OnpGIWQvc11ev+ty9G0aNcnFFhRBV4m+18p9mzVjfvTtXO+oiOXwYEhJMi0uCe3hMDOu6d2dK8+auWf1ZSXU6wEG3vK+9Ftav14cg33qro26VZpgFeNu2MGMG1KvnrpoKIaqqa1gYs1q3Ni48dUo/TJZuR/n6MjEhgT/79mVhx45084BTyWVZyVm6dYN334WQEHj9daMrmgHzDJ+7c6c+51JO2hHCs23IyjIuOHxYfzRpgX/Yrh1XVnGFpqvV+Ra4kQsuMCtpA6QDx8qUFBe79BxUIYSbOAzwwEDTPvALqnF6oLMkwA10725W0vXMxz8MSzdscEdthBCuZBrgSUm6+8RgkLOenx+N3Xg0WmVJgBvo0MHsSLw4IB6zAF+/3o2VEkK4xIazDlc/R1KSafdJ97AwLG48mKGyJMAN+PlB585mpV2RFrgQ3ulYYSFHCkyORjx82HQAs4cHDFgakQA3Yd6N0g3YaFiyfbseyBRCeCbT7pOTJ+HoUb182kD30FA31qryJMBNOO4H3wecLlMiA5lCeLb1ZgG+fbv+2KGDYbE7T5avCglwE+UPZG42LJV+cCE8l2kLfPt23f9tENSeOoAJEuCmzAcymwLRgHGHt/SDC+G5TAcwt2+Hjh0Nizx1ABMkwE2ZD2RagAuBnwyfJwEuhGcyHcAsKoJdu/TG/QY8dQATJMAdMu9GGQSsBMoed79t21+nMgkhPMfqU6eMC/bu1SFu1gL30AFMkAB3yDzAB6OPV9tUpsRuh2+/dVuVhBCVtDg93bhgxw4IDweTQ4g9dQATJMAdMg/wjkAssMKwdNEiN1VICFEpxUqxpOS8y/Nt2QLt2umj1M7jyQOYIAHuUIcOYPzuyYruRllu+Lxvv4XCQjdWTAhRIb+dOkWGzVa2wGaDjRuhRw/D5/UJD/fYAUyQAHfIzw8uv9ysdBCwGiib1FlZ8OOPbqyYEKJCFpm1vrduhZwc6NvXsPhvHrb74PkkwMtx1VVmJYOAXOB3w1LpRhHCcywy6/9eswaaNIH4eMNiCXAvd8UVhl1jQEv0nPDvDJ+3eDEo5caKCSGcsic3l91me1ysWQO9exsW9QwLo5EH93+DBHi5YmOhXz+jEgtwNfCF4fMOH9bvzoQQNWuxWfdJSoregbBPH8Pi4R7e+gYJcKcMH25WMgrYCewwLJVuFCFqnsPuk+Bg0xNchsfGurFWriEB7gTzAO8HNAAWGJZKgAtRszKKivjZbAHPb7/pucIGJ5k3DQigkweewHM+CXAntG4NbdoYlfgA12AW4OvW6XdpQoia8U1GBnajgtOnYfNmuPBCw+cNj4316OmDJSTAneS4G2UrsNuwdIFxtgshqsHnx48bF6xapY9Ou+giw2Jv6P8GCXCnmU8nvAioByw0LH3zTZmNIkRNOJyfz1KzAczvv9ezEwy6ScJ8fBgQGeneyrmIBLiT+vYF41/KvsBI4HPD5+3cKYt6hKgJb6ekGHefJCfr7WOHDDF83uXR0fgbzx32ON5RSw/g6wtXXmlWegN6Yyvj43hmz3ZPnYQQxgrsdt5JTTUuXLYMoqKgZ0/DYm/pPgEJ8Aq5+mqzkgHohT1vG5Z++aUMZgpRnRYeP87xoqKyBUrp7pNBg3Sr7Dw+wDAJ8NrpyiuhXj2jEgtwN/AhkFOm1GaDd991b92EEH+ZnZxsXLBjh25NmXSfjKxXjxiDaYWeSgK8AgIC4M47zUr/CeQBnxmWvvWW3jNeCOFem7Oz+eV02UPHAfjuO332ZevWhsVjGzVyY81cTwK8gu65R88+Kqseek74W4bPS0nR+6MIIdxrjlnrOysLfvhBv5U2+CFuGxzMQC+ZfVJCAryCEhLgb38zK70HvTuh8Yn1MpgphHudstmYd/SoceHSpXpnuiuuMCwe26iRVyzeOZsEeCWMHWtWMhBHg5nLl+uzU4UQ7vFhWho5doPJg8XFejbBsGGGc7+DrVZubdCgGmroWhLglXDZZdC8uVGJBd0K/xB9ZmZZc+a4rVpC1GlKKWabTfdavRqOH4eRIw2Lb65fnwiDWSmeTgK8EqxWuPdes9I70UFu3F/y3ntg9g5PCFF5X6enszM317hwwQK974nJwQ33etngZQkJ8Eq67TY9K6WsSOA+4BX0iT3nysmBKVPcWjUh6hyb3c5TBw8aF+7cqVdejhplWHxheDhdPPjkeUckwCspJgauv96s9GEgGzCe/P3WW3DggHvqJURd9OHRo+at74ULoWVL6NzZsHisSavcG0iAV4H5YGYccBcwHaNDj4uK4Omn3VcvIeqS/OJiJh06ZFz455+wciVce63h1MF6fn6MMl6d5xUkwKugVy/o0cOs9DEgDZhnWPrxx3o7YiFE1cxOSeHPggLjwrlzoXFjGDzYsPjOhg0J8JKNq4x4b809xH33mZU0BW4GpgHFZUqVgqeecl+9hKgLTtlsTD182LjwwAHd+v7nP8HHp0yxD3B3w4ZurZ+7SYBX0U03QatWZqXjgH3Ap4al33wDP/3kpooJUQe89OefnLDZjAvnzoVmzWDAAMPi2xs2JDEoyH2VqwYS4FXk5+doVklb4BbgKSDf8Ipx4+TAByEqI62ggBl//mlcuHu3nvt9++163u95Aq1WJiUmureC1UAC3AVGjYJu3cxKpwBHgZmGpWvWyOHHQlTGlMOHyTVadQnwv/9B27amZ14+GB9PvPE8YK/i0gCfOHEiU6dO5c477yTFYEXUqlWr6NKlCwMHDmTgwIH8/PPPrvzyNcZqhWnTzEqbAI8CU4F0wyueekqv9BVCOGd/Xh5vmR3YsG0b/P67bn0bzDyJ9PVlfNOmbq5h9XBZgK9YsYKjR48yYcIEbrnlFp588knD61599VVWrVrFqlWr6N+/v6u+fI0bMsR0oBvdFx4APGtYumOHPjtTCFE+pRSP7d+Pzajv0W6HWbP0nG+TKWLjmzYlyov2/HbEZQG+fPlyepz5B+vVqxfLli0zvG7evHm89NJLTJ8+nQKDqT9FRUXk5eWd8/AWzz9vVhKGDu85wB7DK8aNA7OFZEKIv8w/doyv0o3fzfLtt7BnDzzwgGHru5G/Pw948cKd87kswNPT0wkNDQUgKCiIzMzMMte0a9eOiRMn8thjjxEVFcWECRPKXDN16lSCg4NLHzFedLxRz56mq3WBO4DW6NZ4WTk5cMcdugEhhDCWVlDA/Xv3GheePg1vvw0jRkCLFoaXTEpMJNhgSqG3sijl/ByI4uJi+vXrV+bznTt3JjY2lqZNm3LPPfeQl5dHy5YtSTbbWB3YtWsXN998M+vXrz/n80VFRdjOmhaUl5dHTEwMubm5BHnBlJ/du6FDB7M+7W+AK4FlgHF/y6xZjlZ4ClF3KaW4Zvt289b3K6/omScffABnGpNnax0UxPaePfH14oU756vQ/ok+Pj6sWbPGsGzFihXMnz8fgHXr1nHppZcCkJ+fT25uLtHR0UybNo17772XiIgIDh06RKLBNB4/Pz/8vLh/qk0bPXbyzjtGpcOA4egtZ7cAwWWueOIJvWVxs2ZuraYQXsdh18nu3frIq3HjDMMbYEqzZrUqvKGCLfDyTJw4kdDQUA4cOMDkyZNp1KgRH3zwAZs2bWLGjBnMmzePZcuW0alTJzZt2sTkyZNpYfJWp0ReXh7BwcFe0wIHSE7We+fkG079PgK0B8YALxo+/5JLYNkyw+mrQtRJaQUFdFi3znjRjt0O99+vV1u+/rph33ePsDDWduvmdSfulMelAe4O3hjgAOPHwwsvmJW+id5ydh1gPIFculKE0MrtOlm6FGbM0Nt8tmxpeMmyzp0ZHBXlxlrWDAlwNzl1Cjp2hCNHjErt6OPXsoC1QNkuo5AQ2LpVulKE+OToUW7cudO48OhRPfo/bJjpxkTXxMaysGNHN9aw5sibdDeJiDDrBwf9z/4OsAOYYXiFzEoRopxZJ3a7fpsbEwN33ml4SYyvL7Nbt3ZjDWuWBLgbXX65HtA01gZ4GpgMGP8PunKlLPARdZdSirF795pvVvXll3pP5iefNDseizdataK+v78ba1mzJMDdbMYMvR2xsSfQc8NvAYoMr3j0UThvpqUQdcLrycl8adbvnZSk53zfcove88TANbGxjI6Lc2MNa54EuJtFROj/z4z5AZ+gpxRONLwiP1+vS0hLc0v1hPBIP5w4wb/27TMutNnguef0ANHNNxteUtJ1UttmnZxPArwaDBvmqCulPXqnwheB7wyvSE6GkSPB7NARIWqTvbm5jN6xA9Phn48+0vtOPPkk+BovZantXSclJMCrieOulNuB69FdKcY7rK1ZA2PGyN7honY7ZbNx9bZtnDTr9966Va+0vOsuSEgwvKQudJ2UkACvJo67UizAW+hNr27G6Ag20AeMvPqqGyonhAcoVoqbduwwP10+IwMmT4Y+feCaawwvqStdJyUkwKuR466UcPTRa6vR52gae+wx+P5719dNiJo24cABlp44YVxYVKTDOyhId52YLFOuK10nJSTAq9nLL4P5bpY90OH9NLDS8Aq7HUaP1jtmClFbfHT0KC+YHY8GMGcO7NsH//mP6V4nI+tQ10kJCfBqFhnpaIEPwCPASGAU+kDksjIzYfhwvdpTCG+37vRp7ty92/yCH37Qc74ff9x0aXKMry9z6lDXSQkJ8BowbJg+Rs2YBXgfSAT+Bpw0vGr3brjxRjmKTXi31IICRmzbRr7ZkuN9+/Tb1muvhUGDDC/xAea3b1+nuk5KSIDXkP/8B666yqw0BFiE3ivlOswW+XzzDdx7r8xMEd7pRFERV2zdSkphofEFmZkwaZJeqHPPPab3mdGyJZdGR7unkh5OAryGWK0wbx60b292RTzwNfAL8BBgnNLvvAMPPSQhLrzLKZuNy7dsYVN2tvEFeXl6sFIpePppvVWsgTsaNKhVR6RVlAR4DQoPh0WLwHyXyx7AB+izNGeZ3mfmTL2PvYS48AbZNhtXbtnCuqws4wtsNnjmGUhN1ZtVmbSuLwwPZ1Yd7Pc+mwR4DWvRAj7/3LSBgR7M/A+6Fb7E9D7Tp+tZVkJ4srziYoZv28Yvp08bX6CUXvW2ebNeLt+kieFljQMC+KJjRwLq+KkndfvVe4jBg/VxfuYmAP9Ah/kK06tem6FYNyEZD9/iXdRRxbnF/HTvdtYnZZpf9L//wXff6W4Tk/7FIKuVrzt2rJODlueTAPcQ999vuqUxembKO8DV6DM1fytzRXSknZfZRM5zezk48aCEuPAotmwbW6/cSsA7J/hsUgChRl3fX38NH36ot+Ds29f0XnPbtqVbWJj7KutFJMA9hMWij1Hr39/sCh/gQ+AS9OHIG0tL6kUrXmEzLbL1xPCk55LY/+h+CXHhEWynbGwZuoXMVZkABG4qYMGzQQTnnXXRihXw2mtw221wxRWm95qYkMB1dWyxjiMS4B7E3x8WLjTt9gP8gc+B7sBlwHYaxtl51fIHTTPPXdVz5JUj7L1vL8ouIS5qTtGJIjZfupnTv57b5x2wLo8vpwQTnI8+wXvqVL2/yS23mN7r6pgYnklMdG+FvYyciemBNm2Cfv3AbE8fyAaGYrUe5JWo2VyQEWl6r/o316f1O63xCTQdJRXCLfKT8tl61VZytuSYXvNt2x95cc+z8Pe/60UNJjNKOgQH81u3boSZbB9bV0kL3AN16aJXDpuP0YTStPFiEn0imJpxD0kkmd7r6LyjbBq4iYJU2UxcVJ/MnzPZ0GODw/D+P/6P6bue4bqmNxN8l3l4NwsM5P8uuEDC24AEuIe67DJYsMB4v/rWLey84XuIGUXTiCaah3iIPZjvbpX1exYbemzg9DqTqVtCuFDKOylsHrSZouPGK4gBlrKUF3mRG7mRMYf+yZKZkYTaywZ4k4AAVnTuTOPAQHdW2WtJgHuwq66C+fPPnSPeoa2dVy2bCDt0mggieJmXaUELHuERNrHJ9F6FKYX8cdEfHP3oqPsrLuoke5GdvQ/sZc/de1BF5j2zi1jES7zELdzCHdyBBQuWxadYMieS8LMiqaG/Pys6dyaxjnSdVoYEuIf7+9/1ASQWC3TppHjFspmgfX+1pIMJ5jmeoyc9eYIn+JmfTe+lChQ7b97J/nH7UcUePfQhvExRRhFbLt9C8hvJptcoFO/zPq/wCv/kn9zGbVj4q9WtFpxkyXuRRFqs1PPzY3nnzrQMDq6O6nstGcT0El9+YSdyyhYsf2QalhdTzCu8wrd8y+M8zuVc7vB+0VdE0/7j9vhGSL+iqJrsbdlsu3ob+QfyTa8pooiXeZkf+IEHeZCrudr0Wv9H6hP6bBMuMNn3W/xFAtyLpH2Qxq7bdmF22qtC8S7v8jEfcw/3MJrR57RwzhfcNpiOizoS3EpaOaJy0r9OZ+fNOynONt/XOJtsnuZpdrKTSUyiD31Mr/WL86Pzss6EdpLwdoYEuJc59ukxdty0w+zYTAA+4zPe5E2GMIRHeRR/zJcc+0b60n5+e6KH1s3tOEXlKLsi6fkkDk486PC6NNIYz3hyyOE5nqMVrUyv9W/kT+flnQlpG+Lq6tZaEuBe6PhXx9lx3Q6HA0VrWMMUptCEJjzLs9SjnsN7NhrbiOYvNMc3VLpUhGO5+3LZfftuTq12fCTUbnbzJE8SRRTTmObw/8GApgF0WdGFoBbyM14RMojpheqNqEfHrzpiCTDvHulDH2YzmxxyGMMYtrPd4T1TZqew/oL1nFxpfAKQEMquOPL6EdZfsL7c8P6O73iIh2hJS17ndYfhHdg8kK4/dZXwrgRpgXuxzB8z2XbNNmwnbKbXZJPNFKawkY08wiMMY1i595XWuDifs63uAgqYyUyWspRruZa7uRtfzP8/Cu0WSqdFnQiID3B1lesECXAvl3cgj63Dt5K73XTdPcUU81/+y8d8zEhGMoYxDvvFAQKbBdLmvTZEXWJ62oSoA5RdkfxGMgfGH8CeZzJ6fkYyyUxmMqmkMo5xXMRFDq+Puz6ONu+1wSdYtnmoLAnwWsCWZWPnzTvJWJTh8LoVrGA604knnolMJJHEcu8trfG6K29/Hrtu38Wpnxy3ugF+5Ede5EXiiWcSk4jHwTFnFmg2tRlNxzet06fpuIIEeC2h7IpDkw5xeMphh9clk8wUpnCAA9zLvVzN1Q6nGoK0xusaZVckzzrT6s513Oouooi3eZsFLOAqruJ+7nf47s4n1Id2H7cj9qpYV1e7TpIAr2WOfXqMXbftcvh214aN93mfj/iIPvThcR4nivLDucFtDUh8JpHAJrIvRW116tdT7H98f5ntX43sYx/TmEYyyfyLfzGEIQ6vD2weSKdFnQjpINMEXUUCvBbK2pjFthHbKPjT8Q6Em9nM8zxPIYWMZzy96FXuvS0BFuLvjyfhyQT8YvxcVWVRw3K253DgqQPldsOBbnV/xEfMYx7taMcTPEETTDexByByUCQdPusg/8+4mAR4LVV4tJBt12wrtyWVTTav8AorWMGVXMnd3E044eXe3yfch6bjmtL4ocb4hMgglLfKP5zPocmHSPsgzXSF79n2sre01X0ndzKSkfjg+Psf/0A8LV5ugdVPZi27mgR4LWYvsLPnvj2kvZfm8DqFYgUrmMUsFIqxjOVSLi23bxzAv4E/CU8n0PDOhvID6kUK0wtJei6J5FnJqMLyI6CIIj7kQz7mY9rTnid4gsY0dvgci5+FVrNb0ejORq6qtjiPBHgtp5QiZXYK+x/bjz3fcRMriyze4R0Ws5hudONhHi73rXGJwBaBNJvSjLjr4rBYvXNmQUFqAVkbssjekE321myKTxdjL7RjDbTiH+dPaNdQwrqHEdo1FN8w75yVY8u2ceSVI/w5/U+Ksxzsx3CWTWzidV4nhRTu4i5GMhJrOWsAA5oE0O7jdkT2j3RBrYUZCfA6Ind3Lrtu3+XU4NR2tjODGfzJn9zETdzADeXOGy8R2jWUZlOaEX15tFcEedGJItLmppH8RjL5B/VuehZ/i96m4OyfDB+wWCwomwILhPcLp/GDjYkdEesV7zyKc4tJ/W8qh6ccpuio+UELZ0sjjTd5kx/5kR704GEedjw98IyGdzekxfQW+IZ75y85byIBXoeoYsWR145wcMLBclvjNmwsZCFzmUs96nE3d9OPfk51qwAEtQyi0b2NaPDPBvhFe97AVUFKAQf/fZCj847qvdGda4z+xQrYwS/Wj8YPN6bJY02wBnhekOfuySVlTgppc9OwZZqv2D1bHnl8wifMZz71qc9YxtKHPuV+7wOaBNDmvTZED5GN0aqLBHgdVJHW+FGOMoc5/MiPdKAD93APnejk9NeyBlqJuyGORmMbEd6j/MFRd1NKcfTDo+y9by/2fLtuUVeVj/6F1W5eO494jXabnYwlGaTMSuHkMuf3tlEolrGMt3mbPPK4lVsZyUj8KP8XsLS6a4YEeB1VkdY4wE528g7v8Ad/0Je+3MVdNKNZhb5mWM8wGo1tRNzoOHyCqn/mSlFGETtv2cmJb0+4/uY+gIKEpxJIfCaxRrqPClILSH03ldS3Uyk44vwh1grFOtYxl7nsYhdXcAW3czvRlN+SllZ3zZIAr+Ny9+Sy6zbnWuMlP+jv8A772c8QhnAbt9GABhX6mr5RvjS4vQGNxjQiuGX1HCZRkFrApoGbyD+Q75pWtxkrxI2Oo+37baulb1wpxamfTpE8O5n0L9Ir9NoUirWs5X3eZyc76UlP7uROWtPaqedLq7vmSYAL3Rp//QgHn3KuNW7HzkpW8l/+y3GOcxmXcR3X0ZSmFf7aERdHEHt1LDHDY9wW5oXHCtnYdyMFSQXuDe8SPlBvVD3af9Qei4/rW+KqWHF67WkyFmVw/Mvj5O3Oq9jzUaxhDR/wAbvYRW96cyu30p72Tj0/oOmZVvel0uquaRLgolTunlx237Xbqc2LQM8N/pZv+ZzPOcIRLuRCRjOaTnRyerDzbMHtgokZHkPs8FjCe4e7JPzshXY29N5A7rbc6gnvElZo/EhjWr7U0iW3K84p5uSyk6QvSidjSQZFx5ybSXI2O/bS4N7NbvrQh1u5lXa0c+4GVmh095nNzaTV7REkwMU5lFJkLM3g4JMHydmW49RziinmV37lUz5lO9tpRztGM5r+9C93lZ4Zv1g/Yv4WQ8zwGKKGRFV6N8SDkw9y+D+HnVpl6HIW6PJjFyIviqzU0wtSCshYkkH6onQyl2c69e7ISBZZfMu3LGIRySRzIRdyK7fShjZO3yPm6hiaT20u+5h4GAlwYUgVK45+fJSD/z5IwWHnB8S2spVP+ZRf+ZWGNGQEIxjCECKJrHRdLAEWogZHEX15NGE9wwjtHOrUIGjWpiw29NhQ8SmCrmKFgMYB9NrZy6k9r4syisjakMXpNafJWJJB1rqsKn35vezlK75iOcuxYuUyLuNqrq7Q4HPExRE0n9aciL4RVaqLcA8JcOGQvcBOypspegFIuvNv25NIYgELWMYyCinkQi5kGMPoRa9Kt8pL+UBI+xDCuocR1iOM0O6hZUJdKcX6C9aTsysHnJv+7B4+Z7pSpp/blVIS1qWP9VkV+kVpppBCfuInvuIrtrOdpjRlBCO4jMsIwfnWc8gFITR/vjnRw6Jlz24PJgEunGLLsvHny39y5OUjFGc736TNI4+f+Ilv+ZbNbCaaaIYylMu5vFKDnqZKQr1HGGHdw1B2xb4H97nu/lVgCbTQ/pP25O7MLV2qn38o32X3L6aYjWxkBStYzWryyKMf/RjBCLrStULjEYHNAmn2n2bE3eC9WyLUJRLgokIKjxVyeOphUuak6OXmFZBMMv935k866bSnPRdxEf3o5/SeK0KzY2cb21jBCn7kRzLJpA1tGMQgLuESh4cIG/GL8yPh3wk0ursRVn/PW1EqjEmAi0rJO5jHoUmHOPrx0Qr3MRdTzAY2sIxlrGENWWSRQAL9zvxpS9tyN0uqiwopZCtb+Z3f+ZEfOcYxEkhgMIO5hEvK3R3QiE+ED03+1YTGjzT22g266jIJcFElBckFpLyTQurbqRSmFlb4+cUUs5Wt/MzP/MIvpJFGDDFcyIX0ohed6EQEdXMATaFIIol1Z/5sZjMFFNCEJlzERQxmMM1oVqkpm6FdQ4m/L5646+NkP3cvJgEuXMJeZCf963RSZqeQuTKzUvdQKPazn1/O/NnLXgCa0YwLzvzpTGdiiHFhzT2HQpFMMrvYxR/8wXrWc4xjhBBCd7rTgx70pGeFV76WsARYiBsdR/zYeMJ6hcngZC0gAS5cLmdHDilvppD2fhrFpys/h+80p9nKVrac+bOHPdixE088F3ABrWhF8zN/wghz4SuoHhlksOusP7vZTRZZ+OBDa1rT88yfdrSr0sydwGaBNBrTiAa3N8A/1rltgYV3cGmAL168mIcffpiPPvqIPn36lCkvKiriscceo0GDBhw6dIjp06cTHu549zYJcO9ly7Zx7ONjJM9KJmeLc4uCHMkll+1sLw30/ewnB33fWGJpTnOa0az0Y33qE0ZYpboYXKWYYtJI4whHSCa59ONBDnKc4wA0oQltaEPbM39a0pIAAqr2hS0QfUU08WPjiR4a7ZYl/aLmuWzUIjMzE19fX5o0MZ9N8OGHHxIXF8eTTz7J+++/z8svv8wzzzzjqioID+Mb6kujuxvR8K6GnP7tNMmzk8n4OqNC0xDPFkxwaasUdJfDcY5zgAMc5CD72c861rGQhdjOTP4OJJB6Z/7EEVf637HEEkwwQQSVfgwiiEACHQ6g2rFTTDGFFHLqzJ9MMjnFKU5zuvS/M8ggmWRSSaX4zChvOOE0pjHxxDOc4bSjHa1p7dJ3D/7x/tS/uT6N7mlEUDNp8NR2Lu9CGThwINOmTTNsgd90003ceuutDB06lJ07d3LnnXfyyy+/nHNNUVERNttfKy/y8vKIiYmRFngtYS+wk7kqU+/psSijQtueOquIIlJI4ShHOX7Wn2McK/2Yh/kGUIEEEkBAaVif/Udh/OPihx+RRBJBBJFEEkUU8Wf9aUxjt3XzhHYNLd1DJrRrqPRt1yHVOm8oPT2d0NBQAMLCwkhPTy9zzdSpU6VVXotZA6xED40memg06g1F9qZsMhbr/T6yN2S75Gv44UfCmT9m8s78ySW39L/P/pNPPj4O/vjhVxrWEUQQSGC1ddVY/C1EDYoiZngMMX+LIbBJYLV8XeF5KhTgxcXF9OvXr8znO3fuzFtvvVXu82NjY8nO1j+kWVlZxMbGlrlmwoQJjBs3rvTvJS1wUftYLBbCuoYR1jWMxKcTyT+ST8aSDDIWZXBy+UmnTkuvrJIuE2cOLfAEvjG+xFypW9lRl0XJnG0BVDDAfXx8WLNmTYW+QH5+Prm5uURHRzN48GA2bNjA0KFDWbduHZdeemmZ6/38/PDz87wzFIX7BTYOJH5MPPFj4rFl2zj5/UlOLj+pl59vykYVePSEKZfyjfLVe730DCN6WDThfcOx+sriJnEul/aBz5gxg5kzZzJ06FDGjBlDly5d+OCDD9i0aRMzZsygqKiIxx9/nPj4ePbv38+LL74os1CEU+xFdnJ35J6zAVRtCfXSsD6zMVdY9zACEwOlL1uUS+aBC6/ljaEuYS1cSQJc1Cp2m520D9PYc/uemq7KuXyg185eBLUMkrAWLiOdaqJWsfpaaXBLA/ziPGccxeJnIe76OIJbBUt4C5eSABe1jtXXSvz98Vh8PSMsVZEi/v74mq6GqIUkwEWt1PDOhnhE76AVgjsEE97b8WC9EJUhAS5qpYCGATR5rAlVPb2tyuzQ6rVW0nUi3EICXNRaiZMTCWoeVGMhbvG10PDuhkQNjqqZCohaTwJc1Fo+gT60m9cO7DXwxa36mLIWL7WogS8u6goJcFGrhfcKp+UrLcu/0JWsYPW30vHLjrLkXbiVBLio9Ro/1JjE/yRWzxez6mmDnZZ2IryXDFwK95IAF3VC4sREWrx8pjvDTf/XW3wt+AT70HlZZ6IGSb+3cD8JcFFnNPlXE7qs6kJAfIBbBjYjLo6g5/aeRPaPdP3NhTAgAS7qlMgBkfTa2YtGYxoBurujSnzAGmyl9dut6bysM4FNZW9uUX1kLxRRZ+Xs1Icvp76bij3fDhbAidPeLH4WVJEioHEA8Q/G0+A2OSxY1AwJcFHn2bJtHP/0OCdXneT0b6fJP5CP0clpFn8LIR1DCO8TTsyVMURfHo3FKgt0RM2RABfiPLZsG7k7cynOLkYVKqyBVnxjfAluE4zVT3odheeQSapCnMc31JfwnjIFUHg+aU4IIYSXkgAXQggvJQEuhBBeSgJcCCG8lAS4EEJ4KQlwIYTwUhLgQgjhpSTAhRDCS0mACyGEl5IAF0IILyUBLoQQXsrj90Ip2WsrLy+vhmsihBDVKzAwEIvFfMdLjw/w/Px8AGJiYmq4JkIIUb3K24XV47eTtdvtZGZmlvubyN3y8vKIiYkhIyOjzm1rW1dfe1193SCv3VNeu9e3wK1WK9HR0TVdjVJBQUE1/k2tKXX1tdfV1w3y2j39tcsgphBCeCkJcCGE8FIS4E7y9fVl0qRJ+Pp6fK+Ty9XV115XXzfIa/eW1+7xg5hCCCGMSQtcCCG8lAS4EEJ4KQlwIYTwUp7fS1/DFi9ezMMPP8xHH31Enz59ypQXFRXx2GOP0aBBAw4dOsT06dMJDw+vgZq63sSJEwkKCuLgwYM8++yzNGrU6JzyVatW8fDDDxMZGQnAlClT6N+/fw3U1DU+++wz1q5dS25uLtdffz0XX3zxOeWvvfYaGRkZpKam8sgjj9C+ffsaqqlrlfe6ExMTSUxMBGDUqFHcf//9NVBL99ixYwdjx47l8ssvZ/z48WXKPf57roSpkydPqm+++UYNGDBA/fbbb4bXvPfee2rKlClKKaXmzp2rnn766eqsotssX75c3XnnnUoppVatWqVuvfXWMtesXLlSrVy5sppr5h6nT59WXbt2VXa7XeXm5qoOHTqo4uLi0vJ9+/apIUOGKKWUOnTokBowYEAN1dS1ynvdSik1adKkmqlcNZg/f76aOHGiev7558uUecP3XLpQHIiMjGTYsGEOr1m+fDk9evQAoFevXixbtqw6quZ2zr6uefPm8dJLLzF9+nQKCgqqs4outWbNGtq0aYPFYiEoKIiQkBD2799fWr5ixQq6d+8OQEJCArt27aKwsLCmqusy5b1ugNWrVzN9+nQmTZpESkpKDdXUPUaPHo2Pj49hmTd8zyXAqyg9PZ3Q0FAAwsLCSE9Pr+EaucbZrysoKIjMzMwy17Rr146JEyfy2GOPERUVxYQJE6q5lq5z9uuFst/L88tDQ0PJyMio1jq6Q3mvG+C5557j8ccf56abbmLkyJHVXcUa4w3f8zrfB15cXEy/fv3KfL5z58689dZb5T4/NjaW7OxsALKysoiNjXV5Hd3F0Ws/+3Xl5eWV9nOfrX79+qX/3b9/f95880231dXdzn69UPZ7GRsby4EDB0r/np2dXSt2yCzvdQP07t0bgNatW3P48GGys7PPCbbayhu+53U+wH18fFizZk2FnpOfn09ubi7R0dEMHjyYDRs2MHToUNatW8ell17qppq6nqPXvmLFCubPnw9wzus6+7VPmzaNe++9l4iICA4dOlQ60OWNevfuXTqIlZ+fT05ODs2bNyc1NZWGDRsyaNAgFi5cCEBSUhJt27bF39+/JqvsEuW97uXLl2O32xkyZAinT5/Gx8eHkJCQGq61+yilSEtL85rvuazELMeMGTOYOXMmQ4cOZcyYMXTp0oUPPviATZs2MWPGDIqKinj88ceJj49n//79vPjii7VqFkpoaCgHDhxg8uTJNGrU6JzXPm/ePJYtW0anTp3YtGkTkydPpkWLFjVd7Ur77LPP2LBhA7m5uYwaNYrGjRtz44038vvvvwN6RsKpU6dITk7moYce8rwZCZXk6HVv2rSJZ599ln79+rFr1y6uueaacseFvMnChQuZNWsWfn5+jB07lo4dO3rV91wCXAghvJQMYgohhJeSABdCCC8lAS6EEF5KAlwIIbyUBLgQQngpCXAhhPBSEuBCCOGlJMCFEMJLSYALIYSXkgAXQggv9f9R0hNvkg4otAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -877,6 +868,142 @@ "axes.add_patch(Arc((0, 0), 2, 2, theta1=-135, theta2=-45, color=\"m\", linewidth=10))\n", "axes.add_patch(Arc((0, 0), 2, 2, theta1=135, theta2=225, color=\"b\", linewidth=10))\n", "axes.set_aspect(1)\n", + "plt.title(\"Circumference 2$\\pi$\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5cf2d2ec-4f85-4d73-90a7-332c4ed4499b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Non-uniform spacing\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVwAAAF2CAYAAAAiISB8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA7EAAAOxAGVKw4bAABZ00lEQVR4nO3dd3wU1drA8d9m0xtpEAIBQg8dpCoKiGIXG4qKvctrAa+IXrw0RVGUKxdRsVwR8YoIir0giKJIEamB0BMgECAhfTdt97x/DEQgM5u2LZvnm89+AntmJmeS7JOzpzzHpJRSCCGEcDk/T1dACCEaCgm4QgjhJhJwhRDCTSTgCiGEm0jAFUIIN5GAK4QQbiIBVwgh3EQCrhBCuIkEXCGEcBMJuEII4Sb+nq6A8C6HDx9m6tSpbNmyhYCAAEpKSmjZsiUjR47kmmuuwd/fn0cffRSA2bNne7i2+h577DFWrVqFUoqhQ4cyc+ZMT1epzpRSzJs3j3nz5mE2m8nJyaF///5Mnz6dqKgoT1dPVJcS4qS0tDTVrFkz9eabb1Y8V15erp5//nkFqP379yullCoqKlJFRUUeqqVjP//8swoLC1MWi0XZbDY1a9YsT1fJKQoKClRYWJjauXOnUkr7GfTv31/dcMMNHq6ZqAnpUhAVHnnkEfr06cNDDz1U8ZzZbGbChAn07Nmz4rnQ0FBCQ0M9UMOqpaenExcXR0hICH5+fjz22GOerpJTBAQEMHnyZDp06ABoP4NRo0bx7bffoiT/VL0hAVcAcOLECb799luGDx+uW75q1SpatmzJ66+/TlJSEkOGDAHgvffeIzk5maSkJGbPns0ll1xCcHAw8+bNIzMzk1tuuYWBAwcyePBgrrjiCv744w8AZs2adcZ1Nm3aRM+ePTGZTLrXveiii2jfvj0//PADixcv5sorr6R169Z8+OGHFXV87733ePHFF8nMzGTIkCGMHj0agKNHj3LzzTdz/vnnc/755/PYY49htVqrrH9Nzhs2bBht2rRh/vz5Z3zfHH0PHF3/bEFBQTz55JNnPGexWGjSpEnF90zUA55uYgvvsGbNGgWoH374ocpjJ02apAYPHlzx//fff18FBgaqJUuWKKWU+uyzz9TXX3+t+vTpo8aMGVNx3LRp09Tjjz9ueJ2ff/5Znf4reeq6y5cvV0op9corr6hmzZqpBQsWKKWUWrRokWrUqJGy2WxnnNOqVauK/9tsNtWvXz/12GOPKaW0LpLhw4erRx99tMr6V/e8U9+z//3vfyoyMlKVl5dXfG2j70F16uWI3W5Xffr0UXPmzDnj+SlTpqguXbqoVq1aqY4dO1Z8fuWVV6p1XeFaEnCFUkqpdevWKUD9+OOPVR6rF3AjIyPPOOZUAN+1a1fFc7m5ueqvv/4yvI5ewI2Kiqr4/7JlyxSgcnNzlVJK7dq1SwHq8OHDZ5xzesDVq8fixYtVSEiIstvtNaq/3nmNGjWqKN+xY8cZ9XH0PajO9R2ZOXOmuv7668849quvvlIrV65UFotFvfXWWyorK+uM/njheTJLQQDQoUMHzGYzBw4cqNX50dHRZ/w/PT0dgPj4+IrnGjVqRK9evWp03UaNGlX829/f/4znAgICACgpKTE8/1Q97r33Xvz8tB604uJimjRpwvHjx2nSpInD+ld13ukzBIKDg8+oj6PvwaJFi6p1fT0LFy5kxYoVfPrpp2d0J1xxxRX4+fmxZMkS+vXrx+rVq0lMTDS8jnA/CbgC0ALBtddey5dffsm99957RllpaSnDhw/ntddeIzk5uVrXa9WqFaD1U0ZGRgJQUFBAWloa3bp1AyAwMJDi4uKKc3JycpxxK2dISkoC4OOPP6Z58+YVzx87dsxhUKvteadz9D2o7fU/+eQTPvzwQz777DOCgoLYvXs3LVu2JCgoqCJwL1myhAULFvDLL7/Qrl27atVVuIcMmokKs2fPZvPmzcydO7fiuZKSEsaMGUNAQEC1gy1A37596dOnD2+88UbFcy+++CKff/55xf/bt2/Pzp07sVgsACxdurTuN3GWPn360L9/f958882K51asWMG1117rkvNO5+h7UJvrf/LJJ7zxxhvMmzePsrIyCgsLmTJlCkeOHKk4JiUlBbvdjp+fHyUlJaSkpFS7vsINPN2nIbxLZmamuv/++1W/fv3U4MGDVf/+/dXEiRNVcXGxUkqp2bNnq1atWqlGjRqpESNGqIULF6qOHTuqoKAgNXjwYLVx48aKax05ckSNHDlSnXfeeWrgwIHq4YcfVqWlpRXlpaWl6sYbb1QdO3ZU119/vXrttdcUoAYPHqzmzZtXcd2RI0eqjRs3qh49elSUHzlyRPXv318Bqn///io1NVW9++67Z9Tl66+/rrinW265RZ177rnqwgsvVMOHD1cHDhxQSimH9a/ueSNHjqxUn927d1f5PXB0/bMdOXJEmc1mBVR6nJofrZRSL730kvryyy+VUlqf96lBOeEdTErJJD4hhHAH6VIQQgg3kYArhBBuIgFXCCHcRAKuEEK4iQRcIYRwE68PuEoprFarZEQSQtR7Xh9wi4uLCQ0NPWNFkhBC1EdeH3CFEMJXSMAVQgg3kYArhBBuIgFXCCHcRAKuEEK4iQRcIYRwEwm4QgjhJhJwhRDCTSTgCiGEm0jAFUIIN5GAK4QQbiIBVwgh3EQCrvAtNhtIZjnhpfw9XQEhaiUrC37+GTZsgLVrYeNGKCgAux1MJggNha5dYcAA6N0bhgyBFi08XWvRwHn9rr1Wq5XQ0FAsFgshISGero7wJKW04Pr667BoEZSXQ0AAlJYanxMQoB0HcPnl8OijcMkl4Cdv7oT7ScAV9cOmTXDPPVpL1t//7yBaE6fOa9UK5s6FSy91ejWFcET+zAvvVloKkyZBnz6wZYv2XG2C7ennHTwIl10G990HeXnOqacQ1SAtXOG9Dh3SugG2b9f6Zp3N3x/i4uC776BnT+dfX4izSAtXeKd9+6B/f0hNdU2wBa3Fe/w4XHABrF7tmq8hxGkk4Arvk5EBgwfDsWO17z6oLpsNLBZtIG3jRtd+LdHgScAV3qW8HK6+GjIzXR9sT7HbobhY69fNyXHP1xQNkgRc4V1mzIDNm90XbE+x2eDECXjsMfd+XdGgyKCZ8B7btkGvXu4Ptmf76iu46irP1kH4JGnhCu8xerSna6CtUrv/figr83RNhA+SgCu8w7ZtsGqV51u3Smn9x1995dl6CJ8kAVd4hzfe0JbhegOzGf7zH0/XQvgg6cMVnldYCI0bazMFvElqKnTs6OlaCB8i2cKEeymlza/dtg22btU+//679wVb0HIt9OsHrVtD9+7QowckJ2sr1ISoBWnhCtdRSluWu3r138F161YttWJ9FRSkpX3s1UsLxv36QZcuEoRFtTgt4G7fvp3Ro0dz2WWX8fTTT1cqnzVrFtnZ2Rw5coSxY8fSuXPnal1XAm49cirArlypPX75RVs66+tCQrScuwMHaivWBg7UArMQZ3Han+WtW7dywQUX6Jbt3buXb775hh9//JH09HTuvPNOVq5c6awvLTyloQbYs1mt8Ntv2uOllyAsTEt4fuml2qN9e226mWjwnBZwR44cyY4dO3TLVqxYQe/evQFo1aoVqamplJaWEhgYWOnYsrIyyk+bGmS1Wp1VReEMNpvWRfDpp7BkCRw+7LGqlANFQMHJz35ov9B6jwAg2F0VKyqCb77RHgBJSX8H36FDoVEjd9VEeBm3dDxlZWURHh5e8f/w8HCys7NJSEiodOy0adOYMmWKO6olqstm0+bILl6sBdnMTNd8GeAocBA4dPLzqX9nAHlA4WmPmg6zhQBxQOOzPscBTYA2QHugBU6eL5mWpiU8nztXm/p2xRVw223aarZgt/0ZEF7ALQE3Li6Offv2Vfy/sLCQ2NhY3WMnTJjA+PHjK/5vtVoNjxUuVF4Ov/6qtWQ/+0ybWeAkZcAuYOtpj21owfX0ZQ/xQCJaAOwJRAERQPhpj1P/Dz3t2uU6jxIgBzgOZJ322Hvy81G0ljJAENAWaIcWgNsDHYFeQJ3bpmVl8MUX2iMyEkaM0ILv4MGy7U8D4LKAq5QiMzOThIQEhg4dypIlSwA4cOAAycnJut0JAAEBAQR4ywT4hmjfPnjnHXj/fTh6tM6XKwc2Ab8Cf6EF11SgFDADHYBuwN1oLcwWJx/N0AKfuyi0wLv7rMfPwNv8HYyTgb5Av5OPHnWpZ34+/Pe/2iMxEW69FUaN0qagCZ/ktFkKS5YsYc6cOQQEBDB69Gi6du3Krbfeytq1awFtlkJeXh4ZGRk8/vjjMkvBm5SVwZdfam95ly2r06VKgPVoAfZX4He0t/+xQB+04Nr95Odk3NivWgcKrUvjT2Ad2v2tR+viCEC7n3OBS4AL0VrcddKtGzzyCNx+uzYDQvgMmYfbkB07Bm+/DW++WevBLwVsB74AfgTWovWtJgCDgUEnH53wrXXkdmAPWgBeB6xCa8kHAAOBS9ECcE/qcN+xsfDww1pSH53xDlH/SMBtiDZuhFmz4OOPHW8xbsAG/AEsRQu0e9AGoC5HC7KD0boHGtpEqExgGfAD2h+f42iDccOA4cBV/N3XXCMBAVp3w9ix2mo3UW9JwG1INmyAyZPh669rfGopWiBZCnyFFkzaAdeefAxA65MVGjuwGe179j1aCzgUuAa4Ga31qz+KUYWhQ7XAe8UVMshWD0nAbQj++gumTNH6aWtoG/BfYAFakO2HFjSuResmaGit2NrKBD4FFgKrgWjgBuAWtHcENf5jlZwMU6dqsxxkUUW9IQHXl23apLVov/iiRqflAh8D76MNDiWhzSK4E2jlzPoBxMRog0TNmmldHN7i+uu1/Ahbt8LOnU7dOTgN+AQt+G5C6+++H3gAaF7Ti/XpA9Onw0UXOa1+wnUk4PqiLVu0QPv559U+RQG/AW8Bn518bgRaoB2Ckwa8OnfWtj7v2lULsl27QtOmf7fQBg/WVrF5Mgm5nx/Ex8OBA38npLFYICVF6/vesAHWrdMCsc1W5y+3A5gPvIs2T/g64BG0gcYatVuHDdMC7znn1LlOwoWUl7NYLApQFovF01XxfhkZSt16q1JaloNqPcpBfQqqnxZzVV9Qb4HKrcE1DB9duyr1yCNKLV6s1LFjVdc/JUUpf/+6f926Pr75puq6FhUp9dtvSr3wglKDB9e53lZQ80H1P/lz6ALqDVAFNb3WyJFK7d5d518l4RoScH1BaalSr7yiVHh4tV+YRaDmgGoLygTqWlC/1zVQdepUswCrZ/p0pfz8PBNo/f2VuuOO2tU7P1+pL75QavRopdq2rVM9/gR1N6hgUBGgngJ1rKb38dBDSmVm1u5ehMtIwK3vVqxQqnPnar8Yj4GaBCoOVBCoB0Cl1iVIde+u1HPPKbVjh3Pup6xMqd693d/SNZuVio9XKifHOfexZ49Sc+YoddVVSgUE1KpOWaBeBNUYVCiof4DKrMk1oqKUevddpex259yTqDMJuPVVRoZSt9xS7RdfHqh/gQoDFQPq2Zq+eE9/9Oql1LRpSu3c6bp7a9HCfUHXz097d7Bpk2vuJztbqbfeUuqCC2pVv0JQr4BqAioE1FhQR2pyjcGDlUpNdc29iRqRgFvf1LD7oBjUv9FatI1AvXDyBVzjF35yslIvvui+/sF9+5RKTHR90DWbte/lH3+4577279f+WHXqVOO6FoGaCaopWnfD4zUJvIGBSk2ZolRxsXvuU+iSgFufbNqkDURV4wVWDuoDUK3Qug6eBJVd02AUFKTUbbcp9euvnnlbmpGhdVm4qk/X31+pZs2U2rzZ/fdmtyv1119KjR2rVHR0jeptAfUaqARQ4WjdDtbqnt+pk1KrVrn/foVSSgJu/WCzKTVjhtZKqcaL6ltQ3UD5gboH1IGaBqKkJO3rZWV5+s61Fv3UqVpL1Gx2TqA9FcAffFAb7PK0wkKtv7dduxq3eCejdTO0AfU5KHt1z3/wQef1V4tqk4Dr7Q4cUOrCC6v1IjoI6jq0aUXDQaXUNBANHarU0qVKlZd7+q4r27xZqb59/26Z1ibQnjqvTRulfvrJ03dUmc2m1JdfKjVkSI3uKx3UzSd/7heB2lrdc1u0UOr33z191w2KBFxvtnChNtJcxQunDK2fNvxkS+f7mgaiyy9Xau1aT99t9axbp9Rdd/3d2q+q1R8YqJTJpD2GD1dq2TItsHm7v/5S6vbba/THZRWoc9De2Yymml1IZrPWN18fvic+QFaaeaO8PC0f6oIFVR66DngILefBeOCfaFvJVMtll8GkSTBgQG1r6jknTmibVp5a+bVhAxQUaLl9/f0hNFRL5N2/v7aj7qBB0LzGC2c9LyMDpk3TksJXYwWeHZiH9nsAMBct90WVLrkE5s/XVtkJ1/F0xK9Kg2vhrlqlVKtWVbZMckH9H9qihUGgttekRXvJJUqtXu3pO3UNX51zunu3UjffXO2f8QlQd5zsZrgVbU5vlec1barU8uWevlOfJvndvMkbb2jba6enOzzsF7QdExaiZfJaiZa5q0oXXaRt5f3DD3DuuXWrq7fy1cxZ7dppyX02bNBao1WIBj5AS6X5M9AFLbWmQ5mZcPHFMHGiZ/NZ+DAJuN6gtFTL7P9//+cwIUoZMAFtG5deaIlP7qIaSU5at9ZSM/70Ewwc6Jw6C8845xztD+by5dC3b5WHXwWkAJehJca5FW3vNkNKwXPPaX+ca7kLiDAmfbiedvw43Hij1h/pwG60F0sK8G+0VH5VBtqgIHjmGXjqKdkbyxcpBYsWwZgx1dq6/hu035ty4CPg4qpOaN4cvvlGdplwImnhetKWLdCvn8Ngq4D30Fq0NrSdbx+kGsH2qqtg+3ZtUEyCrW8ymWDkSNixAx58sMrDr0QbXB2MtuPEFLTfKUMZGXD++fD9986orUACrud8/jmcdx6kpRkekgfciJac+v+ANWg73Tp0qvvgq6+gTRsnVVZ4tagoeOstWLUKOjnuzY9GS34+C5gGXIG2k4ehwkLtj/fcuU6qbMMmAdfdTvWRXX89FBUZHrYT6I+2zfhPwEtUsQeWn5/WfZCSAldf7cwai/ri/PO1JOlTpkCg8W+LCXgUbZ+1VLR3T787uq7NBg89BOPGOXXni4ZI+nDdyWbT3vq9957Dw75F2+sqGW33hSpnjyYlwYcfai84IQBSU7XftV9/dXjYCeAOtI0uXwKeoIruqhtu0H7X6vtr0UOkhesuZWVw220Og61C+6W/Cm2Txl+oRrC94w5t7zIJtuJ0ycnw88/w0ktgNt6iMgb4EngeeArtD32xo+suWQIXXgjHjjmztg2GtHDdobhYG9xwsGuuBbgXWAS8CjxOFS2N6Git3+6mm5xZU+GL/vgDbr5Z26fNgZ/QdhLuBnwBxDo6uG1bWLECWrZ0WjUbAmnhulpRkdan6iDYHgLOB35Ae2s3hiqC7dCh2gwHCbaiOs49V3sXdO21Dg+7GK0v9yBwLrDH0cF792qbfu7f76RKNgwScF0pLw8uvVRbcGBgJzAQsKLlRRjm6Hp+ftrOrMuWQWKiU6sqfFx0NHz2GfznPw4H1LqizYaJQAu6fzi6ZlqalqNi925n1tSnScB1lawsbbXO78bjvxuAC4CmaFuUt3N0vchI+PprGD9eC7xC1JTJBI8+qnUxtDP+bUtAGz84F21V46eOrnnoELYRIzhktTq1qr5KXrmucPSolhNhwwbDQ1ai/TL3BJZTRX9Z+/awdi1cfrnz6igarnPO0X43r7jC8JBw4HO0OeA3Af8xOK4sLo7b33iD/hs3sleCbpUk4Dpbfr4WGFNSDA9Zira2/TK05CLhjq53ySVasE2ucsmDENUXGQlffAGjRxseYkYLtC+hDeK+elZ5aUwMN3/2GR+XlXG4tJShmzaRXuxwjkODJwHXmUpK4LrrtMnnBuahjQTfCXwMBDm63hNPaGvZo6OdWUshNP7+8Prr8OqrhlnWTGjTxWYCT6IFX4Di6Giu//xzPjst2dKBkhIu2rSJjJISF1e8/pJpYc5is8Ett8Cnxj1e76AlD3kGbVml4UyEwEBtytfddzu9mkLo+vxzGDUKHHQLzAYeAyYFB7P6++9ZZhA6OoaE8EuvXsQ7GJxrqKSF6wxKweOPOwy2H6ElnZkIvICDYBsaCt9+K8FWuNd118HKldCkieEhjwKvhoQwpbiYZfPmGR6302rlks2bKZCcupVIwHWGadNgzhzD4s/RuhCeACY7uk5kJPz4oza7QQh369dPGy/o3Fm3OC86msVffw1jx8K8efDf/2qNDR1bioq4fccO7N79BtrtJODW1dtvw7/+ZVj8PTASbbR3Bg5atrGx2lJMSRAuPCkpScs61rv3GU+fiInhok8/5Q8/Pxg+HJ58UsupsHCh4aW+yM5msoNseA2RBNy6WLpU26nBwC9oWfZvBubgINgmJGg5cc85x9k1FKLmYmK0xTr9+wNwLC6OCxctYsPpORmuvFLboeTtt7V3ZQaeS09nkeRdqCABt7a2btUGGQzS1a1DS0JzJdq+Y4bf6JYttYxOXbq4pJpC1EpUFPz4I5lXXMGQjz9mi14CnBEjtBwhL7+s7Zxs4K7UVDYWFLiurvWIBNzayMvT8tlaLLrF+9AC7QXA/wB/o+u0b69t6uhg1Y8QHhMZSdjnnxMVE2N8zAMPaNnDJk2CnTt1D7Ha7VyzbRtHS0tdVNH6QwJuTdntcOedsEc/tUcecDVaWsVFOEga3rKl1mfbooVLqimEM0QEBvJd9+70iYjQP8DPT9szr0sXLQF+RobuYQdLSrhh2zZKG3gCcwm4NfXSS9oKHR3laP212Wg5Rg1XkMXGajuvNq8y260QHtfI358funene1iY/gEBAdouE7GxWq6PnBzdw37Pz2f0rl14+dR/l5KAWxPLlsGzzxoWPwn8jJZL1DBLaGiotnpMluqKeiQmIIBlPXrQKTRU/4CwMK0xYrPB5MlgMAf3vcxMXjdoBTcEEnCr68ABbSWZwVuiuWgb881D24tMl7+/ljG/v+ERQnitJoGB/NSjB82MVpDFxGj79e3c6XDTybF79rDcoBXs6yTgVkdJiTYim52tW7wcbVfdSWhdCob++1+47DLn108IN2kWFMTSrl0JMsi9QLt28I9/wOLFsHy57iE24MaUFA41wEQ3EnCrY+xYWL9et+ggWvq6EWgB19Arr8Dttzu/bkK4Wd/ISN7t2NH4gGHDtKXCr7wC+/bpHpJTXs4DDbA/VwJuVb79Ft58U7eoHBgFNAbexcHChscf1/7qC+EjbmvalKcczbB5+GFt2uPEiVBYqHvIdydOMC8z00U19E4ScB3JzoZ77zUsnoq2wOETHMxIGDxY+0svhI95oU0brjCaoxsQoM3NtVrhhRcMxz7G7tnToLoWJOA6Mno0GPwF/hlta+mZQA+j85s1g08+0QbLhPAxZpOJ/3XuTEejtKmxsdqMhXXrtNeBjjybrUF1LUjANfLJJ7BokW7RMbSuhOsAw0wK/v5ausb4eNfUTwgv0Mjfny+7dSPKqFHRrRvccw+8/76206+OhtS1IAFXz/Hj8MgjukV24C60FWQO+23//W847zxX1E4Ir9IhNJRPOnc2DiYjR0KHDlrXgsHy3obStSABV89jj2m77uqYBfyItj2O4cY3o0ZpmZSEaCAuiYnhlbZt9QvNZm3Z7+HD8MEHuoc0lK4FCbhn+/JLwxyfe4EJwL/QtpDW1a2bNunbaJ6iED5qTGIiIxs31i9s3lybubBwoZZpT8d3J07wgY93LcieZqfLy9Oy3R8+XKlIARej9d9uwCApTViYtoFk+/YuraYQ3iqrtJQu69dzrKyscqFS8PTTcOgQvPsu6LyeG5nNpPTrR/Mgh9ur1lvSwj3d88/rBlvQluz+jNZva5gBbOZMCbaiQYsLDOStDh30C00mGDcOCgoM57bn2Wzcv3Onz3YtSMA9Ze9emDVLtygTbT+yx3CQJ+Hyy+H++11TNyHqkesaN+YWo80o4+K0hUBffQXbtuke8t2JEyw+ftyFNfQcCbinjB8Pem+D0AJtI7R5t7piYuC996TfVoiT/tOuHU0CAvQLhw7VtpOaNUvLLqZjwv79lPlg7lynBtxFixbx5JNPMnr0aH799ddK5UlJSQwZMoQhQ4bw+uuvO/NL182vv2pZvHR8AXwKvIWD1WT/+Y+2L5kQAqhG18Jjj8H+/dogtY7dVivv++AAmtMGzQoKChg8eDAbNmyguLiYvn37smXLFvz8/o7pkydPZvLkyTW6rssHzex2bXvoDRsqFVmAjsAQ4EOj86+8Unt7JK1bISq5dft2PjbaRPKtt+Drr7Xdf6MrT7JMCAxkT//+hOrtp1ZPOa2Fu2bNGjp27IjJZCIkJISwsDD2nrWyZNWqVcyYMYNJkyZx2GBwqqysDKvVesbDpT78UDfYgrZsNxdte3NdERFa578EWyF0zW7f3rhr4Y47tJkKb7+tW3yktJT/HDrkwtq5n9MCblZWFuHhf7/pjoiIIOusxQMvvPAC48aNY9SoUVx33XW615k2bRqhoaEVj9jYWGdVsbKiIvjnP3WLMoHpwHigqdH5L70ke5IJ4UBsQIBx10JoqDY39/vvISVF95CXDh4kx2BspT5yWsCNi4uj8LQ0bAUFBcTFxZ1xTP+TOx106NCB9PT0M44/ZcKECVgslopHtkHSb6d4+WXDaWCTgCi02Qm6evbUdiwVQjjkcNbChRdCr16GA2i55eVMP3DAxTV0H6cF3P79+7Nr1y4AiouLKSoqok2bNhw5cgSA5cuXs2zZMgDy8/Mxm82E6WxKFxAQQEhIyBkPlzh+3DBt4ja0+bbTAIMdnLQ5tz7UtySEK/27XTvC/HTCjckEjz6q7YK9cqXuuf/JyPCZPAtOyxsYGRnJ+PHjGT9+PBaLhTlz5pCWlsatt97K2rVriY2NZerUqWzZsoXU1FTeffddTJ7s+5w1CywW3aKngO6A4f4M11yj/WUWQlRLfGAgY1u04Pn09MqFrVvDxRfDvHkwZEilhkyx3c7U9HTedrTLRD3RMJf25udDy5baUt6zLAMuQdunbKjeuf7+Wn+TUb+UEEJXfnk5bdasIVtvR9+MDG0Q7ckntUVEZzEDKf360dFo1+B6omEufHjrLd1gq4CngSswCLagpW2UYCtEjUX6+zOhVSv9wubNtUD7wQe6C5BswASD/dHqk4YXcIuLtVy1On4A/kLbOkdXTIy2R5MQolYebtaMFkaJaW6/HU6c0PYR1LEkK4sNBQUurJ3rNbyAO2+e4bY5LwCXAr2Nzp08WXeCthCieoLNZqYmJekXxsfDVVfBggVQUqJ7yOx6Pi+3YQXc8nJtKpiOVScfzxid27YtPPSQiyomRMNxe9OmdDbqix01Shtj+eIL3eKFx46RXY/n5TasgLtokbZ+W8eLwHnAIKNzn3pK24lUCFEnZpOJF9q00S+MjYXhw7X9AHUG10qU4v2TU03ro4YTcJWC6dN1izYC3wH/xGCPsoQEuPNO19VNiAZmeGws50ZG6hdef73Wl6uTAAvgzcOHsXv35CpDDSfg/vyz4dYeL6LNu73C6NwnngAfzUAvhCeYTCamG7VyExJg4EBYvFi3eF9xMT+cOOHC2rlOwwm4//2v7tN7gMU4aN1GR8ODD7quXkI0UIOiohgaFaVfOGIE7NgB27frFr9hsCTf2zWMgJuba5jv9m2gGXCD0bmPPKJlBRNCON0jzZvrF3Trpm1XZdDK/SY7mzRXZxJ0gYYRcP/3P23+7VlKgPeB+zBY4xwaqiVKFkK4xNWxsTQP1Nkl0GTSWrm//AI6+XQVMLceDp41jIBr0J2wFDgB3Gt03v33a3swCSFcwt/PjwebNdMvHDIEoqJg6VLd4nePHKGknm3D4/sBd/NmwwTjb6MNlOlmtDWZYOxYF1ZMCAFwX0IC/nqJrAIDtSli33yju9w3q6ys3m026fsB9733dJ/eDawADDPaDhsGRuu+hRBOkxAUxPVG7yQvu0xbCLF2rW7xGxkZLqyZ8/l2wC0u1pYJ6ngHSAQq5yU66V7DjgYhhJONNho8i4/Xkv3/+KNu8er8fLbqbGTgrXw74H7xBeTkVHq6FG2w7F4MBstiYrSct0IItxjUqJHxct9LLoE1a7SWro6lZ23l5c18O+D+73+6T/8IZAF3G513222y0EEINzKZTMat3EGDtDEVgx0hvnTlNlxO5rsB12qFk1v6nG0xMAAw7KG95x4XVUoIYeT2+Hj9bXjCwuD88w27Ff4sKCDDILuYt/HdgLt8uRZ0z1IKfAGMMDqvd2/o0cOFFRNC6In09+f2pgZ7ZA8bpu20YjBI9nU9aeX6bsD98kvdp1cAuThYWSaDZUJ4zG3x8foFfftqy+x/+km3+Mt60o/rmwHXboevv9YtWgz0AZL0CgMC4OabXVcvIYRDAyIjidNLg2o2wwUXwO+/6563PCeHIp1t1r2NbwbcDRtAZ9lfGfA5DroThgyRHR2E8CCzycSVMTH6heeeC7t3g85ihxKlWFYPMoj5ZsA16E5YibaU1zDgDh/umvoIIaptuNEiiF69tNlDBosg6sNsBd8MuF99pfv0Z0BPoK3ReVdf7Zr6CCGq7ZLoaAL1lvoGBWlBd80a3fO+zs7G5uWJyX0v4Kana/kTdCzDQZLx7t1lKa8QXiDc35+LjLr2BgzQugxLSysVHS8rY63B4ghv4XsB97vvdJ9OB/YCFxmdJ90JQniN4bGx+gUDBmhL9g0aVd4+W8H3Aq7BKOYKIAg41+g86U4QwmtcZRRw4+OhdWvDbgVv78f1vYD7xx+6Ty8HBgIheoVNm0KfPi6slBCiJhKDgzknPFy/cMAAWLdOt2iHxeLV26j7VsA9ehT27q30tEJr4Q41Ou+qq0BvSaEQwmMMZyv06AGHDukmpgLYUFDgwlrVjW9FGYPWbSpwBAf9t0OGuKY+QohaM+zH7dxZ+2ywwaQEXHcxCLgrgAi0FWa6zjvPRRUSQtRWz/BwYvx1EqhGRGgzilJSdM/7UwKum6xerfv0L8AFGOS+jY+HpCTX1UkIUSsmk4neRjtmd+liGHClhesOpaXw55+6RX9RRetWb5K1EMLjHAbc1FTdvc7SS0q8duDMdwLupk26W6Hnoc2/PcfovHMNJ4oJITyst9FMha5dtUbWnj26xd7ayvWdgGvQnXBqenQvo/Ok/1YIr2XYwk1MhMjIetet4DsBd+tW3af/AmIw2Ao9IEBLOC6E8EpJwcH6A2d+fpCcrHUr6PDWgTPfCbi7duk+vRGtO0G3l/accyA42IWVEkLUhcOBs6QkOHBAt0hauK7mIOAadifI6jIhvJ5hwG3ZUgu4dnulIm8dOPONgJubC8eOVXraCmzHQcBNTnZdnYQQTmE4cNaqFZSU6L72wTtbub4RcHfv1n16F2ADuhud16GDiyokhHCWPkYt3FPpVNPTdYs3Fha6qEa15xsB16A7Yf/Jz22MzpOAK4TXa2U0cBYRoW2JZRBw3z1yhM+OH6dcp8vBU3w+4MZjkCEsKAha6M5dEEJ4CbtSfJGVheE+Dq1aGQ6c7bFauSElheZ//MHUtDQyS0pcVs/q8o2Au3On7tP7gdZG57Rrp+0EKoTwSnssFgZu3Mh1KSnklpfrH9SypWEL95RjZWU8l55O27VreffwYZQHt+HxjYBr0MJNw0HAle4EIbySXSlmHTpEl/XrK+bTGobIxEQ4fLjKa5YrhcVu5/5duxi2eTMHdFaluoNvBFyD5X37gSSjcyTgCuF1Sux2bkxJYeyePZQqRXlVrdHYWG2Wks1W7a/xS14e3dev508P7H9W/wNuSQnoTP9QVNGlIAFXCK9SardzzdatjvtszxYTo83Dzcur9tcpV4pCm43BmzaxpgbnOUP9D7gGexhlA0U4CLiJiS6qkBCipuxKMWrHDn7KyaH6bVW0gAtw4kSNvp4NKLbbuWTLFlKKimp0bl34bMDNOPm5udF5RtnkhRBuN/fwYZYcP16zYAt/v45rGHAB7IDFZuPGlBRK3TR1zGcDbu7JzzFG50nAFcIr7LdaeWLv3up3I5wuNFSb4lnL3XptwE6LheermOngLD4fcBsZnScBVwiPU0pxZ2pq1YNjRkwm7bVcixbuKXZgWno6f7lhKbBPB9zgk49KAgLAaH22EMJtlufksCovr/YBF7TVZrVs4Z5iAv61f3+Vx9WVzwbcHCDa6JzYWNlWRwgvMDsjQ3+vwZpo1Eh3plJN2IDvTpwgzWqta20c8tmAmwtEGZ0j3QlCeNyh4mK+ys7GYA1Z9QUGatvt1JHZZOLtI0fqfB1HJOAKITxi/tGjmJ3xTtNJAbdcKd528dLf+h9wDd5K5OIg4MYYzl0QQrjJ73l52JwR3JwUcAGyy8tJc+Gy3/ofcA2SWliAUKNzZFsdITxuXUFB7aaCnc2JARdcm7i8zv3Vp1u0aBHr1q3DYrFw8803M2jQoDPKZ82aRXZ2NkeOHGHs2LF07ty57l/UwRpqwzcrerk1hRBuc6SkhCxnbYHjxIAbaDKxobCQEU2aOOV6Z3Na5CkoKGD69Ols2LCB4uJi+vbty5YtW/Dz0xrRe/fu5ZtvvuHHH38kPT2dO++8k5UrV9b9C9cgaUUFScsohEftduZsACcG3FKl2GWxOOVaepzWpbBmzRo6duyIyWQiJCSEsLAw9u7dW1G+YsUKep/ckrxVq1akpqZSqvNNKisrw2q1nvFwSAKuEPWO1ZlLafPyIC3NaZcrqk1MqSantXCzsrIIP20xQUREBFlZWbRv3163PDw8nOzsbBISEs64zrRp05gyZUq1v+7u1v8mr3sByqZQ5QpsCmVTZGf+C6UUqxtNARtauV37HF8WgeQKE8Jz7M6cCZCV5bxrgXMG8gw4rYUbFxdH4WmbthUUFBAXF2dYXlhYSKzO9KwJEyZgsVgqHtlVrCCxppdTuMVKUUoxlp0lWPaUYt1fhs1qx16sKD1qpzTLTlmOojxPYSsEuznMCXcshKitYD8njte3b6/t/OAkYS58B+y0u+7fvz+7Tu68UFxcTFFREW3atOHIyYnEQ4cOZePGjQAcOHCA5ORkAgMDK10nICCAkJCQMx4O1eJ7o8o9t8WGEAKaBwU572KlpVoCGycIMJlIdGbdzuK0LoXIyEjGjx/P+PHjsVgszJkzh7S0NG699VbWrl1L27Ztufzyy5k6dSoZGRm88cYbTvm6JnPNJ04rmwRcITypXUgIoX5+WJzRl1taqg2cOYFNKXobbcvuBE6dH3XTTTdx0003nfHc2rVrK/79+OOPO/PLAcYB1x9/rOgPuKkyCbhCeJKfyUSv8HB+d8Y2N04MuHZwacCt9wsf/EL1byGccAop1C0ry3HS/D8hRK0NiIwkwBlLe50YcINMJjqHGi6ZqrN6H3ADYgN0n48gwjDglmfXOV2GEKKObm7ShDJnzAhwUsD1N5kY0bgx/s4c0DuLzwZchy3cbGnhCuFpfSIj6RkeXvcgVFqq5biuo3KleKS54aZcTiEBVwjhMY83b173fAqFhdpWO3VgArqGhdE/MrKutXGo3gdc/1j9cb9wwrFgwaazLZ3dYsdW7LrVJEKI6hnZpAnNAgPrFohOnKhzylUFPNuqFSYXb0xQ7wOuoxYuIP24QnixELOZ+Z06UafJYSdO1Cnlqr/JxNWxsdzUuHFdalEtDTbgSreCEN5haHQ0DzVrVrs5qiUlWpdCHQJuqJ8fb3fo4PLWLfhwwI0+uaPZCfR385SAK4T3eLlNG1oFB+Nf06CXk6N9rkOXwnsdO9LUhavLTlfvA65RH24ssfjjTyaZuuWlmc5LWCyEqJsIf39W9uxJk4CAmgXdU7lWatnCfb19e5flvtVT7wOuOcyMKajyD8iMmSY04Qj6m8JZ97h2d04hRM0kBgez+pxzaB4YWP2ge+LkO9howz26Kzl15Tnt2/N/Lp4GdrZ6H3BNJhPBSfpb5iSQYBhwLTtdl2RYCFE7rYKDWdu7NxdXN4BmZ0NkZLUXPvibTET5+/N5ly6MdnOwBR8IuAChHfTn4DWlKUc5qltm3SUtXCG8UXxgIN9268YHycmEm82OW7uZmVCNLoFTge66uDh29evHtW6YkeCoHvVaSAf9FI5NaWrcwt1lcel2yEKI2jOZTNzRtCk7+/XjgYQE40CVnu4wF+6pXA0DIiP5smtXFnXpQpyT8i7Uhk8EXKMWbgIJHOOY7uIHW56NsuMyU0EIb9YsKIg5HToY56g9cABatdItCjSZuC8hga19+vD7Oedw9WkbIniKbwTcjsYB146dYxzTLbfskn5cIbxddlkZB0pKKheUlMCRI4YB96kWLXijQwe6nra1l6f5RMA16lJoQQsA0kjTLZd+XCG834aCAv2CgwdBKcMuhR5eFGhP8YmAG9g0EHN45b12IoigKU3ZzW7d82SmghDezzDgHjgAfn6QmKhb7MpE4rXlEwHXZDIZtnLb05497NEtK9ykv+xXCOE9/jQKuOnp0Ly5bmrGaH9/koL1p4t6kk8EXDAeOGtHO8MWbv6afJRdZioI4c0MW7gOZij0iYhwS26EmvKdgNtJP+C2pz2ZZJJP5b2TbPk2irYXubpqQohayi4rI11vwAxg505o1063yBu7E8CHAm7kufqJg9vTHsCwWyF/tRM2sRNCuIRh6zYrS1v00LWrbnFvLxwwA18KuP0j/14kfZpYYokm2jjg/iEBVwhvZdh/m5ICJhN06qRbLC1cF/OP9Cesa1il502YaEc7drJT97y81XmurpoQopYMW7jbt0Pr1hBW+TXvrQNm4EMBF4y7FbrSlS1sQensnmTdZaU0S1I1CuGNDANuSgp06aJb5K0DZuBjAbfReY10nz+Hc8gii4Mc1C3PXyPdCkJ4m4PFxfoDZqWlsGuXYcD11u4E8LGAG3mefgs3mWRCCGEjG3XL836TbgUhvM1Xp5KLn23XLigrq3cDZuBjATekXQgBcZUnQfvjT3e6GwbcE9/ob8MjhPCcL7Oy9Au2boWoKGjWTLdYWrhuYjKZDPtxz+EcNrIRu87+oEXbirDuk7wKQniL/PJyVuTm6heuWwe9e2uzFM4SHxDgtQNm4GMBF4y7Fc7hHPLJZx/7dMuzvzJ4+yKEcLsfT5ygTC9fdWGh1sIdMED3vKtiY712wAx8MODGXKK/mVwb2hBJJH/xl2551lcGb1+EEG73pVH/7Z9/ahnC+vXTLfaGnLeO+FzADe8VTmDzyhnd/fCjF71Yz3rd8/J+yaMsVxKSC+Fp5XY73xoF3DVroHNnbR+zswT7+VV/LzQP8bmAazKZiLta/6/cQAaykY26eRVUueLE9zJ4JoSn/ZGfT3Z5eeUCu13rvzXoTrg4Opowc+U0rd7E5wIuQOzVsbrPn8u5+OHHalbrlks/rhCeZ9idsHMn5OQYBtzhsfqve2/ikwE3amgUfqGVby2ccPrQh1/4Rfe8E9+ewF5WeRaDEMJ9DKeD/fEHNG4MbdroFl8lAdczzMFmYi7VHzwbxCD+5E8KqZx8vDy3nBPfSreCEJ6y02Jhl1VniqZSsGoVnHuu7nSwfhERJBhtNOlFfDLggnG3wkAGolCG3QpH3tPfVl0I4XqfHtPf8JU9eyAtDS6+WLd4uJfPTjjFdwPulbG66RojiKA3vQ27FbK/zabkiEHCYyGEy5Tb7bx9xKDB8+OP2soyg+W8V9eD7gTw4YAb2CSQyAH6iyAGM5j1rKcInd0ebHB0/lEX104IcbZvTpzgoF6yGpsNli/XWrc63QmtgoLoppOm0Rv5bMAFaHxjY93nz+d8AH7mZ93yI/89gtJb5SKEcJk3MjL0CzZs0GYnXHKJbvHwuDivXl12Op8OuPG3xWMKqPyDiCSSQQzia77WPc+6y0re75JBTAh32W2x8GNOjn7hDz9oqRibN9ctrg/TwU7x6YAb2DiQ2OH6P4yruIqd7GQXu3TLM9/LdGXVhBCneevwYf0CiwV+/x2GDdMtTgoO5kIvX112Op8OuAAJ9yboPt+DHrSghWEr99iiY5Tn66x2EUI4lcVm4/1MgwbOypVaH+6QIbrFDzVrhrmedCdAAwi4MZfE6OZWMGHiKq7iJ37CSuV5f3aLnSP/lSliQrjaJ8eOkaO3lFcpWLoUBg2CRpV3cwk0mbinaVPXV9CJfD7gmswmmt6l/0O5lEspp5zlLNctP/TqIeylsvJMCFd6w6g7YfNm2L0bRozQLb6pSRMaB1ZuTHkznw+4AAl363crNKKRw8GzkkMlHF0gU8SEcJX1+fnGW6EvWaINlhlshT7aYMcHb9YgAm5I2xCihkTpll3N1exkJ9vZrlt+4KUDKJtMERPCFQxbt4cPa4NlN9ygW9wzPJwBOikavV2DCLgATe/V71boTneSSeZ//E+33LrLStZSSU4uhLOlWa18dNTgHeTnn2uJagYN0i0e3axZvZl7e7oGE3Ab39CYgMaVN5g0YWIUo/id39nPft1z019Ml4UQQjjZxLQ0/W10iorg22/h2mtBJ79tpNnMrfHxrq+gCzSYgGsOMZM4JlG37DzOoxWtDFu5hRsKyfnJYFK2EKLGthQWssCodfvdd1qy8Suv1C2+q2lTr080bqTBBFyAZqObYY6o/IPyw49RjGIFKziMfp/SgRcOuLp6QjQYE/bvR/c9Y0kJfPIJXHaZ7jY6AA/Xw8GyUxpUwA2ICqDZaP0f1lCG0oQmLGShbnnuylxO/Ci5coWoq99yc/naaFeHr76C/HwYNUq3+KKoKJLrSaIaPQ0q4AIkjknEFFS5s92MmZu5me/5niz0B8n2PLEHe7nMyxWitpRSPL1vn36h1Qr/+x9ccw0Y5LcdbZBPob5ocAE3qGkQCffoz8u9nMsJJ9ywlWtJsXDkXVl9JkRtfZ2dze/5lTdxBbSZCVYr3HqrbnGv8HCurSeJxo00uIAL0GJcC9Dpcw8kkNu5nS/4ggz0U8WlTUyjPE9yLAhRUzaleMaodVtYCAsXaqvKoqJ0D3mxTRv86uFUsNM1yIAb0jqEJjc30S27mqtJIIF3eEe3vOx4GenT0l1ZPSF80kdHj5JisegXLl6szUy46Sbd4iFRUVxSj7KCGXFqwH322WeZNm0a9913H4d1VpCsXLmSnj17MmTIEIYMGcJvv/3mzC9fIy2fbqn7vD/+PMiD/MIvbGOb7jGHZh3Cuk9nozshhK4Su52J+/XnuZOXB59+CiNHQkSE7iHT27Splwsdzua0gLtixQqOHj3KhAkTuP3223nmmWd0j3vttddYuXIlK1eu5Pzzz3fWl6+x8K7hhq3c8ziPHvTgTd5E6UxeUaWKvU/tdXUVhfAZMw8eJF1v+xyA99+HwEDDZbzXx8XRvx4u49XjtIC7fPly+vTpA0C/fv346aefdI9bsGABr7zyCjNmzKBE5wdQVlaG1Wo94+Eqbaa3wS+48rfAhImHeZjtbGclK3XPzVqSRc5KWQwhRFVSioqYnJamX7h7tzYV7MEHITS0UrEf8Hzr1i6tnzs5LeBmZWURHh4OQEhICLm5uZWO6dSpE88++yxPPvkk0dHRTJgwodIx06ZNIzQ0tOIR68LtM4JbBZP4hP7qs450ZBjDeId3KKVU95hdD+zCZrW5rH5C1Hfldjt3paZSqreE126HWbO0bGAG+5Xd3bQpnerxvNuzmVQNkgTYbDYGDhxY6fkePXoQFxdHy5YtefDBB7FarbRr144Mo03hgNTUVG677Tb+/PPPM54vKyuj/LRkxFarldjYWCwWCyEhIdWtarWVF5Sztv1ayo6WVSo7ylHuOPkxCv2J2C3Gt6Dt9LZOr5cQvmB6ejrPGPXdfv89zJgBb70F7dtXKg4ymdjTvz+JwcEurqX7+NfkYLPZzJo1a3TLVqxYwcKF2vzV9evXc/HFFwNQXFyMxWIhJiaG6dOn8/DDD9OoUSPS0tJISkqqdJ2AgAACAionmXEV/wh/Wj/fml33V97bLJ54bud25jOfwQwmkcqt4YOvHKTJjU2I6K3f2S9EQ5VSVMQko66EggKYOxeGD9cNtgCPJib6VLAFJ3YpDB06lCZNmjB9+nQWLFjAiy++CMCiRYt4/vnnAUhMTOTxxx/n1Vdf5aOPPuKll15y1pevk4S7Ewjrof+2ZSQjSSSRV3lVdwANG6TenYq9RFagCXGKw64E0AbKAO65R7e4kdnMMy31ZxLVZzXqUvAEq9VKaGioy7oUTslZkcPmizbrlu1gB4/wCE/wBFein8Go5dMtafNiG5fVT4j6xGFXwu7d8NBD8I9/wBVX6B7yQuvWPNOqlQtr6BkNcuGDnuih0YZbqneiE9dzPW/ypmGehQMvHyBvdZ4rqyhEveCwK6G0FKZP17bOuewy3UPah4TweKL+YHZ9JwH3NG1faYspUH9y9T3cQwQR/If/6J9shx137KC8UJb9ioaryq6EefO07XPGjwc/vSmZ8H5yMqH1NN9tVSTgnia0fShJk5J0y0II4QmeYBWr+JVfdY8p3lvMrgd2ye4QosGacfCg8aaQW7dq+RJGjwaDrF9jEhMZqLMluq+QgHuWFuNaEN4zXLesL325jMv4N/8mG/18nsc+PkbGbOPpcEL4ql9yc5lo1JVgtWpdCf36wVVX6R7SPiTEpxY56JGAexa/AD86/rejbjYxgEd4hFBCmcY0bOgvetj7j73k/pbrukoK4WXSrFZGpKRQbvTu7o03tIxg48aBTk4EX+9KOEUCro6IXhG0HK8/JSWMMCYyka1s5WM+1j1GlSu237idkiMGa8eF8CGF5eVcs20bWWWVFw8BsGYNfP01jB0LBitHfb0r4RQJuAaSJiYR1l1/bm5HOvIAD/A+77OVrbrHlGaWsn3kduxlMj9X+C67UtyRmsqWoiL9A7Kz4eWX4aKLYMgQ3UMaQlfCKRJwDfgF+dFpfidMAfqzFkYwgv705zmeIx/9DPZ5q/LYN94g4bIQPmBqWhqfZ+lPlaSsDCZPhrAwGDNG95CG0pVwigRcB8J7hJM0NUm3zISJ8YxHoXiJl/RXoQGH/n2IowsNtoMWoh5bcvw4U9IdJON/803YswemToVw/YHohtKVcIoE3Cq0HNeSyIH6uTgb0YhneZY1rOFTPjW8RupdqeT+muuiGgrhfpsLC7ljxw7jA5Yt0/YoGzcODLoLGlJXwikScKtgMpvovLAzAY31E+r0oAf3cR9zmcsa9BP7qBLF1uFbKdxS6MqqCuEWx0tLuWbrVix2g/GJPXvg1Vfhxhth6FDdQ0zAfzt2bDBdCadIwK2G4MRgOi/sbPjdupmbGcYwnuM59qO/ftyWZ2PLZVuwpsnWPKL+KrXbGZGSYrx7Q34+TJwIyclaUnED09u04XyDzSJ9mQTcaooeGm2YnMaEiSd4gra05RmeIQf9nSBKj5Sy5dItlB7XT2guhDezKcWdqan8mmeQM6S8HJ5/XhssmzgRDFqvo5o0YVyLFi6sqfeSgFsDLca1IO66ON2yQAKZylT88ONf/MtwlwjrLitbr9wqORdEvWJXintTU1l47Jj+AUrBzJmwZYs2SBYTo3tYn4gI3unY0Sc2hKwNCbg1YDKZSJ6XTEgH/TSRUUQxjWnsZz+v8IrhzIWC9QWk3JCCvVTm6Arvp5Ri9K5dfHDUwWyb99+HH36ASZO0LXN0NA0MZGnXroQ0sH7b00nArSH/SH+6ftYVvzD9b11rWjORiSxnOfOZb3idnB9z2DFqhwRd4dWUUozds4e5R44YH/Tll/Dhh/DEE3DuubqHBJlMLO3aleZBQS6qaf0gAbcWwrqEkfxesmF5f/rzGI8xj3ksZrHhcccXH2fb9dtkI0rhlZRSbJy0h2/XHjY+6LfftI0g77oLrtRPzg/wdseOPrPVeV1IwK2lJiOb0GK8ccf/NVzDAzzAHObwDd8YHnfimxPSpyu8jlKKPY/vIf+5DN5+yp/2mTqhYutWeO45bdeGO+4wvNY/EhO5o2lTF9a2/pCAWwdtXmhD/B3xhuW3cAu3czuv8io/8ZPhcbk/57Llki2U5Rok/xDCjZRdsevhXX+nGT1SxjtP+dP++Gl9r3v2wIQJ0KePtmzXYBDsspgYXmoru1qfIgG3Dkx+Jjq+25GYy/VHZAHu5m5u4AZe5EV+4zfD4/L/yGfzhZtlypjwKHupndS7Ujky98w+W3WwlHeeMtMh2wy7dmn9te3awb/+ZTj9q0NICB936oS5gc5I0CObSDqBrcjG5os3k79GP4mNQjGTmfzADzzP8/Sjn+G1QjuF0mNZD4KaN+zBBeF+ZTllpFyfQu7KXMNjdjXfy8O5Y7And9Tm3BpsY97IbGZt7950DA11UW3rJ2nhOoE5zEy3r7sRmqz/y2XCxBjGMJjBTGQi61hneC3LDgsbL9hI0XaDdHdCuIB1n5WN5210GGy3s50nMh6nr+pKx2deNgy2YX5+fNO9uwRbHRJwnSQgNoDuP3QnsHmgbrkZM0/zNIMYxD/5JytYYXit4v3F/DXgL7K+Nkh7J4QT5a3J468Bf2FJtRges41tjGMc3ejGVMsU3psYRldL5d/1YD8/vurWrUFlAKsJCbhOFNwymB4/9MA/yl+3/FTQvY7reJ7n+YIvDK9lK7Cxbfg2Drx0QDalFC5zbPExNl+4mbLjxgO2W9jCUzxFT3oyhSkEEkjZditzn/Gne+nfrdxAk4nPu3Thwuhod1S9XpKA62RhXcLo9k03w4URfvgxmtHczd28xmvMZ77hijQU7Ht6Hztu2yFzdYVTKaU4MOMA22/cjr3YePHNr/zKOMbRhz5MZjKB/N2qLd1i4a1nzPSyheBvMvFply5cZrCFjtDIoJmL5K3JY+vlWynPNZ5f+wVfMItZXM/1jGY0fg7+/kX0iaDr0q4ymCbqrLygnF0P7+LYRwZ5EdAGehezmDd5k6u5msd4DLPBzqoh50WQvbQVVzTWzzMi/iYB14UKNhVo82sdvF1bwQpe5EUu5EKe5MkzWhBnC2waSJfPutDoXOkfE7VTsLGA7SO3Y91tnCbUho3XeZ2lLOVBHmQkIzGhP7XL5K/li258Q2NXVdmnSMB1saLUIjZftJnSw8bza9exjilMoTWtmcIUYjF+W2byN5E0OYmWT7fEZJb5jaJ6lFIcfuMwe57Ygyo1fslbsfIcz/Enf/JP/skQhhgeawo00WVxF+KulpZtdUnAdQPrPiubL95M8f5iw2PSSWcCEyihhKlMpRP6GZdOiRwYSacPOxHSun5+T4T7lOWUsfPenWR97njWSxZZ/JN/coxjPM/zdKWr4bGmIBNdl3Yl9jLps60JGTRzg5A2IfT8tSchHY2DYyta8SZv0prWPM7j/MAPDq+Z/3s+f/b4k8z5mTKLQRjKW5PHn73+rDLYbmMbD/MwVqzMYY7DYOsf7U+PH3pIsK0FaeG6UemxUjZfspmizcaLGmzYeId3+IRPuJEbeZAHDQcrTml8U2M6vNmBgBj9fddEw2MvsXNg+gHSn09HlRu/xBWKT/mUt3mbPvThGZ6hEcZjBMFtgun+bXdCO8qihtqQgOtmZTllpIxIIXdFrsPjlrGMGcygBz34J/8kGsdzGwObB5I8L5mYi43zOoiGIXdVLrse2OVwIQNAIYW8zMv8zu/cwz3cwi0OZ8pEnhtJ1y+6EtjYeGBXOCYB1wPsZXb2/mPv39mYDOxkJ5OYRCmlPM3TDnMwnBJ/WzxtXm5DUIJMH2toynLL2Dd+H0fedpAs/KTd7GYyk7FiZSIT6UlPh8c3vrExyR8kYw5puLs1OIMEXA86/M5hdv/fblSZ8Y+gkEJmMpOf+ZnruZ4HedDh1DEAc4SZpKlJNH+kOX7+0k3v65RSHF98nD2P7aE003G2OYXia75mNrPpQhf+xb+IwfG7opZPt6T1tNaY/GRWTF1JwPWw3FW5pFyfQlmW8VxdhWIZy5jFLOKJ51mepQ36OwifLqxbGO1fb0/UoCgn1lh4k+KDxewevZvsr7OrPDabbGYyk9WsZhSjuJu7HY8PmKHDmx1odn8zJ9a4YZOA6wWK04vZOnwrRVscZwg7zGFe4AV2sYsHeZDrud5wQvrp4m+Lp82MNgQ1lW4GX1GWU8aBlw6Q8Z8M7FbH++IpFD/xE7OZTTjhjGMcvejl8Bz/WH86/68zMZfImIAzScD1EuWF5aTelUrWEsfTd2zY+PDkR096MpaxJJJY5fXNkWZaPt2S5o82xz9cP7mO8H42q42M2RkcmH6A8pyqt2XKIot/829Ws5rruI77uZ8QHL+OGl3QiE7/60Rwon76RVF7EnC9iLIrDrx4gP2T9kMVuWpSSOFVXuUQhxjFKG7hlir7dgEC4gJoMa4Fzf+vOeYwGQCpL+zldjLnZZI2OY3SjKp3BVEofuRHXud1IolkHOOqHBjDBK2ebUWria2k799FJOB6ofy1+ey4bQfWPcbr3QHKKedTPuUDPqAJTXiCJ6p+UZ0U0Phk4B1dfwNveV45BX8VULChgMJNhZRllWEvtuMX6Id/lD9h3cOI6B1BRO8IApvUz6lMSimyPs9i/4T9VU7zOuUQh3id11nL2mq3agObBtJpQSeiL5LUiq4kAddLlReWs/eJvRx5p+opPplkMotZrGENl3AJD/MwUURV6+sENAmg5VMtafZwM8yh3h947SV2ji8+zqH/HKJgXQEApgATyqbg9K5M08nnT+YNCOkQQuJjicTfHo9/pPd3qdhL7RxbeIyDMw86XChzukIKWcAClrCE5jRnDGOq9Qc4elg0nT7sRGB8/fyjVJ9IwPVyx5ceZ+d9OynPdtxfp1CsYhWzmU0ppdzFXVzFVQRQvdVnAfEBJD6eSML9CQTGed8Lz2axceDFA2TMydBSXpo4M8BWhx/4BfrR9K6mJE1N8soJ/KVZpRyZe4SM1zOqnOJ1ig0b3/M97/Ee5ZRzN3cznOFVrlDEDK2fb03Lp1rKlC83kYBbD5QcKWHnPTs58f2JKo+1YOEDPuBzPqcxjbmHe7iQCx2uIDqdKchE/K3xNH+sORE9I+padafI/S2XHbftoORQSZV929Vh8jdhjjDT4e0ONBnRpO4XdIKi1CIOvXaIox8cdZgQ/Gxb2MLrvM5e9nIN13AndzpcmntKaKdQOr7XUVJ9upkE3HpCKUXGnAz2jdtXrRdkJpm8z/ssYxntaMd93Edf+lZrGtkpkedG0uzBZjS+sbFHuhvs5Xb2PbWPQ68d0tIsOXPTCxOgIO6GOJL/m+yRbgZ7mZ2cH3PIeCODE99W/cf0dPvYxwd8wK/8yjmcwyM8QmtaV3meKdBEq2db0fKplvgFycCYu0nArWcsuy3sfnQ3OT/kVOv4fezjXd7lD/6gF714gAdIJrlGX9M/yp/42+OJvyOeiN4RmEyuf/tpK7ax/cbtZH+bXfOugxow+ZsI7aptTe+OrhSlFAXrCji64CjHPjnmMDm9nj3sYT7zWcUqWtOae7iHgQys1h/SRoMa0fHtjpJ4xoMk4NZDSimylmaxZ8weSg6UVOucrWxlLnNJIYUBDGAkI+lBjxq1eAGCWwfTeERjGo9oTERf1wRfe5mdbddu48QPJ5zbqjVg8jcRkhxCr1W9CIhyTcY1yx4Lxz46xtEFR6ucfaJnN7uZz3x+4zfa0pY7uIPzOb9aXUX+Uf60faUtTe9uKn21HiYBtx6zWWykv5DOwRkHHWbxP0WhWMMaPuZjtrKVZJIZyUgu4IKqB1h0BLUMqgi+kf0jnfZiTr0/lcz3M90SbE8x+ZuI6B9Br196OWUnDaUU1l1WTnx/gqMfH6VgbUGtrrOTncxnPqtZTXvacwd3cB7nVbtPvsktTWj373YyA8FLSMD1ATXtZgDYznYWspDf+I2mNOVGbuQyLqtyvqaRoMQg4q6NI+qiKKIGRdU6N2/2t9lsvXJrrc6tMxO0fbUtLca2qNXp5Xnl5CzP4cQPJzjxwwlK0qv37uNspZTyC7+wlKVsZzsd6MCd3Mm5nFvtdyShyaG0ndmW2MslSbg3kYDrI2rTzQDaJPlP+ZTv+Z5ggrmKq7icy6u1XNiQCcK6hxE1JEp7VDMAl+WWsa7jOi2Rjwv7bR0xBZrou60voe2r7ue0l9sp/KuwIsDmr8mvU6v8KEf5iq/4hm/IJ5/zOZ9ruZae9Kx2oA1KDCJpShLxd8TLajEvJAHXx9isNg6/dZgDLx2g7Gj1B2RyyGEpS/mWb8kii+5053IuZzCDa93qrXBaAI7sF0lY1zBCO4ZWGiVPvT+Vo/OOOtyhwNVOdS2c89s5ZzyvlKI4rZiCPwvIX5tPwTpthZvdUre/DHbsbGQjS1nKalbTiEZcxVVczdU0pvo74fpH+9Pyny21JduSs9ZrScD1UTaLjcNvngy8NRgJt2FjPev5ju9YzWr88edCLuRyLqcrXWs8yGbE5G8ipEMIYV3DCOsaRlCLIHbet9Ot/baOtHu9HX6BfhRtLaJwUyGFmwux5TuncgrFLnaxghX8zM8c5zhd6cq1XMsgBlV7sQqAX4gfiWMSafFUC5cN+AnnkYDr42xFNjLeyODgywcd5tzVk0cey1jGd3zHPvaRSCKDGMRABpJMcrUHboQmjTRWnPzIIINmNONCLuQiLqrWHNozmCHhvgSSJiYR1EzSbtYXEnAbiPLCcg6/cZgDLx+ocpnw2RSK3ezmR37kN37jKEeJJZaBJz960rNamcoaGhs2drObdazjF35hH/uIJZYLuZChDCWZ5Bq/YzCHm0m4L4HmjzUnpLW8HuobCbgNTHlhOYffPEzG6xk1Glw7RaHYy15+53d+4zf2sIdQQulHPwYwgB70oClNXVDz+uE4x/mTP1nPejawgXzyiSGG8ziPi7iIbnSr3RS8VkEkPpZIwr0J+Dfy/uQ7Qp8E3AbKXm4n+8tsMmZnkLsyt9bXySST309+bGUr5ZQTTzzd6U4PetCd7iSS6LS+X2+TTTY72MFWtrKe9exnPwEE0J3u9KEPfelLG9rU+v4jz40kcWwicdfFyawDHyABV1C4pZDDbx7m6EdHsRXUfmComGJ2sIMtbGEzm9nOdkooIZpoutOdZJJpc/Ijlth6F4QLKWTnyY9UUtnBDrLQduhoRauKANuDHgRTh90S/KDxDY1JHJsoyWV8jFMD7ldffcWYMWP46KOPGDBgQKXysrIynnzySZo2bUpaWhozZswgMjLS4TUl4LpPeWE5xz85zuG5hylYX7uVUacro4xd7KoIwLvZzQm0JC2RRNKa1rShTcXnBBKIIsqjg3F27GSTzaGTHxknP9JJ5yAHAYgjjuTTPjrSkXDC6/y1w88JJ/62eJrc3ES2ufdRTusMys3Nxd/fnxYtjFfpfPjhhzRp0oRnnnmGDz74gFdffZUpU6Y4qwqijvzD/Um4N4GEexMo3FzIsUXHOP7pcay7a772HyCAALqc/LiFWwBt5sO+kx/72U8qqXzHdxRTXHFOHHE0Pu2jCU2II45wwgkllJCzPhz1idpPfpRRRj755J38yCWXPPLIJ59ccskhh8McJoMMStD6toMJJpFEmtOcwQym48mPmsyPrUpQqyDib4snflQ8YZ3CnHZd4Z2c3qUwZMgQpk+frtvCHTVqFHfccQeXXnopO3bs4L777uP3338/45iysjLKy/8eRbdarcTGxkoL10OUUhRtLeL4p8c59ukxrDtrF3wdsWPnKEfJJJPjHOcYxzh+8uPUv/PJNzw/kMCKt/C2sz7sBkvWzJhpdNpHFFE0oxnNaV4RZGOIcUm3h3+0P41vakz8bfE0Oq+RJJRpQNw63JmVlUV4uPbWKyIigqysyjvUTps2TVq9XsRkMhHePZzw7uEkTU2iKKWI44uPc/zT41i2V2+Prar44UfCyQ8jpZRSRBFWnQ8LFoopxg8/zA4+IomsCK5hhLm1Dzm4bTAxl8YQc3kMMcNiJBdtA1WjgGuz2Rg4cGCl53v06MHcuXOrPD8uLo7CwkIACgoKiIuLq3TMhAkTGD9+fMX/T7VwheeZTCbCu4YT3jWc1pNbU7SjiJxlOeSuzCX3l1zKT9Rsfm9NBJ78iKZ+bHJoDjcTNTRKC7KXxhDSVt6diRoGXLPZzJo1a2r0BYqLi7FYLMTExHDRRRexYcMGLr30UtavX8/FF19c6fiAgAACAmSJYn0Q1imMsE5hJD6WiLIrirYVacHXDQHY6/hBeM/wigAbeW4kfoHSihVncmof7syZM5k9ezaXXnopDz30ED179mT+/Pls2rSJmTNnUlZWxrhx42jevDl79+7l5ZdfllkKPur0AJy3Oo+irUVYdlq8JldCXQW1CiKyfySR/SKJ6BdBxDkR9Xa7eeE+Mg9XuI29xI5lp4WibUXaY6v2uTit2NNVM+Qf409w62DCu4UT3lN7hHUPIyBa3oWJmpOAKzyuaFcR6zuu93Q1Kun2fTdiL5XxA+E80skkPC6sQxgxV8a4ec6MY8Ftgom5JMbT1RA+RgKu8AqJjyaCt4yxmSHx8US37E4sGhYJuMIrRA+LJqhlEN6QXsHkbyL+jnhPV0P4IAm4wiuY/Ey0e60deHpEwQ+SJiXJ7gnCJSTgCq/R+LrGNL6pMSZ/zzRzTf4mwnuE02Jc7XbtFaIqEnCFV2k/pz3mSLPHuhY6fdhJ8s4Kl5HfLOFVAuMC6bKki9bKdXPQ7fB2B8K6SMYu4ToScIXXiR4STZclXbTfTjcF3XavtSPhbuPkOUI4gwRc4ZXiro6j+3fd8Qvyc12frhkwaS3bxMcTXfM1hDiNBFzhtWKGxdBnax8i+kY4v6VrhuCkYHqt7kWz+5s5+eJC6JOAK7xaaLtQev3Wi3b/bocpyFTn1q4pQOsbbvGPFvTd1pdGA2TPMOE+kktB1BslmSVkvpdJxusZlGaWYvI3ocqr8etrBuxgjjDT7IFmJDyYQGi7UJfXV4izScAV9Y693M6Jb06Q/V02+X/kY9lu0Q+8JghpH0LkuZFED42m8Y2NMYdICkXhORJwRb1nL7Vj2WGhPLcce7EdU6AJc4SZsM5hmEMlwArv4UX5mYSoHb9AP8J71H2bciFcTQbNhBDCTSTgCiGEm0jAFUIIN5GAK4QQbiIBVwgh3EQCrhBCuIkEXCGEcBMJuEII4SYScIUQwk0k4AohhJtIwBVCCDfx+lwKp3LrWK1WD9dECCEcCw4OxmQyztns9QG3uLgYgNjYWA/XRAghHKsqq6HXp2e02+3k5uZW+ZfjbFarldjYWLKzsxtcWke594Z37w31vsG77r3et3D9/PyIiYmp9fkhISEe/yF4itx7w7v3hnrfUD/uXQbNhBDCTSTgCiGEm/hswPX392fSpEn4+3t9r4nTyb03vHtvqPcN9evevX7QTAghfIXPtnCFEMLbSMAVQgg3kYArhBBu4v29zLXw1VdfMWbMGD766CMGDBhQqbysrIwnn3ySpk2bkpaWxowZM4iMjPRATZ3r2WefJSQkhP379zN16lSaNWt2RvnKlSsZM2YMUVFRADz//POcf/75HqipcyxatIh169ZhsVi4+eabGTRo0Bnls2bNIjs7myNHjjB27Fg6d+7soZo6X1X3npSURFJSEgAjRozgkUce8UAtnW/79u2MHj2ayy67jKeffrpSudf/zJWPycnJUd9++60aPHiw+uOPP3SPee+999Tzzz+vlFJq3rx5auLEie6sokssX75c3XfffUoppVauXKnuuOOOSsf8/PPP6ueff3ZzzVwjPz9f9erVS9ntdmWxWFSXLl2UzWarKN+zZ48aNmyYUkqptLQ0NXjwYA/V1PmqunellJo0aZJnKudiCxcuVM8++6x68cUXK5XVh5+5z3UpREVFcfnllzs8Zvny5fTp0weAfv368dNPP7mjai5V3XtasGABr7zyCjNmzKCkpMSdVXSqNWvW0LFjR0wmEyEhIYSFhbF3796K8hUrVtC7d28AWrVqRWpqKqWlpZ6qrlNVde8Aq1atYsaMGUyaNInDhw97qKbON3LkSMxms25ZffiZ+1zArY6srCzCw8MBiIiIICsry8M1qrvT7ykkJITc3NxKx3Tq1Ilnn32WJ598kujoaCZMmODmWjrP6fcLlX+OZ5eHh4eTnZ3t1jq6SlX3DvDCCy8wbtw4Ro0axXXXXefuKnpEffiZ18s+XJvNxsCBAys936NHD+bOnVvl+XFxcRQWFgJQUFBAXFyc0+voCo7u+/R7slqtFf20p4uPj6/49/nnn89bb73lsrq62un3C5V/jnFxcezbt6/i/4WFhT6Tca6qewfo378/AB06dCA9PZ3CwsIzgpEvqg8/83oZcM1mM2vWrKnROcXFxVgsFmJiYrjooovYsGEDl156KevXr+fiiy92UU2dy9F9r1ixgoULFwKccU+n3/f06dN5+OGHadSoEWlpaRWDKvVR//79KwZNiouLKSoqok2bNhw5coSEhASGDh3KkiVLADhw4ADJyckEBgZ6sspOU9W9L1++HLvdzrBhw8jPz8dsNhMWFubhWruGUorMzMx68zP3yZVmM2fOZPbs2Vx66aU89NBD9OzZk/nz57Np0yZmzpxJWVkZ48aNo3nz5uzdu5eXX37ZZ2YphIeHs2/fPiZPnkyzZs3OuO8FCxbw008/0a1bNzZt2sTkyZNp27atp6tda4sWLWLDhg1YLBZGjBhBYmIit956K2vXrgW0Eeu8vDwyMjJ4/PHHvW/Eug4c3fumTZuYOnUqAwcOJDU1leuvv77KcY36YsmSJcyZM4eAgABGjx5N165d69XP3CcDrhBCeKMGOWgmhBCeIAFXCCHcRAKuEEK4iQRcIYRwEwm4QgjhJhJwhRDCTSTgCiGEm0jAFUIIN5GAK4QQbiIBVwgh3OT/AXCyPWae5rH8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(\"Non-uniform spacing\")\n", + "theta = np.linspace(0, 2 * np.pi, 100)\n", + "radius = 1\n", + "a = radius * np.cos(theta)\n", + "b = radius * np.sin(theta)\n", + "\n", + "figure, axes = plt.subplots(1)\n", + "axes.plot(a, b, color=\"k\")\n", + "axes.add_patch(plt.Circle((0, 1), 0.15, color=\"r\"))\n", + "axes.add_patch(plt.Circle((1, 0), 0.15, color=\"c\"))\n", + "axes.add_patch(plt.Circle((0, -1), 0.15, color=\"m\"))\n", + "axes.add_patch(Arc((0, 0), 2, 2, theta1=45, theta2=180, color=\"r\", linewidth=10))\n", + "axes.add_patch(Arc((0, 0), 2, 2, theta1=-45, theta2=+45, color=\"c\", linewidth=10))\n", + "axes.add_patch(Arc((0, 0), 2, 2, theta1=-180, theta2=-45, color=\"m\", linewidth=10))\n", + "axes.set_aspect(1)\n", + "plt.title(\"Circumference 2$\\pi$\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ce65e824-a77c-48c1-bcf3-3f8a55662110", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Two nodes with symmetry set to false\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAF2CAYAAAB3QMMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA7EAAAOxAGVKw4bAABY2UlEQVR4nO2dd3hU1daH30kljQAJJaEEQkeqlCioNBWxcAVRsaHXiqiIfmADFVEUFVEuCmIDFRW9YAErCuK1UENTOoQQSEJJIJAwKZNkf39sAoGcM5kkM8mU9T7PPJPMPvvMmpPJb9asvfZaFqWUQhAEQfA4/GraAEEQBKFyiIALgiB4KCLggiAIHooIuCAIgociAi4IguChiIALgiB4KCLggiAIHooIuCAIgociAi4IguChiIALgiB4KCLgbk5aWhqjRo2id+/e9O3blwsuuIAbbriBRYsWUVhYCMBDDz3EQw89VKXnmTx5Ms2bN6dfv35OsNoxyrP7/fffp127djRv3rxan7emGTNmDN26daNr1648+uijNW2OU1BKMXfuXPr27cuAAQPo1q0bo0aNIisrq6ZN82yU4LYkJyer2NhYNXv27NOPFRYWqhdeeEEBau/evUoppU6ePKlOnjxZ5ed79tlnVd++fat8Hkc5126j5587d66Ki4tz6fO6E7/++qsKCwtTVqtVFRUVqRkzZtS0SU4hOztbhYWFqR07diil9N8gISFBXXfddTVsmWcjHrgb8+CDD9KjRw9GjRp1+jF/f38mTJhA165dTz8WGhpKaGhoDVhYNWrKbne+Xvv27SM6OpqQkBD8/PwYM2ZMTZvkFAIDA5k0aRJt2rQB9N/glltu4fvvv0dJPb1KIwLuphw9epTvv/+eIUOGGI7//vvvNGvWjDfffPOs0EfpsMPMmTO5/PLLqVWrFvPmzePgwYPcdNNN9OnTh759+3LllVeycuVKUxsOHTrEiBEjuOiii7jooosYM2YMubm5hseOHj0aPz8/unTpwvLlywG49957GTt2LACJiYl06tSJ1q1b8/fff5exe/bs2cybN4+NGzfSr18/Bg4ceNb5Z86cyWWXXUZ8fDwfffSR3Wtn73U663rNmDHjrPNs3LiRrl27YrFYDM87cOBAWrduzU8//cTChQu56qqraNGiBR9//PFpu99//31eeuklDh48SL9+/Rg9enS5fwd79ldkntm1tXcNKvL+CA4OZty4cWc9ZrVaadCgwelrJlSCmv4KIBizatUqBaiffvqp3GPPDT3MnTtXBQUFqUWLFimllPryyy/Vt99+q3r06KHGjh17+rgpU6aohx9+2PA8RUVFqlevXmrMmDFKKR26GTJkiHrooYdM7ejdu7eaMmXK6eNjYmJU06ZNT49PmDBBrVy50tRusxBKUFDQ6evw6aefqtq1a6vCwkJDG4qKiir0Oks/R1Wul1I6/FH6X6rkvMuWLVNKKTVt2jQVGxur5s+fr5RS6osvvlCRkZGqqKjorDmlQ0aO/B3M7Hd0ntm1tXctK/P+KE1xcbHq0aOHeuutt856/LnnnlPnnXeeiouLU23btj19P23aNIfO62uIgLspa9asUYBaunRpuccaCVLt2rXPOqbkA2Hnzp2nH8vKylLr1683PI/R8QsXLlQhISGquLjY0I7XX39ddevWTSmlxezRRx9V/v7+as2aNUoppS677LKz5joq4HXq1Dn9+/bt2xWg0tLSDG2o6OsseY6qXq+S13yugJe2/eeff1aAysrKUkoptXPnzjKv5VwBd+Tv4Kj9RvMiIyNPj2/btu0se+xdg8q8P0ozffp0NWzYsLOOXbJkiVqxYoWyWq3q7bffVhkZGWet/whlCah+n19whDZt2uDv709KSkql5tetW/es3/ft2wdAw4YNTz8WGRlJt27dDOeXHH/XXXfh56cjbXl5eTRo0IAjR47QoEGDMnOGDx/Oo48+yt69e1m0aBFjxoxh06ZNLFq0iFq1anHeeedV6utyZGTk6Z+Dg4MByM/Pt2u3o6+zhKpeLzNK2x4QEHDWY4GBgYD5ayltR3l/BzP7y5tXp06d03Nq1ap1lj32rsEXX3zh0PmNWLBgAcuXL+e///3vWe+HK6+8Ej8/PxYtWkSvXr3466+/aNKkiel5BBABd1MiIyO59tprWbx4MXfddddZYwUFBQwZMoQ33niDdu3aOXS+uLg4QMcta9euDUB2djbJycl06tSpzPElqXufffYZjRs3Pv344cOHTf85mzRpQkJCAv/9739JSkqidevWDB8+nOnTpxMcHMz111/vkK1VoaKvsyrnCQoKIi8v7/ScY8eOOeU1lKYyf4eqzCuNvWtQ2fN//vnnfPzxx3z55ZcEBweza9cumjVrRnBw8OkPgkWLFjF//nx+++03WrVq5ZCtvoosYroxM2fOZNOmTcyZM+f0Y/n5+YwdO5bAwECHxRugZ8+e9OjRg1mzZp1+7KWXXuKrr74yPL5Hjx4kJCQwe/bs048tX76ca6+91u7zDB8+nFdeeYULLrgAgGHDhpGUlMTXX3/NhRdeaHduZGQk2dnZAIwdO5ZVq1Y58tLOoqKvsyrnad26NTt27MBqtQLw9ddfV9je8qjs36Gy80pj7xpU5vyff/45s2bNYt68edhsNnJycnjuuedIT08/fcyWLVsoLi7Gz8+P/Px8tmzZ4rC9PklNx3AE+xw8eFDdc889qlevXqpv374qISFBPfPMMyovL08ppdTMmTNVXFycioyMVMOHD1cLFixQbdu2VcHBwapv375qw4YNp8+Vnp6ubrzxRtW7d2/Vp08fdf/996uCggKllF48Kn2ekue+6aab1IUXXqj69++vhgwZolJSUuzam5ycrAC1devW04/179+/zOLWuXaXzO3UqZPq06ePGjx48Fmv5cYbb1Tp6ekqISFBASohIUHt2rXL0AZ7r9NZ10sppQoKCtT111+v2rZtq4YNG6beeOMNBai+ffuqefPmnWX7hg0bVJcuXU6Pn/tatm/frt57772zbPn222/L/TvYs9/Refaurb1rUJH3R3p6uvL391dAmVvJfgallHr55ZfV4sWLlVJ6zaBkkVQwxqKUJGEKgiB4IhJCEQRB8FBEwAVBEDwUEXBBEAQPRQRcEATBQxEBFwRB8FDcXsCVUuTm5krFMkEQhHNwewHPy8sjNDT0rB1vgiAIggcIuCAIgmCMCLggCIKHIgIuCILgoYiAC4IgeCgi4IIgCB6KCLggCIKHIgIuCILgoYiAC4IgeCgi4IIgCB6KCLggCIKHIgIuCILgoYiAC4IgeCgi4ILvoRQUFdW0FYJQZQJq2gBBcBnFxZCYCOvW6dvKlZCUBAUFWsT9/SEiArp1g4QE6N4d+vSBmJiatlwQHMLtu9Ln5uYSGhqK1WolJCSkps0RPIGjR2HePPjPf2DfPi3UFgsUFprPCQrSwu7nB1dfDQ89BAMG6N8FwU0RARe8h2PH4Kmn4IMPdIiksmGSgAAt9i1awNSpcP31+gNAENwMcS8E7+C776BdO3jvPe1JVyXGXeKpJyfDjTfCddfB4cNOMVMQnIkIuODZWK1w++067JGRYT9MUlFKvpwuWQJt28LXXzvv3ILgBETABc8lK0vHqT/9VP9eXOya5ykshOPHYdgwmDPHNc8hCJVAslAEzyQ7GwYOhM2bnet1m1HijY8apT8o7r/f9c8pCOUgHrjgeRQW6pBJdYn3uTzwACxcWP3PKwjnIAIueB6vvQZ//FEz4g3aG//3vyEtrWaeXxBOIQIueBZbt8LEia6LdztKXh7cddeZ0Iog1AAi4ILnUFgIt91W01ZoCgvhxx/ho49q2hLBhxEBFzyHr76C9etrLnRixGOPuZc9gk8hAi54DjNmuN/W9sOHdZ64INQAbvbfIAgmbNkCf/5Z87Hvc/H31zVXBKEGEAEXPIO334bAwJq2oixFRbBiBezaVdOWCD6ICLjgvthssHEjfPih3m1ps9W0RcZYLDBhAnz7raQWCtWKVCMU3AObTYdJEhPP3DZtgvz8mras4sTE6NripW+xsTVtleCFiIAL1Y83ibWjiKgLLsBpAr5161ZGjx7NFVdcwRNPPFFmfMaMGWRmZpKens4jjzxChw4dHDqvCLgXUFgIf/0FixfD7797v1g7SkwM9OgBV1wB11wDTZvWtEWCh+G0YlZ///03F198seHYnj17+O6771i6dCn79u3j9ttvZ8WKFc56asEdOXECli7Vov3dd7pLjnA26ek6BXHJEl1fpVs3LeRDhsD550sTCaFcnCbgN954I9u2bTMcW758Od27dwcgLi6O7du3U1BQQFBQUJljbTYbhaU2RuTm5jrLRMHVpKRoMVq8GH791eWLjsXAYeAAsB9IBY4DOQa37FP3Beg3vdktEKgD1AeiS91K/x6Fi8p4btigb5MnQ+PGZ8S8f3+oVcsVzyh4ONVSTjYjI4Pw8PDTv4eHh5OZmUmMQfPYKVOm8Nxzz1WHWUJVKS7WOyNLRHvjRqc/xUlgC7AZ2IUW6tKCXfojIgotvhFAeKlbDND61M9BQBFQWOpmK/VzAZAF7AWOABmnfi9NANDi1DlLbq1O3ccB/k543aSm6tTJt9+GsDC4/HIt5lddBfXrO+MZBC+gWgQ8OjqapKSk07/n5OQQFRVleOyECRN4/PHHT/+em5treqxQQ2zbpoVl4UKnpc0VAruBv8+5JQEKCAHaAM2AjsBgoAnQ9NR941PHuAIbkIkW8wz0B8hu9AfKX8CHnBH5QKAl0A3oCfQ69XNoVQw4eVKXEfjqKx1W6d1bdyG6+WYt7oLP4jIBV0px8OBBYmJiGDBgAIsWLQIgJSWFdu3aGYZPAAIDAwl0xw0bvo7NBt98A7Nm6fBIFckD1gD/O3X7C+1tW9DebCfgVqDzqZ/jcZJnWwkCgUanbkYo4Cha0HcBO4BEYApa+P3RHzq9OCPq51HJfz6l9I7UP/+E8eO1kI8erVu+CT6H07JQFi1axFtvvUVgYCCjR4+mY8eO3HzzzaxevRrQWSjHjx8nNTWVhx9+WLJQPIXUVHj3XXjnHb3oVklygJWcEezVQD4QC/QFLkaLWweq6K26EQodilkDrD11vx6wApHAQGDQqVtcVZ9s4EAt5EOGQIA02vIVJA9cKItS2sueNUs38q1kh/f9wGLga2AFOkzSErik1K0F2uv2FQrRMf0VwE+n7nOBtmghvxzoB1Q6MNK4Mdx7L9xzj05TFLwaEXDhDMeP6/rWs2bB9u0Vnq6Af9CC/Q06jBCGjlcPAfqj49XCGfKAP9BivhS9WBuE/lYyAhgK1K3MiQMCYOhQ7ZX37SspiV6KCLigCzFNmwbz54PVWqGpCh0W+AQt2klAQ7RgXwsMACQBznHS0UL+DfAd+voORov5ECrpmbdvDw8+qDsIBQc7y1TBDRAB92XS0nTO8XvvVThMcgQt2nPRXmMrYBhatBNwQZU0f3+dtuhub1eLBUJCKvzB5wjHga+ABcAvQDBwDXATcMWp3ytEXJz+e99yi76egscjAu6LHDsGr7yiGyRUYKNUIdo7/AAd2w4GbgT+DfTGibFsf3/o2PHsuiGdO8Mjj8AHH7hfVcItW6BOnbNru6xbBwcPOu0pDgOLgM+A39FhlTuB+9HrChWiY0d46SWdUy6hFY9GBNyXyM2FmTNh6lQt4g6SAryNzndOQ2eM3AkMR2+OqRJmYm30t/7nHz3mLm/ZgAC46CLztMq0tLNFPTGxSpk8JexH/y3eRv89BgMPoL3yCn3zuegi/V7o06fKNgk1hHJzrFarApTVaq1pUzwXm02pd95RKjZWKS1/Dt02gLoZlD+oGFBPgdpZgfmmt4QEpaZMUWrVKqUq+nf9v/9Tyt+/6jY44xYUpNSOHRWzPzVVqS+/VOquu5Rq0KBKz28DtRBUfx0qV/GgpoHKrOi5rrlGqc2bK/Y6BLdABNybKS5WauFCpdq2dfifuRjUT6AuPSUKHUHNA5VfFaGrVUuLxLvvKpWWVrXXZLUqFR9f8yJusSj12mtVey1FRUqtXKnUk08q1bFjlez5B9RoUOGgaoG6F1RSRV/PyJFKJSdX7TUJ1YoIuLeybJlSPXs6/A9cAOpjUF1OCfcAUD+cEvRKiUqDBtrL/OYbpU6edO5rW7lSC05NiXdAgFK9eilVWOjc17Vnj1JvvKHUgAGV/oA6DmomqOagAkDdCWpPRc4RFKTUww8rdfiwc1+b4BJEwL2N9HSlhg51+B/WBup9UM1A+YEaAWpdZYWtQwelnnpKC2xRkWtf51tv1Zx4x8YqtX+/a1/f0aNKffqpUiNGKFW7doXtLDj1d41Hh8DuALWrIueoXVuH3YqLXfs6hSohAu4tFBfrf/h69Rz6By0G9RWo9qf+we+hgl+5S261ail1xx1KrVlT/a956tTqF+8GDZTaubN6X+fJk0q9955S3bpVSsjngmp56u88kgquY1x+uVL79lXv6xUcRgTcG0hPV+raax3+p/wN1IXoUMl1oLZXRsxatlRq2jSlMjJq9rXPnKnt8fNzvXg3a6bU3r0191qLi/XC78iRSgUHV8h+G6gPQbVGf9O6B9QhR+dHRIg37qaIgHsyFfS6N4O66pRw9we1uqIi5uen1JAhSv34o+tDJBXh11+VatLENQubJR8MI0cqdexYTb/SMxw5otQrryjVokWFhXwuOquoNqjXqMACtXjjbocIuKdy8KDDse4MUHeBsoDqCupHKrg4Wb++jm27c4ZCdrZSDzxwxlt2hniXhEy++66mX505RUVKff+9UldfXaGF3WxQE0AFg2oD6jtHr4l4426FCLinUQGvuxidAhgNqiE6y6SoIgLWo4d+rry8mn7VjrN6tVI33aTFtzJCXuLFN26sY+zu5HWXx969Sj3xRIUWPZPQYTRAXQFqq6PXSbxxt0AE3JOogNe9DVQ/tNc9GtSxiohY27ZKLVrk2V7WoUNKvfSSfi0lnmlAgFKBgVqk/fz070FBZ8bDwpS68kqlvv3W+SmC1cmRI0o9+miF4uS/guqMTj18FNRJ8cY9AtlK7yl8/rkuDVpOd/c84EVgKrrry9vo4lIO0bgxPPec7vLiTU0BTp6ETZv0VvadO3VJAZtNb9evU0d3g+/eHVq29K7aICkpMGkSfPihLgRWDkXAu8AT6ObNc9FlE8rlsst0jZomUiy4uhEBd3cKC+Gxx+D118s9dBkwCl2S9HngIRxs21W3Ljz1FDzwgHENEsGz2boVJkzQzTkc4ABwH/ADMAbdGq7cMrYNGsCXX0pdlWrG6VU/BSdy7JiuGFeOeOcBjwCXor3ubad+L1e8Q0LgySchKQnGjRPx9lY6dNANkf/6Cy65pNzDmwDfoj3weUAXdBs8uxw+DP37a09cqDZEwN2VbdsgIQGWLrV72BZ0iOQ9dIW6r9Cd2u3i7w+jRsGePfDiizqMIHg/F14IK1bA999Dly52D7UAt6PfX+3QHYLGoBtPm2Kz6aYRDz+svzkKLkcE3B35/nu44ALdKccEBbwJ9EA3Ad4IjMSBmtxDhugPh9mzpWeiL2KxwODBsH49fPIJNGpk9/DGwBK0c/Ax2hvfUN5z/Oc/+jnKWa8Rqo4IuDuhlG60cPXVcOKE6WGHgKuBh4HH0F9vyy3qX68efPqpjoO2bu0kgwWPxc8Pbr5ZN6O47Ta7h1rQzsEW9Le7C4F30E6EKb/8Ar166fi74DJEwN2F3Fz9j/T441rITfgR6AxsRQv3c0BgeeceOlT/I910k3dlWQhVp1493ch68eJyvfFY4Gfg/9CLnLdTTkhlzx79TfLbb51lrXAOIuDuQGqq7hz+ySemhyh0euCV6MXKjUC56/0lXveiRdCwoZOMFbySa65xyBsPQGelfHfq1gu9aG5KdrYO202datcxESqHCHhNs3o19OwJa9eaHnIS3ZX8GeANYD4QWd55xesWKkoFvPErgfXolno9gU/tHayUzna65ZYK9WAVykcEvCZZsEB73nb6JO4DLkJ3Jf8JnQlgV46jouCzz8TrFiqPg954HLrB8p3ALeh9B3ZzTz77DC6+GA4dcpalPo8IeE3x/vt6ESk/3/SQ39BZJoXAWmBgeeccOlT/440YIV63UDUc9MaDgP8AC9CprP8CcuydNzFROy2pqc601mcRAa8JZs2Cu+82jQkqYBY61n0xsBKIt3e+sDAdPxevW3A2Jd748OF2D7sR+BVYA1wCpNk7eMcOvaFo3z6nmemriIBXN9On6y3rJhSjd1E+ADwNLETHGU1p3hxWrtTevHjdgiuoVw+++AJeeMHuYRcAq9BrNgnA3/YOTkrSIr5nj9PM9EVEwKuTKVPg//7PdNiGTs2aBXyGXrS0+wfq21cvfnbq5EwrBaEsFsuZeirh5i5FS+AvoAU6S+pne+dMSdEivn27My31KUTAq4tJk2DiRNPhXGAY8CV659uI8s43ejT8/DNERzvLQkEon3/9S3/ja9HC9JAotHBfjc5Wed/e+dLSODZhAjusVqea6SuIgFcHL76oy7SakAUMAv5EZ5sMsneugAC9Df6ttyCw3C08guB8OnbU3/z69zc9JBid7vo4cDcwzeS4jN69GTh+PP02bmSXiHiFEQF3Na+/rr96mnAI6AfsRu+svNDeuaKi9BblUaOcaaEgVJyoKPjpJ3jwQdND/IAXgOnAeHSN+tIcSkig/7RpbMjL42BBAQM2bWKv5IlXCBFwVzJrFjz6qOlwMjrHOwftfXe0d65OnbTX07evMy0UhMoTGAgzZ8KcOXYbgDyCTjV8Ei3oAKk9e9J3+nT+KZVGeyA/nwGbNrE/L8+VVnsV0tDBVXzwgS6taUIKOkWwDnqDjt19b0OH6pxcO4tHglCj/P47DBsGGRmmh8xCZ1c9HBPD4s8/Z29RkeFxrUNC+K1rV2KCg11jqxchHrgr+PxznedtQjp6U05tYDnliPdTT8HChSLegntz8cWwbh20b296yGjg+WbNmJGezt533zXdB7ErN5eBmzZxzGZzkbHegwi4s1m7Fu64w/TNmQlcdurnn9Er9qa89JJOPfSTP5PgAcTFwW+/mTaL2H7++cz6+GMYPx7mz4f33jP9P9lmtXLj1q0UOtDL05cRZXAm6elw7bVgEsM7js4wyUb3r7Treb/+OjzxhLMtFATXUr8+LF8OPXqc9fDf559P3+nTSS8uhiuv1GWTP/sMPv7Y9FQ/HzvG+KQkV1vs0YiAO4u8PB2rTjPeRHwSuApIRYt3M3vnmj0bxo51toWCUD3Uq6ezpS7UOVXru3en3/TpHC7tbQ8aBGPGwNy58N13pqd648AB5top9ubrONS0XCgHpXRq3+rVhsN5wLXAdnSBqlZm57FY9OLnHXe4wEhBqEYiI+Gnn9g8diwDbruN40ahkmuv1Yue06dr0b/QOIl21M6dtA0NpXdkuUWUfQ7xwJ3B66/Dhx8aDhUDt6GL/CxFd403RcRb8CYiImj5zjt0sie8d90Fl1+uN7qZtF8rUIph//wj6YUGiIBXlR9/1IsyJjwLfH3qdr6988yeLeIteB1h/v5816kTCRERxgdYLLo+UNeuuunD/v2Ghx2y2Rj6zz9YTVIPfRUR8KqwY4euvW2yUv4JeuPCLMB80zHag5fdlYKXUjsggB86d6abWSpsQAA8+yzExMBjj5l2s0/MyeGuHTtw860r1YoIeGXJytKFfY4fNxxeCdyF3oV2j73zvPSSLFgKXk/dwECWdu5Mx7Aw4wNCQvT/gr+/zr4yCZcsOHyYqSkpLrTUsxABrwxFRbrX5I4dhsP70IuWlwKv2jvP449LqqDgM0QHBfFLly40r1XL+IC6deHll3U67uuvm+aIT9i7lyV2dnz6EiLgleGJJ3Ts24Bs4BqgAbrRq7/ZOf71L12lUBB8iIZBQSzu2JEws81pjRvr3cdLl8I33xgeooCbt21jy8mTrjPUQxABryhffgnTjItjFqObux5E1/SubXaO887TGxhkh6Xgg3QKD+djO1vuufBCuP12ePNN+Ocfw0NyiopkURMR8Ipx5IjdxcZXgR+Ar4DmZgfVq6c9C7NVeUHwAYbWr8/k5s3NDxg5Uu/mnDTJdFFzV24uE/budYl9noIIeEV46CEt4gasBCYAL6FbSRni7w///S+0bOka+wTBg5gYF8f19esbD/r56Tr6wcE6R7yw0PCwGQcO8HtWluuMdHNEwB1l0SJdZdCAY8BNwOWAefVvYMYMGDDA+bYJggdisViY264dXc3SCyMiYPJknSwwZ47hIQq4c8cOnw2liIA7QkYG3H+/4ZBCpwkWAPOwc0HvuUf3sRQE4TRh/v5807Ej9c3aA7ZsCePG6ZLKf/xheMhuHw6liIA7woMPmoZO3kY3Ip6Pzjwx5KKL9IKMxeIa+wTBg2lWqxZfnncegWb/H5deCldcAa+9BseOGR7iq6EUEfDysBM62YzeqDMRMA2MNGumzxEU5Br7BMELuKhOHWa1bm1+wAMP6Hj4a68Z5of7aihFBNwedkInVuBGoBfwjNn80FCdcdLA1DcXBOEUd8fG8mDjxsaD4eF649uff+pmygb4YihFBNwedkInz6Fre3+CnZq8b72li/QIguAQ01u2pKdZim23bjB8uG6kfPCg4SG+FkoRATfDTuhkPfAa8ArQ1Gz+VVfpzQiCIDhMoJ8f89q1I8gsHn733brrz8svGxaR87VQigi4ERkZphkjNnSRqt7AvWbzIyN12pMsWgpChekQFsZzZpt8goN12dm//9a7og3wpVCKCLgRY8bA4cOGQ9OBrcC72Ll4M2bomg6CIFSKcU2bmodS2raF226Dd96B1FTDQ2YcOMCfJpVCvQkR8HP56y/dbNWAXcAk9KJlW7P5V12ltwELglBpAsoLpdx8M8TG6nUmAxTwyO7dXl87XAS8NEqZlndV6JBJa+Axs/kSOhEEp2E3lBIYqL8pr1ypnS4D1mZn86WXl511qoB/8cUXjBs3jtGjR/O///2vzHjz5s3p168f/fr1480333TmUzuHH36A3383HHof+N+pe5M9YxI6EQQnYzeUcv750K+f3iSXn294yISkJApNOmZ5AxblpO8Y2dnZ9O3bl8TERPLy8ujZsyebN2/Gr1TJ1EmTJjFp0qQKnTc3N5fQ0FCsVishISHOMNWY4mKdprR5c5mh4+hO8rcAb5jNv+oqWLJEvG9BcDJbT56k27p1FBhJ1ZEjOmQ5YoRp1tc7bdpwT2ysi62sGZzmga9atYq2bdtisVgICQkhLCyMPXv2nHXM77//zquvvsqzzz5LWlqa4XlsNhu5ubln3aqFzz4zFG/QFQaL0A2KDalTRy+oiHgLgtOxG0qpX18L+CefgImmTEpOJtdL0wqdJuAZGRmEl6oqFhERQcY58acXX3yR8ePHc8sttzB06FDD80yZMoXQ0NDTt6ioKGeZaE5BATz9tOFQMtrrfgaoazb/jTf0googCC7Bbihl+HDdENlkQTOtoICZJtkqno7TBDw6OpqcnJzTv2dnZxMdHX3WMQkJCQC0adOGffv2nXV8CRMmTMBqtZ6+ZWZmOstEc+bMAZO80QlAE8C0juAVV0jWiSC4mAA/P+a2a0eA0bfckgXNv/6C1asN57+UksIxm83FVlY/ThPwhIQEdu7cCUBeXh4nT54kPj6e9PR0AJYtW8bPP/8MwIkTJ/D39yfMoEN1YGAgISEhZ91cSnY2PP+84dAadF/LlwHDUlR+frq9moROBMHlnBcWxt0xMcaD3btD797w3nuGOzSzCgt5Zf9+F1tY/ThtERN0FkpiYiJWq5Xhw4fTpEkTbr75ZlavXs3GjRuZPHkyffr0Yfv27QwbNozBgweXe06XL2JOngzPlo1uK6Avus/l74ChRN9xB8yd63ybBEEwJD0/n1arV2M1yizZvVvX3Z80Cfr2LTMc4ufH7oQEYoODXW9oNeFUAXcFLhXwI0cgPh4MQjlfAcOAVUCC0dygINi1S5eLFQSh2piQlMSLKSnGg889p8Oh77+vWxiew70xMcxpa7oNz+Pw7Y08L75oKN5FwJPocrGG4g26PrGItyBUO+ObNqVugEkN0DvugP37Yflyw+H309PZabW6zrhqxncFfN8+mDXLcOhLYCe6ZKwhtWvDU0+5yDBBEOxRJzCQp8ycp7g43cFn3jzDRshFwEQvKnTluwI+Y4ZOHzwHBbwIDMdOvZPx4+GcDBtBEKqPBxo3polZLHvkSDh0yLTxw8IjR9hTXftLXIxvCrjVarr4+COwER1CMaRhQxg71iVmCYLgGCH+/kwy29zTuDEMHgwff2zqpM0x2fTjafimgC9YACZdO14ErgC6mc19+mnd3kkQhBrl9oYNaRcaajw4ciQcPQpLlxoOv5+e7hW7M31PwJUy3bH1O/AHYBrdjo/XaUqCINQ4AX5+TGnRwniwfn0YMAAWLjRsgny0sJD/mrRL9CR8T8DXroX16w2HXgT6ABebzX3+eekuLwhuxNDoaBLMtthfd51OVkhMNBye5QXb631PwE0yTzag49+m3nenTrrimSAIboPFYuHF+HjjwdatoUsX7YUbsDo7m8TsbBda53p8S8AzM3X824DXgU6A6d7Qhx/WW+cFQXAr+tepQyeDshyALnS1ejWYbPyZ7eFeuG8p0gcfGBZ+Pwp8gS5YZbhlPjISbrrJtbYJglApLBYLo82qgV54oa4UatIA+dPDhz26yJXvCHhxMcyebTj0MRAA3Gw299//BrPVbkEQapxbGjYkwmDrPP7+MHSozgk3CJfkFhcz7+DBarDQNfiOgP/0k2HJWAXMAW4CapvNHTXKdXYJglBlIgICGNmwofHg4ME6/Pndd4bDs9PSKHbvklCm+I6Amyxe/glsA+4zm3fppeBFxW8EwVu536wfbVgYDBqkWx4aCPWu3FyWHTvmYutcg28IeHKy6afvHPSmne5mc0ebtnIQBMGNOC8sjL6RkcaDgwbplmtbthgOz/LQnZm+IeDvvmuczA/8F+19Gy5eNm4M11zjWtsEQXAao8288DZtdKGrU01lzmVxRgapJp3t3RnfEPBFiwwf/gi9eGmaX3LffWBWtlIQBLfj2uhoGhlttrNY4PLL4ddfDeujFAPfnNPD1xPwfgHfsUPfDPgYXfPbcPEyIADuvtuFhgmC4GyC/Py4x6zt2qWX6vr/Jn0zF4uAuyFLlhg+nASsRwu4IcOG6U7XgiB4FPfGxGCQUAgNGkDXrqZhlOVZWZwwqCHuzni/gC9ebPjwIqAu0N9snixeCoJH0qRWLYaY1eu/7DJYuRJOnCgzZFOKpUePutg65+LdAp6ZCX/+aTi0ELgWCDQajIuDSy5xnV2CILiU2xs1Mh645BKdE75iheHw4sxM1xnlArxbwL//Xu/APId9wBp01x1DhgzRix6CIHgkl9atSy2j2kVhYdC7t6mAf5+ZSaFRx3s3xbsF3CR88iUQCQw0mzdkiIsMEgShOgjz9+fSunWNB3v3hs2bDRuaZxYWstIgvOKueK+A5+fDjz8aDi0EhgCGHfVq15bwiSB4AUOioowHevXS+0JM6oR7UhjFewV8xQrDT9hU4C/shE+uuEKaNgiCF3C1mYBHRkL79rBqleGwJ6UTeq+Am4RPvgVCgcvN5kn4RBC8gpjgYHqZdeu54AKdD24Q796Zm8sOq9XF1jkH7xRwpUzzv5cBlwC1jAb9/XXlMkEQvALTdMILLoBjx2DnTsPhJR7ihXungG/aBPv3l3m4GPgVO4uXF18M9eq50DBBEKoT0zh4y5a68bFZGMVD4uDeKeAm4ZO/gQxggNk8CZ8IglfRMSyMuGCDdAWLRXvhK1cazvvz+HEyDGqmuBveKeB//GH48HL07ssuZvOk8qAgeBUWi8U8jJKQoEMox4+XGSoGVnlAOqH3Cbid9KDl6K3zhnUS2reHVq1caJggCDWBaRilY0d9b1IjPNEgi83d8D4B37cPDOoZFAK/IeETQfA1LqlTh9pG/TIjI6FZM3MBN+ih6W54n4CvW2f8MJCNHQEfYDoiCIIHE+Tnx8VmnXo6dBABdytMwicrgEZAO7N53U2bqgmC4OF0N8sH79gRtm8HgzKyaQUFpLt5lx6fEfBEoBcmrdOaNwezOJkgCB6PqYCfd54uu7Fnj+Gwu3vh3iXgdhYw16ObFxsi3rcgeDU9zAS8WTMID4d//jEcdveFTO8S8ORkwwXMLHQHnvPN5omAC4JXExscbNwr08/Po+Pg3iXgJt73xlP34oELgu/SPTzceOC880TA3QITAd8ARAFNzOaJgAuC12MaB2/VCg4fNqxe6u4Lmd4l4CYphOvR4RNZwBQE38VUwOPi9H1KiuGwO3vh3iPgdhYwNyDhE0HwdUwFvFEjCAw0F3A3Xsj0HgFPTtblIc8hF9iOCLgg+DqxQUHGC5n+/tC0qXjgNcrmzYYP7wGKgA5m83r0cJFBgiC4ExaLxXwhs1kzXYbDgE3igVcDqamGD+89dd/CbN75psmFgiB4Gefbi4ObeOAp+fl0WbOG1/fv55jN5kLrKo73CHhamuHDyegMFMM/W2ysLGAKgg9wvLCQV1NSmGXi6NGsmdYQkxrgm61Wxu/ZQ6O//uLO7dvdxiv3HgFPTzd8eC92vO8mpomFgiB4CT9kZtJm9WqeTEoi06DmCaA98OJi02/yoEOxBUox/9Ahuq1bx+N79pBXVOQaox3EewTcxAPfCzQ3mxMT4yJjBEGoabJsNu7Yto0r//6bDJsNu1Jb4szZEfASbEqhgNf276fj2rWsrsHGD94j4CYeeDJ2PHARcEHwSvbm5tJl3To+OXwY0B127BIcDGFhhqU4zCgCkvPyuHD9ej4w0R9X4/UCbjeEEhvrKmsEQaghdlmtXLB+PWkFBRQq5fjEevUMU5HtUQQo4K4dO3jzwIEKzXUG3iHgNpveCnsOWcBxJIQiCL7C/rw8+m7cyNHCwoqJN+iEhip0o39o927mVbMn7h0CfuiQ4cMlSUFxZvPEAxcEr6FIKYZt2cIRm63i4g3aA69ACMWIu3fsYGM1bvzxDgE3WcAs+TJkmigoHrggeA3T9+9nfXZ25cQbtIBXwQMHXW/plm3bKCguN+ruFLxDwE2+tmSdujfphiceuCB4CdtOnmTC3r3lL1baoxIx8HMpBLZbrUwx2dXpbLxawI8BtU7dyuDvD/Xru9AoQRCqi/t27kRV1vMuoSSEUsXzFANT9u1jl9VaNXscwDsE3CSEkgXUNZvTsKHuxiEIgkezOSeH348fx2SLjuPUq6cTIpwQw/azWJhtokvOxDsUzI4HXsdsjoRPBMErmJWaSqDFsNp/xQgN1fdOaOBgU4p309OxuninpncIuMnKcRZ2BFwWMAXB4zlRWMiHhw5hq2r4BKCk1KxJPZSKYi0qYoFBerMz8Q4BN6lvkIUdAa9d2zW2CIJQbfxw9Cj5zsr4KBFwJ7VQU8CnJinOzsI7BNykxKPdEEpAgIuMEQShuliXne2c8Ak43QNXaPuqvLhqB+8QcBMPvACTDBQQARcEL2D1iRMUOEsgnSzgAMeLikhxYVNkp6rYF198wZo1a7BarYwYMYJLLrnkrPEZM2aQmZlJeno6jzzyCB06mPbJqRhmJSLtIQIuCB5NsVKsd+auRxcIOOiWbHG1TF3JKuE0FcvOzmbq1KkkJiaSl5dHz5492bx5M36nUvX27NnDd999x9KlS9m3bx+33347K1ascM6Ti4ALgs+RabNx0pk7Hl0g4EEWC7tzc512vnNxWghl1apVtG3bFovFQkhICGFhYezZs+f0+PLly+l+qoFwXFwc27dvp8DgQtlsNnJzc8+6lUtl2hyJgAuCR5Pr7O3qgYH6PivLqad1up2lcJqAZ2RkEF6qYWhERAQZGRmm4+Hh4WQa1B2YMmUKoaGhp29RjrQ8q0wMzFkLH4Ig1AhFzl4cLNEEJ1cUrHRtFgdwmoBHR0eTU6pPXHZ2NtHR0abjOTk5huI8YcIErFbr6ZuRyJehMt50DbdCEgShatRy9k7qEk1o29appw1x4Y5vp505ISGBnTt3ApCXl8fJkyeJj48n/dSn2YABA9iwYQMAKSkptGvXjqCSmFMpAgMDCQkJOetWLpUR8MrEzQVBcBvqBATg1O/RJSFdA12qLEVKEVUSmnEBTgsE165dm8cff5zHH38cq9XKW2+9RXJyMjfffDOrV6+mZcuWDB48mMmTJ5OamsqsWbOc9dQi4ILgg4T4+9MqJIRdzlokdIWAA+eXCh07G6eu5N1www3ccMMNZz22evXq0z8//PDDzny6M5h8wvmBeSNTEXBB8HgurF2bpNxc+w2LHaUkX9uJAu4PdAoLc9r5zsU7NvKYeOC1AdN+0SLgguDxdI+IwOKshAQXeOBtQ0Op5e/vtPOdi1cLeB3ONHUoQ16ea2wRBKHa6F+njvOyPJws4IEWC4Pq1XPKuczwDgEvKQN5DnWwI+AurhImCILr6RQeTkJEhHOEzMkCblOK+1xctto7BLxRI8OH63KmL2YZqqHYuiAIrmdMkyY4xQd3YgzcH+hXpw5tTZxLZ+EdAm7yKVcHOx64k5P1BUGoGa6rX586zthZffy4vo+IqPKpioAxjRtX+Tzl4R0CbtKcoS56EdNwI2tOjlNaJwmCULME+/nxYosWVc8JP3pU9wmoYt52ANAjIoIhpTYyugrvEHA7HrjCTiaKeOGC4BXcGxvLxZGRBFQlI+XoUXCkdEc5WCwWPm7XDv9qKNfhHQJu4oHXOXVvGgcXARcEr8DPYmFeu3ZVF/AqZo34AS+2aEE7F+Z+n/t8no+JgJcsbZouV8pCpiB4DS1CQpjTpk3lT5CZWSUBD7BYuCQykkeaNq28DRXEOwQ8IgIMPvEao+NRyWbzxAMXBK9iZKNGvBofX7nJVfDAAywWOoeFsbhTp2oJnZTgHQJusRh64f5AM2Cv2TzxwAXB6xjXrBmvtWxZ8YmVjIEHWCz0iIhgedeuRFRznwHvEHAwXchsjh0BFw9cELySR5s25dP27Qn383MsLl5UBMeOVcgDLznriPr1WdalC5E10CTGewTcJA7eAjshFPHABcFrualhQ7YnJDCwTp3yD87MhOJiqF/foXMHWCxEBwaypGNHPu7QgVAX1juxh08IuHjgguCbNA4O5ofOnZnXrh2N7e2w3LdP38fF2T2fP7rP5Z2NGrGjVy+uroZcb3t4T2NIOyGUFKAQgxebnKz7abqw4LogCDWLxWLh9kaNuLVhQx7ctYu3jb5579unN/FERpqep1lwMGOaNOGORo1c2qShIniPgNvxwIuAVKDMZ2t+PmzZAl27utQ0QRBqHn+LhXyzBsMpKabed6ifH7906UJC7dr4uVkvXe8JobRubfhwSULRLrN5iYmusEYQBDdknVn5jH37oFkzw6FOYWFcGBnpduIN3iTgnTuDwUJCQ6ABsNFsngi4IPgEuUVFbD150njQjgfe3QnFrVyF9wh4SAicd16Zhy1AN2CD2TwRcEHwCTbl5Bi3Xjt+HLKyRMBrnB49DB8+H1hvNmfTJr2QKQiCV5OYk2M8kJKi701CKCLg1UX37oYPdwN2AIZfnkoWMgVB8GoSzeLfe/dCrVrQoEGZoVp+fnRwcVOGquATAn4+uqzsZrN5EkYRBK/HVMC3bYM2bcCvrBx2CQsj0OBxd8F9LasMnTsbNjhuge5QbxpGEQEXBK8mt6iILWYLmFu2QMeOhkPuHD4BbxNwk4VMP6ArspApCL6K3QXM/fsNdQNEwKsfO2EUWcgUBN/EdAFz61Z9LwLuJpgIeG9gEyZNjmUhUxC8GtP495Yt0LSp4RZ6d1/ABG8UcJNUwv7o5sa/mc1budJFBgmCUNOsOmHSGXfLFlPv290XMMEbBdxkITMa6AIsN5v33XcuNEoQhJpiT24u26zWsgNFRbB9u8eGT8AbBbxWLdM/yEDsCPgvv4DZKrUgCB7LkowM44HduyEvTwTc7ejZ0/DhAcA/wCGjwfx8+PlnFxolCEJNsDgz03ggMRHq1DHdQt9TBLyGGDzY8OGL0QXZfzWbt3ixiwwSBKEmOGaz8b+sLOPBlSshIcFwA0+T4GA6GjRKdze8U8AvvxwMum/UBnphJ4zy7bc6LiYIglfww9Gj5vnfW7fCBRcYzrsmKgqLG5aPPRfvFPDwcBg40HBoALDMbN6RI7BmjausEgShmllsFv9euxYsFtOstSGV6E5fE3ingAMMGWL48CAgCdhqNk/CKILgFRQUF/PD0aPGg6tWQadO2tk7h3B/f/rXreti65yD9wr41VcbPtwbaAQsNJsnAi4IXsH/srI4YRQSLSrSHrhJ+GRQ3boEu3n+dwmeYWVlaNLEcFemPzAMOwK+datOLxIEwaMxzT7ZuhVOnDAV8CE13Gm+InivgANcc43hw8OBv9E1wg1ZssRFBgmCUB0opczj36tW6SboBg0c/IAr69VzrXFOxLsF3CQOfjFQH1hkNk/CKILg0fxz8iT78vPLDigFK1ZAnz56EfMcekdGEm2QweaueLeAd+2qQynnEAAMxU4Y5fff4eBB19klCIJL+e+RI8YDW7dCWhpceqnhsKdkn5Tg3QJusZh64cPR9cH3GA0WFcF777nQMEEQXIWtuJh309ONB5cu1Tsv27QxHPak+Dd4u4CDqYD3A+phxwufMwcKC11jkyAILuPrjAwOFhSUHbDZdPjksssMwydtQkJo6+blY8/F+wW8Xz/DXM9A4DrgI3S/zDIcOKB3ZgqC4FHMSkszHli9GrKzTcMn13hY+AR8QcCDg+GKKwyH7kFv6PnLbO6sWS4yShAEV7D15ElWmNU+WbpUr4s1bGg47GnhE/AFAQf4978NH+4BdAPmmM37+WfYudNFRgmC4Gxmm3nfJ07o4lWXXWY43CokhIsMuvK4O74h4IMGQYsWZR62APcCXwAmG27h7bddZ5cgCE4jp7CQD82yx1as0FUHL7nEcPj+2Fj8PKB41bn4hoD7+8OoUYZDN6PTCj82mzt3Lhh18xAEwa345PBhso22ziul93ZccgkYlIit5efHHY0aVYOFzsc3BBzgzjt1PPwcagM3ocMohouZWVmwYIFLTRMEoWoopZiVmmo8uGkT7NkDw4YZDt/UoAH1AgNdaJ3r8B0Bj46GG24wHLoP2Ab8aTb3rbf0p7ggCG7JXydOsNmsJeLChbptWvv2hsOjY2NdaJlr8R0BBxg92vDh7pSzmLl+va5eJgiCW2Lqfaemwl9/wfDhhsM9IyLoUbu2Cy1zLb4l4AkJ0K1bmYctwAPA58B+s7lvveU6uwRBqDSHCgrMt85/9RXUrw8XX2w47MneN/iagFsspl74regCV6+Zzf3kE9i1y0WGCYJQWaampGAzCnGePAk//ABDh+pEhnOoFxDAjQ0aVIOFrsO3BBzg5pvBIN8zGBgHvAsYfpYXFcHTT7vWNkEQKsS+vDzz8MkPP0BxMVx1leHwnTExhBgIuyfhewIeGmq6seceIAT4j9nczz+HxEQXGSYIQkV5du9eCoy876Ii+PJLvQs7IsJw7igPD5+ALwo4mOaEhwMPAzOBE2Zzn3zSNTYJglAh/snJ4aNDh4wHf/4ZDh0yXby8ol49WoaEuNC66sE3BbxtW9OCNg8CRcBss7k//wzLTPvaC4JQTUzYu9d474bNBh9+qL3vxo0N53r64mUJvingAA89ZPhwXWA08DqQazb3ySclL1wQapA/jx8373n5ww+QkQG33WY4HF+rFld6YOVBI3xXwK+5Bnr1Mhx6BMgCTFs6rF0Li0wbsgmC4EKUUjyRlGQ8mJ8PH38MV18NJtvjJ7dogb8H1j0xwncF3GKBqVMNhxqh88InA8fN5k+YIA0fBKEG+P7oUf44bvKfuWSJrjx4yy2Gw53DwrjJw1MHS+O7Ag7Qv7+uVGjABHQs3Fji0WVm5851kWGCIBhRpBRPmnnfubnw6adw7bW6dIYBL8XHe2TVQTOcKuATJ05kypQp3H333aQZ1OVdsWIFXbt2pV+/fvTr148//vjDmU9fOV56yfDhesDT6Fj4PrO5kybpN40gCNXCZ4cO8bdZzZOvvtL/jzfdZDh8cWQkg+vVc6F11Y/TBHz58uUcOnSICRMmcNttt/GkSbrdG2+8wYoVK1ixYgUXXXSRs56+8nTrBiNGGA49ADQBnjKbm5YG/zHNGhcEwYnkFxfzdHKy8eDx4/DZZ3DddVCnjuEhL8fHY/Ei7xucKODLli2jR48eAPTq1YtffvnF8Lj58+czbdo0Xn31VfLz88uM22w2cnNzz7q5nOefh4CAMg8HoUMonwKmpawmTwazr3SCIDiNycnJJOflGQ+++y4EBZl63/+KiuJCD+y4Ux5OE/CMjAzCTzUPDgkJIcugL1379u2ZOHEi48aNo27dukyYMKHMMVOmTCE0NPT0Lao60n1atYJ77jEcug7oDfwfJvXCrVZda7y42HX2CYKPs+7ECV5OSTEe3LoVvvsO7r/fsGGDHzAlPt61BtYQFqUcT2guKiqiT58+ZR7v0qUL0dHRNGvWjPvuu4/c3FxatWpFqlmNAmD79u3ceuutrFu37qzHbTYbhaWyO3Jzc4mKisJqtRLiyp1T6elayA2676wCLgS+BIaazX/zTXjgAdfZJwg+Sn5xMd3XrWOLUWesoiJdoC4kBF5/XWeXncMdjRoxt127arC0+ikbN7CDv78/q1atMhxbvnw5C051rlm7di2XntrpmJeXh9VqpV69ekydOpX777+fyMhIkpOTad68eZnzBAYGElgT3TFiYmDsWHjxxTJDFwAjgLHAZegt92V47DEYPBi89JNeEGqK55OTjcUbtOe9eze8956heAdZLEwy0BlvoUIeeHlMnDiR8PBwkpKSmDRpErGxsXz00Uds3LiR6dOnM3/+fH755Rc6derExo0bmTRpEi1btrR7ztzcXEJDQ13vgYNeCImPh6NlWxwfBNoDtwNvmM3v2xeWL9fNUwVBqDLrTpzggvXrMeh0qf9fR46Eyy83/fb7SJMmTG/VyqU21iROFXBXUK0CDvDaazBunOHQB8DdwF9or9wQCaUIglOwGzoBmDYNVq6Ejz4yjH1H+PuTlJBAdFCQiy2tOcRVPJcHHoBmzQyH/g30R4t4gdn8xx6TrBRBcAJ2Qydbt8L33+vKogbiDfBY06ZeLd4gAl6WWrXgnXcMhyzAO0AS8LLZfMlKEYQqs+7ECaaaZZ3k5ekyGOefb1pVtFNYGI+ZOGLehAi4EYMGwV13GQ61RNdIeQHdyd6Q336D2aYFaQVBsEN+cTH/3rHDOO4N2sE6ehQef9xw4dIfmNeuHUE+sBbl/a+wsrz2GjRpYjg0FuiEDqWY+tkSShGESvF8cjL/mG2XX7dOb5l/+GHdrNiAJ+PiON+kC4+3IQJuRmSkTk0yIABdanYNMM1svtUKt96qy1sKguAQ/8vKMg+dZGfDyy/rbC87oZOn4+JcaKF7IQJuDzuhlK7AFHTVQuPMePQK+ejR0vxBEBwgOTeX67ZsMQ+d/Oc/euPOI4/4fOikBN95pZXFTihlHDAQuAndAMKQDz6AmTNdYpogeAs5hYX8659/yLDZjA9YsQJ++QXGj9ffjg3wpdBJCSLg5WEnlOIHfATkoTvam/rZjzyie2kKglCGYqUYuX07m83i3keO6G3yV10FF15oeIivhU5KEAF3BDuhlAbAfGARMMdsfnEx3Hij3vIrCMJZTE5O5quMDOPBggJ49lntSI0ebXiIL4ZOSvC9V1xZ7IRSBqJrho8FNpvNP3YMhgzR7Z4EQQBg0ZEjPLfPtGUKvPUWJCfrks+hoYaHPOWDoZMSRMAdxU4oBWAS0AO4ETD5IgjbtsHNN+uFGEHwcTbl5DBym+luCvjxR1i8WOd7m4RHOoWFMdEHQycliIBXBDuhlAB044fD6IJXpvnh330HEye6xDxB8BQOFxQw5O+/sZrtWN65E6ZP192y+vY1PMSXQycl+O4rryzTp0P79oZDzdCx8G+AZ+ydY+pU3XxVEHyQguJihm/ZQorZHonjx+GZZ6BjR7j7btPzvBQf77OhkxJEwCtK7drwzTemfff6AbPROeLz7Z3nrrv0rjJB8CGUUjy0axe/Hz9ufEBREbzwgt478cwz4O9veNitDRsyrmlTF1rqGYiAV4bWreGLL0zrft8NPArchS49a0henk6L2rHDNTYKghvywr59vJOebn7A22/Dpk3w3HOmTlLPiAjeadPG6xoUVwYR8Mpy2WU6nGLCK8DlwLVAstlBhw/DgAGwZ4+zrRMEt+PVlBSeMesqD9opWrhQL1qatECLCQriq44dCTHxzH0NEfCqMGaMLh1rgD96UbMRcA2QbXaOtDQt4mb1HwTBC5h54ACP2Svu9ssvuoLn/ffDwIGGhwRbLHzVsSONg4NdZKXnIQJeFSwWmDULevc2HI4AlqAzU27AThOIlBQt4mlpLjFTEGqSd9PSGGNvE1tioi5Sdf31cMMNpoe907YtCbVru8BCz0UEvKoEB8OXX5pu8olDi/gfwK1Aodl59uwh8aGHOCjVCwUv4sODB7lv507zA3bv1ouVl1yiu+uYMK5pU0Y2auQCCz0bEXBn0LChzkwx6dnZCy3iSzCvIb6+e3cGPvQQfTdu5EBenutsFYRq4p20NP69fbt5jaD0dB3vbttW35skBVxRrx5T4+NdZqcnIwLuLM4/H+bONR3uB3yJjos/yNmFr/45/3wuf+01jgM7c3O5ZONGknNzXWmtILiUmQcOcN/OnebiXdJRp25dvU3epHdlm5AQPmvfHn/JODFEBNyZ3HgjTJhgOjwYWIDuq/kYWsS3d+/OwNdfJ7NUzfC9eXlcvHEju8waugqCG/NKSor9mHdGBowdq4u8TZ1q2pQ40t+fxZ06UScw0DWGegEWpdy720Bubi6hoaFYrVZCTEIUbkVxMQwbpkMqJswHRgJjYmL474IFpJlsJ24UFMSyLl3oYPIGFwR3QinF8/v28ay9VMEjR+DRR3UCwPTpEB1teJgf8F2nTlwRFeUSW70F8cCdjZ+f3iZvUr8B9GLmC3FxzEhPJ+2TT0yPO1hQQJ8NG1h69KgLDBUE55FfXMw9O3bYF+/Dh7Xn7e+v63ubiLcFmNuunYi3A4iAu4LQUFiyxLT4fGqvXnzwySfw4IO6w/a775q2XcsqLGTw5s28vn8/bv5lSfBRDhUUMGDjRt4/eND8oIMHtXgHBWnP2444v92mjWScOIgIuKuIiIAffoDu3c96+FBCAgNff509Nhtcd51eyFmwQNcbNykzWww8umcPd+7YQb5Z9TZBqAHWZ2fTIzGRv+zVuU9L0+IdEqI973r1TA/9T6tW3Bsb63xDvRQRcFcSGQk//QSdOwOQ0acPl77+OjsKSm3pueIKXfdh6VK9Gl9gut2HeQcP0n/jRskVF9yCzw8f5qINGzhg7/24b59uKRgRoT1vk/omAK/Ex/OQyX4KwRgRcFcTFQU//0zWnXdy+bRp/GP0Zr/oInjlFVi7Vmex2EkhXHniBD3Xrycx23RzviC4lGKlmJiUxIitW8m1941w40YdJoyO1t8wTZoRAzzXvDnjmzVzvrFejgh4ddCgAfmzZ2OzV4Cna1ftoezapVfpzcptAgfy87lowwYWHDrkfFsFwQ7ZhYUM++cfppRXu2fpUt1B/vzz9fvazhb455s355nmzZ1rqI8gaYTVSEZBAZdv3syGnBzzg1JS4LHH9Bb9F1+Exo3tnvPJZs14oUUL/GSjg+BiknJzGfL332yxtz9BKfjoI5g3T++LuPde0x2WAK/GxzNOPO9KIwJezRyz2bhi82bW2AuBHDmiQynp6bpORM+eds95TVQU89u3p3ZAgJOtFQTN8mPHuH7LFo4WmlbzAZtNh0p+/hkeegiuvdbuOWe2asWDEvOuEiLgNcCJwkKu+vtv/rATJiEvD159FVasgPvu05Xa7HjZccHBfNCuHQPq1nW+wYLPkltUxDPJyUzfv9+8zytATo52NrZt0/cmKbSg87zntGnDPZJtUmVEwGuIk0VFDPn7b5ZnZZkfpJROMXz3Xbj0Uvi//9OhFTuMio3llfh4IsQbF6rIquPHuWP7dnaUV5dn926dSZWbq8N+bdqYHuqH3qQjed7OQQS8BikoLmb0zp32N0AArFql+wQ2bQqTJ0P9+nYPF29cqAoOe90A338PM2boioJPP233vVknIIAvOnTgMjt54ELFEAGvYZRSvJmayiO7d2O8jecUKSkwcSKcPAmTJkGnTuWeW7xxoaI47HXn5Wnh/vFHGDFCN+m28z5rHxrKNx070jo01MkW+zYi4G7CslOLRMfsLRLl5MBLL2mP/NZbYeRI067dJYg3LjhChbzulBQdMjl8GJ54Avr0sXv4VfXq8UmHDkSKI+F0RMDdiD2n0rS2lpem9fXXun9g69bw1FPlphqCeOOCOQ573QC//qoX15s1g2efhZgYu4c/3rQpU+LjpZ63ixABdzNOFBZy67ZtLMnMtH/g3r06Lp6eDg8/DJdfbjdLBbQ3/n67dgwUb1yggl53To52Gr7/Hv71Lxg92rQJA0AtPz/ea9uWWxo2dKrNwtmIgLshxUrx9N69vFjebreCAp2hsnAh9O9/puZEOVwTFcWUFi3oFB7uJIsFT6KwuJh5Bw8yKTmZVDu1d06zZg1Mm6bzvMeOtVsqGSA2KIivO3akpzQgdjki4G7MZ4cOceeOHeSVV4FwzRrd1TsgQO/iPKcCohEW4LaGDXmueXOa+9h19VWUUnyZkcGEpCTHwiU5OTBrlq6q2a+f/qZnpxgVQEJEBF917EhMOemugnMQAXdz1p04wbX//FO+p5SVpXfB/fGHzhm//367ZTtLCLJYuD82lglxcdS385VY8GyWHzvGE0lJrHW0CNrq1drrLix0yOsGGNmwIXPatKFWOQvrgvMQAfcADubnc8PWrfxub+dmCX/8Af/5j95Uce+9cNVVdmtRlBDu78+4pk15tEkTWej0ItZnZ/NkUhJLjx1zbEJODrz1lk4P7N9fe912qggCBFosTI2P55EmTbDIYmW1IgLuIRQpxX8OHOCpvXvLD6nk5sLcubBoEbRvr6sbxsc79Dz1AwOZGBfHfbGxBDsg/IJ7sstq5em9e/n8yBHHJhQV6QXK99/XH/gPP+yQ190tPJx57drRWdZTagQRcA9jl9XKv7dv5097HVBK2L1bh1V27tS1VG6/XXdFcYDmtWrxXPPmjGjQgCARco8hJS+Pl1JSeC89nUJH/7U3boQ339SZTUOH6vdJOYvhgRYLT8fF8USzZgTK+6PGEAH3QCrkjRcV6f6c772nxfuOO3QXIAfjlI2CgrgnJoZ7Y2JoUqtW1Y0XnE6xUvxy7BizUlNZkplZfkpgCQcPwttvw2+/QY8e8MAD4EBd7vPDw5krXrdbIALuwVTIGz96FD78EL79Fpo0gbvv1p2AHIxZ+gNDoqMZHRvLgLp1pf64G3DUZmPewYPMTktjtyNZJSXk5sKnn8Lnn0PDhjqn+4ILyn0vBFosPBMXx+PidbsNIuAeToW8cYD9+3Wc87ffoEMHuOce3Q2oArQJCeH+2Fhub9SIuoGBlTNcqDSJ2dm8lZrKZ4cPO/Y3LyE/X38b++wz/fPIkTpk4sDfULxu90QE3EuokDcOsGMHzJkDGzZAQoIW8pYtK/ScIX5+3NygAaMbN+Z8BzYQCZUnt6iIL44cYVZqqv1mIIaTc7VwL1igi6ENGQI33eRQmql43e6NCLgXUWFvXClYt07v5ty9G3r31m2wHKh0eC4JERH8OyaGa6KiiJVNHE6hSClWnzjBoiNHmHfwoP1uOEbk5sI338AXX4DVqoV7xAiHhBvE6/YERMC9kF1WK48nJfFVRoZjE4qL4ffftYe2fTucd54W8t69HV7sLE2PiAiGREUxJDqazmFhkhtcAXIKC/n52DGWZGbybWYmR2y2ip/EatXC/fnnOlTyr3/pv6eDNXDqBQTwVFwcYxo3Fq/bzREB92JWHT/OE0lJ/ObIBiDQHvnmzdpj++svvdh5/fUwaFC5nYDMaBYczJDoaK6JiqJfnTqSkmhAan4+32Zmsjgjg2XHjpFf2X/Jffu0cP/0k/5QHjoUbrih3O3vJYT6+fFIkyaMb9ZMSr96CCLgXo5Sip+OHuWJpCQ2nTzp+MR9+7SQ//wzhIXpBrVXXlluNyB7RPj7c0W9egyJiuLKqCjq+egCqFKKTTk5LD4l2ok5OZU/WVER/PmnLjG8YQPExupQyeDB4GAxqQCLhXtiYng6Lk5qmHgYIuA+QrFSfH74MBP37iUpL8/xiZmZ8OWXOv0wJ0fnCw8erMMrVaid4g+cHxFB94gIuoeH0z0igo5hYV75lT2joIDEnBwSs7NJzM5m9YkTjlUBtMfRo3rn5OLFkJEBvXrpD9levRwqnVDCiAYNeL55c1pJpxyPRATcxygoLua99HQmJydzqCLx1YICWLlSV6ZbuxbCw2HgQO2Vt2rlFNuCLRY6nxJzTxX1c8U6MTubffn5zjl5Xp7+G/z6q74PCdEfpkOGONTUozSD6tblxfh4yR7ycETAfZScwkLeOHCAV/fv50SR3W6cZTlyRMdZf/gB0tJ0Z6BBg+Dii6FBA6faWVrUu4SF0SQ4mJjgYGKDgmgQFFQjnV5OFhWRnp9PWkEB6QUF7MnNdb5Yl2Cz6UyhZct0qKSgQOftX3qpLjZVwd2xvSIimBofT39p6uEViID7OBkFBbyUksLstDRyK7IpBPSi599/ayH/7Tedttamjd7h2acPtGjh8E7PyuAHNAwKIubULTY4+Oz7oCAiAwIIsFjK3PwsFgqVKnMrKC7msM1GWn4+6QUFZ+4LCkg/9XOFP/AqSlERbNoEy5fD//4H2dk6M2jAAF2XuxJd3TuEhvJ8ixYMjY6WrCAvQgRcAOCYzcZHhw4xKzWVnRXZll1CQQGsX6+9xD//hGPH9IJa795a0Dt2rFRKos9w6JAOTa1dq69jTo4OTQ0YoD3tRo0qfEp/4NroaEY3bkz/OnVEuL0QEXDhLJRSLM/K4q3UVL7JyHC8MFJpioth2zYt5H/8obfv164NXbpA5876Pj7etwU9N1d72SWivX+/TtXs0kUvFCck6MbBlSAmKIh7Y2K4JzaWxpJV4tWIgAumHMjL4530dN5JS6vYgue5pKTAqlVasDZv1t5lWJj2yktEvU0bh2pyeCRK6cp/27bpEgbbt+ufbTb9Qdazpxbtzp2rlNnTv04dRsfG8q/oaI9a+BUqjwi4UC4FxcV8nZHBrNRUxzcFmVFcrOtOb958RtCPHdPeZ3z82bcWLcrtBuN2KKVfz44dZ8R6+3Y4flyn9zVvrptsdOyoRTs6ukpPF+Hvz+2NGnF/bCwdwsKc8xoEj8GpAr5kyRLGjh3LJ598wgUXXFBm3GazMW7cOBo1akRycjKvvvoqtcvZbCAC7l5sOXmS2ampfHToENnOWMxTCg4c0EK+ezckJWmBLynYFBWlhTw+XocUGjTQm4kaNICazF0+fhxSU7XtBw6c+Tk1VReMAr0G0LYttGunRbtVK4cbapRH57AwRjduzC0NGhAuuyZ9Fqf95bOysggICKBp06amx3z88cc0aNCAJ598kg8//JDXXnuN5557zlkmCNXAeWFhvNmmDVPj41laqmZHRmVDLBYLNG2qbyUopTen7N2rBT0pCRIT9Tbx0ml6YWFnxLx+fX0LC9MiGRqq78+9BQbqLA97t+xsLdBZWfr+3FtGxpkPmIAAiInRZQc6d9Z52U2a6NRKJ3976B4efrosQdfwcFmUFJwfQunXrx9Tp0419MBvueUWRo4cyaBBg9i2bRt33303f/7551nH2Gw2CktVXcvNzSUqKko8cDemSClWnTjB4owMFmdmst1qdc0TKaWF88gROHxY35fcDh/WwnrypF4grEwmTWn8/LQA166ta4lERp65r1tXi3STJvrDw0WLscEWCwPr1uWaqCiujoqSjkhCGar1u1dGRgbhp0pTRkREkGFQLW/KlCnilXsY/hYLfSIj6RMZycstW7LTamVJZiZLMjL4/fjxymWyGGGxaEGtXbv82uXFxdpbLxHz3Fxdpc9m04JrdgsI0LtMw8MrtCXdWdQPDOSqqCiGREVxWd26Eh4R7FKhd0dRURF9+vQp83iXLl2YM2dOufOjo6PJOVW4Jzs7m2iDBZwJEybw+OOPn/69xAMXPIc2oaH8X2go/9e0KZk2Gz9kZrI4M5Mfjx51TtzcEfz8zoRN3Jz2oaGny+8m1K5dI7tLBc+kQgLu7+/PqlWrKvQEeXl5WK1W6tWrx8CBA0lMTGTQoEGsXbuWSy+9tMzxgYGBBHprOpkPEhUYyK2NGnFro0YUFBezKSeHdSV1QnJy+OfkSce7p3sBUQEButbLqVuPiAjiJDQiVBKnxsCnT5/OzJkzGTRoEKNGjaJr16589NFHbNy4kenTp2Oz2Rg/fjyNGzdmz549vPLKK5KF4uPkFRWx+eTJM8WfvEjUzxXr7uHhxNWqJYuPgtOQPHDB7ThX1Dfm5HAgP5/DNhvu+GYN8fMjJiiIliEh9BCxFqoREXDBYyg8t9BUqQJTJT+nFRRwqKDAKQunYX5+pysfli6SdW7hrNr+/iLUQo0gS9yCxxDg50dscHC5TZOLlOJIQQEZNtvpKoO2c6oOFilFoJ/fWRUKA0/d1zrlUUdIBojg5sg7VPA6/C0WGgUH00gKOQlejlS8EQRB8FBEwAVBEDwUEXBBEAQPRQRcEATBQxEBFwRB8FDcPgulJE09t6rV5QRBEDyMWuVsBnN7Ac/LywOQglaCIPgc5W1gdPudmMXFxWRlZZX7SWRESSXDzMxMn9/FKdfiDHItziDX4mzc7Xp4vAfu5+dHvXr1qnSOkJAQt/hjuANyLc4g1+IMci3OxlOuhyxiCoIgeCgi4IIgCB6KVwt4QEAAzz77LAFSlEiuRSnkWpxBrsXZeNr1cPtFTEEQBMEYr/bABUEQvBkRcEEQBA9FBFwQBMFD8YxIfSVYsmQJY8eO5ZNPPuGCCy4oM26z2Rg3bhyNGjUiOTmZV199tdwGy57KxIkTCQkJYe/evUyePJnY2NizxlesWMHYsWOpU6cOAC+88AIXXXRRDVjqGr744gvWrFmD1WplxIgRXHLJJWeNz5gxg8zMTNLT03nkkUfo0KFDDVnqesq7Fs2bN6d58+YADB8+nAcffLAGrHQ9W7duZfTo0VxxxRU88cQTZcY95j2hvJBjx46p77//XvXt21etXLnS8Jj3339fvfDCC0oppebNm6eeeeaZ6jSx2li2bJm6++67lVJKrVixQo0cObLMMb/++qv69ddfq9my6uHEiROqW7duqri4WFmtVnXeeeepoqKi0+O7d+9Wl112mVJKqeTkZNW3b98astT1lHctlFLq2WefrRnjqpkFCxaoiRMnqpdeeqnMmCe9J7wyhFKnTh0GDx5s95hly5bRo0cPAHr16sUvv/xSHaZVO46+zvnz5zNt2jReffVV8vPzq9NEl7Jq1Sratm2LxWIhJCSEsLAw9uzZc3p8+fLldO/eHYC4uDi2b99OQUFBTZnrUsq7FgC///47r776Ks8++yxpaWk1ZKnrufHGG/H39zcc86T3hFcKuCNkZGQQHh4OQEREBBkZGTVskWso/TpDQkLIysoqc0z79u2ZOHEi48aNo27dukyYMKGarXQdpV8/lP1bnzseHh5OZmZmtdpYXZR3LQBefPFFxo8fzy233MLQoUOr20S3wJPeEx4bAy8qKqJPnz5lHu/SpQtz5swpd350dDQ5OTkAZGdnEx0d7XQbqwt716L068zNzT0d5y5Nw4YNT/980UUX8fbbb7vM1uqm9OuHsn/r6OhokpKSTv+ek5PjtZUvy7sWAAkJCQC0adOGffv2kZOTc5aY+QKe9J7wWAH39/dn1apVFZqTl5eH1WqlXr16DBw4kMTERAYNGsTatWu59NJLXWSp67F3LZYvX86CBQsAznqdpa/F1KlTuf/++4mMjCQ5Ofn0IpY3kJCQcHqRKi8vj5MnTxIfH096ejoxMTEMGDCARYsWAZCSkkK7du0ICgqqSZNdRnnXYtmyZRQXF3PZZZdx4sQJ/P39CQsLq2GrqwelFAcPHvS494TX7sScPn06M2fOZNCgQYwaNYquXbvy0UcfsXHjRqZPn47NZmP8+PE0btyYPXv28Morr3h1Fkp4eDhJSUlMmjSJ2NjYs67F/Pnz+eWXX+jUqRMbN25k0qRJtGzZsqbNdhpffPEFiYmJWK1Whg8fTpMmTbj55ptZvXo1oDMOjh8/TmpqKg8//LD7Zhw4AXvXYuPGjUyePJk+ffqwfft2hg0bVu5akqeyaNEi3nrrLQIDAxk9ejQdO3b0yPeE1wq4IAiCt+Ozi5iCIAiejgi4IAiChyICLgiC4KGIgAuCIHgoIuCCIAgeigi4IAiChyICLgiC4KGIgAuCIHgoIuCCIAgeigi4IAiCh/L/ZsH9s448bYkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(\"Two nodes with symmetry set to false\")\n", + "theta = np.linspace(0, 2 * np.pi, 100)\n", + "radius = 1\n", + "a = radius * np.cos(theta)\n", + "b = radius * np.sin(theta)\n", + "\n", + "figure, axes = plt.subplots(1)\n", + "axes.plot(a, b, color=\"k\")\n", + "axes.add_patch(plt.Circle((0, 1), 0.15, color=\"r\"))\n", + "axes.add_patch(plt.Circle((1, 0), 0.15, color=\"c\"))\n", + "axes.add_patch(Arc((0, 0), 2, 2, theta1=45, theta2=225, color=\"r\", linewidth=10))\n", + "axes.add_patch(Arc((0, 0), 2, 2, theta1=-135, theta2=+45, color=\"c\", linewidth=10))\n", + "axes.set_aspect(1)\n", + "plt.title(\"Circle with circumference 2$\\pi$\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "ea43241a-c0e6-4cc3-ab65-95b4929de5d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The same two nodes with symmetry set to true\n", + "Notice now the red node is given more weight\n", + "because there is implicitly a duplicate of that node (in black) across the axis of symmetry.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVwAAAF2CAYAAAAiISB8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA7EAAAOxAGVKw4bAABW5klEQVR4nO2dd3hU1daH30klIYSEhF5C71VKQBQQBBQVGwqK5XptyJWmIHrxCnJFUbgoIqh8oqioSBEEsYMoShUJPfQAAhESCKS32d8fO4mBnDNp0zKz3uc5T+Dsvc+sM+U3e9Zeey2LUkohCIIgOBwfVxsgCILgLYjgCoIgOAkRXEEQBCchgisIguAkRHAFQRCchAiuIAiCkxDBFQRBcBIiuIIgCE5CBFcQBMFJiOAKgiA4CRFcF3H69GlGjBjB1VdfTe/evenevTt33303y5cvJycnB4BRo0YxatSocj3O1KlTadiwIX369LGD1SWjOLsXLFhAy5YtadiwoVMf19WMHj2aTp060bFjR5566ilXm2MXlFJ88MEH9O7dm759+9KpUydGjBhBUlKSq01zT5TgdOLi4lSdOnXU22+/XXAuJydHvfTSSwpQx44dU0oplZqaqlJTU8v9eJMnT1a9e/cu93VKypV2Gz3+Bx98oKKiohz6uO7ETz/9pCpXrqzS0tJUbm6umj17tqtNsgvJycmqcuXK6sCBA0op/RpER0erO++808WWuScyw3UBTz75JF26dGHEiBEF53x9fZk0aRIdO3YsOBccHExwcLALLCwfrrLbnZ+v48ePExkZSVBQED4+PowePdrVJtkFf39/pkyZQvPmzQH9GgwfPpyvv/4aJXmxiiCC62TOnz/P119/zeDBgw3bN2zYQIMGDXjrrbcucwUU/hk+Z84cBgwYQKVKlVi4cCHx8fHcc8899OzZk969ezNo0CA2bdpkasNff/3FsGHDuOaaa7jmmmsYPXo06enphn1HjhyJj48PHTp0YN26dQA89thjjB07FoDt27fTrl07mjVrxu7du4vY/fbbb7Nw4UJiYmLo06cP/fr1u+z6c+bMoX///jRu3JiPPvrI5nNn6z7t9XzNnj37suvExMTQsWNHLBaL4XX79etHs2bN+O6771i2bBk33XQTjRo14uOPPy6we8GCBbzyyivEx8fTp08fRo4cWezrYMv+0owze25tPQeleX8EBgYyfvz4y86lpaVRo0aNgudMKISrp9jexubNmxWgvvvuu2L7XvlT/IMPPlABAQFq+fLlSimlvvjiC/XVV1+pLl26qLFjxxb0mzZtmhozZozhdXJzc1W3bt3U6NGjlVLalTF48GA1atQoUzuuvvpqNW3atIL+tWvXVvXr1y9onzRpktq0aZOp3WYuhYCAgILn4dNPP1WhoaEqJyfH0Ibc3NxS3WfhxyjP86WUdgcU/qjkX3ft2rVKKaVmzpyp6tSpoxYtWqSUUmrJkiWqatWqKjc397IxhV0oJXkdzOwv6Tiz59bWc1mW90dhrFar6tKli5o7d+5l51988UXVpk0bFRUVpVq0aFHwd+bMmSW6rqcggutktm7dqgD1/fffF9vXSEBCQ0Mv65Mv4AcPHiw4l5SUpP744w/D6xj1X7ZsmQoKClJWq9XQjtdff1116tRJKaXF56mnnlK+vr5q69atSiml+vfvf9nYkgpuWFhYwf9jY2MVoE6fPm1oQ2nvM/8xyvt85d/zlYJb2PYffvhBASopKUkppdTBgweL3MuVgluS16Gk9huNq1q1akH7/v37L7PH1nNQlvdHYWbNmqXuuOOOy/quXr1arV+/XqWlpal33nlHJSQkXLZ+4U34OX9O7d00b94cX19fTpw4Uabx4eHhl/3/+PHjANSsWbPgXNWqVenUqZPh+Pz+Dz/8MD4+2qOUkZFBjRo1OHfuHDVq1CgyZsiQITz11FMcO3aM5cuXM3r0aHbu3Mny5cupVKkSbdq0KdPPx6pVqxb8OzAwEIDMzEybdpf0PvMp7/NlRmHb/fz8Ljvn7+8PmN9LYTuKex3M7C9uXFhYWMGYSpUqXWaPredgyZIlJbq+EYsXL2bdunUsXbr0svfDoEGD8PHxYfny5XTr1o2NGzdSr1490+t4MiK4TqZq1arcdtttrFq1iocffviytqysLAYPHswbb7xBy5YtS3S9qKgoQPvdQkNDAUhOTiYuLo527doV6Z8fivXZZ59Rt27dgvNnz541/TDVq1eP6Oholi5dytGjR2nWrBlDhgxh1qxZBAYGctddd5XI1vJQ2vssz3UCAgLIyMgoGHPhwgW73ENhyvI6lGdcYWw9B2W9/ueff87HH3/MF198QWBgIIcOHaJBgwYEBgYWCPfy5ctZtGgRP//8M02bNi2RrZ6GLJq5gDlz5rBz507efffdgnOZmZmMHTsWf3//EostQNeuXenSpQvz5s0rOPfKK6+wYsUKw/5dunQhOjqat99+u+DcunXruO2222w+zpAhQ3jttdfo3r07AHfccQdHjx5l5cqV9OjRw+bYqlWrkpycDMDYsWPZvHlzSW7tMkp7n+W5TrNmzThw4ABpaWkArFy5stT2FkdZX4eyjiuMreegLNf//PPPmTdvHgsXLiQ7O5uUlBRefPFFzpw5U9Bn7969WK1WfHx8yMzMZO/evSW216NwtU/DW4mPj1ePPvqo6tatm+rdu7eKjo5WL7zwgsrIyFBKKTVnzhwVFRWlqlatqoYMGaIWL16sWrRooQIDA1Xv3r3Vjh07Cq515swZNXToUHX11Vernj17qieeeEJlZWUppfRiReHr5D/2Pffco3r06KGuu+46NXjwYHXixAmb9sbFxSlA7du3r+DcddddV2Qx5Uq788e2a9dO9ezZU914442X3cvQoUPVmTNnVHR0tAJUdHS0OnTokKENtu7TXs+XUkplZWWpu+66S7Vo0ULdcccd6o033lCA6t27t1q4cOFltu/YsUN16NChoP3Ke4mNjVXvvffeZbZ89dVXxb4Otuwv6Thbz62t56A0748zZ84oX19fBRQ58uPJlVLq1VdfVatWrVJKaZ93/qKct2FRSoLlBEEQnIG4FARBEJyECK4gCIKTEMEVBEFwEiK4giAITkIEVxAEwUm4veAqpUhPT5fMQ4IgVHjcXnAzMjIIDg6+bOePIAhCRcTtBVcQBMFTEMEVBEFwEiK4giAITkIEVxAEwUmI4AqCIDgJEVxBEAQnIYIrCILgJERwBUEQnIQIriAIgpMQwRUEQXASIriCIAhOQgRXEATBSYjgCp5Fbi5IZjnBTfFztQGCUCYSEuCnn2D7dtiyBXbsgORksFrBYoHgYGjbFrp3h86doU8fqF/f1VYLXo7bV+1NT08nODiYtLQ0goKCXG2O4EqU0uL61luwZAnk5IC/P2RlmY/x99f9AG68EUaNggEDwEd+3AnORwRXqBjExMA//6lnsn5+f4toacgfFxUF774LAwfa3UxBsIV8zQvuTVYWTJ4MXbrArl36XFnEtvC4kyfhhhvgkUfg4kX72CkIJUBmuIL78uef2g2wb5/2zdobPz+IjIRvvoGOHe1/fUG4ApnhCu7J0aMQHQ2xsY4RW9Az3nPn4NprYeNGxzyGIBRCBFdwP06dgt694ezZsrsPSkpuLqSl6YW0HTsc+1iC1yOCK7gXOTlwyy0QH+94sc3HaoWMDO3XvXDBOY8peCUiuIJ7MWMG7NzpPLHNJzcXzp+H0aOd+7iCVyGLZoL7sGcPdOrkfLG9ktWr4eabXWuD4JHIDFdwH0aOdLUFepfao49CdrarLRE8EBFcwT3Yswc2bHD97FYp7T9evdq1dggeiQiu4B7Mm6e34boDvr7w5puutkLwQMSHK7ielBSoXl1HCrgTsbHQooWrrRA8CMkWJjgXpXR87Z49sHu3/vvbb+4ntqBzLXTrBo0aQfv20KEDtGypd6gJQhmQGa7gOJTS23I3bvxbXHfv1qkVKyqBgTrtY6dOWoy7dYM2bUSEhRJhN8Hdt28fI0eO5IYbbuDZZ58t0j579mwSExM5c+YM48aNo3Xr1iW6rghuBSJfYNev18fPP+uts55OUJDOuduzp96x1rOnFmZBuAK7fS3v3r2ba6+91rDtyJEjrFmzhu+//57jx4/z4IMPsn79ens9tOAqvFVgryQ9HX79VR+vvgqVK+uE5wMH6qNZMx1uJng9dhPcoUOHsn//fsO2devW0blzZwCioqKIjY0lKyuLgICAIn2zs7PJKRQalJ6ebi8TBXuQm6tdBEuXwvLlcPq0y0zJAVKB5Ly/Pug3tNHhD1RylmGpqbBmjT4AGjb8W3z79oWqVZ1lieBmOMXxlJCQQEhISMH/Q0JCSExMpHbt2kX6Tps2jRdffNEZZgklJTdXx8guW6ZFNj7eMQ8D/AWcBP7M+5v/71PARSCl0FHaZbYgIBKofsXfSKAG0BhoBtTHzvGScXE64fm77+rQt0GD4L779G62Sk77GhDcAKcIbmRkJEePHi34f0pKChEREYZ9J02axMSJEwv+n56ebtpXcCA5OfDLL3om+8UXOrLATmQDB4HdhY49aHEtvO2hJlAPLYAdgTCgChBS6Mj/f3Cha+cYHJnABeAckFDoOJL39y/0TBkgEGgCNEULcDOgBdAJKPfcNDsbvvxSH6GhMGSIFt/evaXsjxfgMMFVShEfH0/t2rXp27cvy5cvB+DEiRO0bNnS0J0A4O/vj7+7BMB7I0ePwv/9H3zwAfz1V7kvlwPEAL8Af6DFNRbIAnyB5kA74CH0DLN+3lEHLXzOQqGF99AVx0/AfP4W45ZAV6Bb3tGhPHZeugTvv6+PevXg3nth+HAdgiZ4JHaLUli+fDlz587F39+fkSNH0rZtW+699162bNkC6CiFixcvcurUKcaMGSNRCu5EdjasWqV/8v7wQ7kulQlsQwvsL8Bv6J//EUAXtLi2z/vbEif6VcuBQrs0fge2ou9vG9rF4Y++nx7AAOA69Iy7XLRrB08+CfffryMgBI9B4nC9mbNnYf58ePvtMi9+KWAf8CXwPbAF7VutDfQGeuUdrfCsfeRW4DBagLcCG9AzeX+gJzAQLcAdKcd9R0TAE0/opD4G6x1CxUME1xvZsQNmz4bPPrNdYtyEXGATsBIttIfRC1A3okW2N9o94G2BUPHAD8B36C+fc+jFuP7AYOBm/vY1lwp/f+1uGDdO73YTKiwiuN7E9u0wZQp89VWph2ahhWQlsBotJk2B2/KO7mifrKCxAjvRz9m36BlwMHArMAw9+zVexSiGvn218A4aJItsFRARXG/gjz/gxRe1n7aU7AHeBxahRbYbWjRuQ7sJvG0WW1bigaXAYmAjEA7cCdyD/kVQ6i+rli1h6lQd5SCbKioMIrieTEyMntF++WWphiUBnwEfoBeHGqKjCB4EouxpH0C1anqRqE4d7eJwF+64Q+dH2L0bDhywa+XgOOBztPjGoP3djwKPAXVLe7EuXWD6dOjXz272CY5DBNcT2bVLC+2KFSUeooBfgXeAL/LODUELbR/stODVurUufd62rRbZtm2hVq2/Z2i9e+tdbK5MQu7jAzVrwokTfyekSUuDvXu173v7dti6VQtxbm65H24/8BHwHjpO+HbgSfRCY6nmrf37a+G96qpy2yQ4EOXmpKWlKUClpaW52hT359Qppe69Vymd5aBERw6opaC6ac1VXUG9AyqpFNcwPdq2VerJJ5Vatkyps2eLt3/vXqX8/Mr/uOU91qwp3tbUVKV+/VWpl19WqnfvctudDuojUNF5r0MbUPNAJZf2WkOHKnXoULnfSoJjEMH1BLKylJo5U6mQkBJ/MFNBzQXVBJQF1G2gfiuvULVqVTqBNWL6dKV8fFwjtH5+Sj3wQNnsvnRJqS+/VGrkSKWaNCmXHb+DeghUJVBVQD0D6mxp72PECKXi48t2L4LDEMGt6Kxbp1Tr1iX+MJ4FNRlUJKhAUI+Bii2PSLVvr9R//6vU/v32uZ/sbKU6d3b+TNfXV6maNZW6cME+93H4sFJz5yp1881K+fuXyaYEUK+Aqg4qGNTToOJLc42wMKXee08pq9U+9ySUGxHcisqpU0rdc0+JP3wXQf0HVGVQ1UA9X9oPb+GjUyelpk1T6sABx91b/frOE10fH/3rICbGMfeTmKjUO+8ode21ZbIvBdRMUDVABYEaB+pMaa7Ru7dSsbGOuTehVIjgVjRK6T7IAPU6ekZbFdTLeR/gUn/wW7ZU6pVXnOcfPHpUqXr1HC+6vr76udy0yTn3deyY/rJq1arUtqaCmgWqFtrdMKY0whsQoNSLLyqVkeGc+xQMEcGtSMTE6IWoEnzAckB9CCoK7ToYDyqxtGIUGKjUffcp9csvrvlZeuqUdlk4yqfr56dUnTpK7dzp/HuzWpX64w+lxo1TKjy8VHangXoDVG1QIWi3Q3pJx7dqpdSGDc6/X0EpJYJbMcjNVWrGDD1LKcGH6mtQ7UD5gPonqBOlFaKGDfXjJSS4+s71jH7qVD0T9fW1j9DmC/jjj+vFLleTkqL9vU2blnrGOwXtZmgMagUoa0nHP/64/fzVQokRwXV3TpxQ6rrrSvQhOgnqdnRY0WBQe0srRH37KrVypVI5Oa6+66Ls3KlU165/z0zLIrT54xo3VurHH119R0XJzVVq1Sql+vQp1X0dBzUs73XvB2p3ScfWr6/Ub7+5+q69ChFcd2bxYr3SXMwHJxvtpw3Jm+l8W1ohuvFGpbZscfXdloytW5X6xz/+nu0XN+sPCFDKYtHH4MFK/fCDFjZ3548/lLr//lJ9uWwAdRX6l81ISuhC8vXVvvmK8Jx4ALLTzB25eFHnQ120qNiuW4ER6JwHE4F/o0vJlIgbboDJk6F797Ja6jrOn9dFK/N3fm3fDsnJOrevnx8EB+tE3tHRuqJur15Qt9QbZ13PqVMwbZpOCl+CHXhWYCH6fQDwLjr3RbEMGAAffaR32QmOw9WKXxxeN8PdsEGpqKhiZyZJoP6F3rTQC9S+0sxoBwxQauNGV9+pY/DUmNNDh5QaNqzEr/F5UA/kuRnuRcf0FjuuVi2l1q519Z16NJLfzZ2YN0+X1z5+3Ga3n9EVExajM3mtR2fuKpZ+/XQp7+++gx49ymeru+KpmbOaNtXJfbZv17PRYggHPkSn0vwJaINOrWmT+Hi4/np44QXX5rPwYERw3YGsLJ3Z/1//spkQJRuYhC7j0gmd+OQflCDJSaNGOjXjjz9Cz572sVlwDVddpb8w166Frl2L7X4zsBe4AZ0Y51507TZTlIL//ld/OZexCohgjvhwXc25c3DXXdofaYND6A/LXuB1dCq/YoU2MBCeew6eeUZqY3kiSsGSJTB2bIlK169Bv29ygE+A64sbULcurFkjVSbsiMxwXcmuXdCtm02xVcAC9Iw2F1359nFKILY33wz79ulFMRFbz8RigaFDYf9+ePzxYrvfhF5c7Y2uOPEi+j1lyqlTcM018O239rBWQATXdaxYAVdfDXFxpl0uAnehk1P/C9iMrnRrk3z3werV0LixnYwV3JqwMHjnHdiwAVrZ9uaHo5OfzwamAYPQlTxMSUnRX97vvmsnY70bEVxnk+8ju+MOSE017XYAiEaXGf8ReJViamD5+Gj3wd69cMst9rRYqChcc41Okv7iixBg/m6xAKPQddZi0b+efrN13dxcGDECJkywa+ULb0R8uM4kN1f/9FuwwGa3r9G1rlqiqy8UGz3asCF8/LH+wAkCQGysfq/98ovNbueBB9CFLl8FnqIYd9Wdd+r3WkX/LLoImeE6i+xsuO8+m2Kr0G/6m9FFGn+mBGL7wAO6dpmIrVCYli3hp5/g1VfB17xEZTVgFfAS8Az6iz7D1nWXL4frroOzZ+1prdcgM1xnkJGhFzdsVM1NAx4GlgD/A8ZQzEwjPFz77e6+256WCp7Ipk0wbJiu02aDH9GVhNsBXwIRtjo3aQLr1kGDBnYz0xuQGa6jSU3VPlUbYvsncA3wHfqn3ViKEdu+fXWEg4itUBJ69NC/gm67zWa369G+3JNAD+Cwrc5Hjuiin8eO2clI70AE15FcvAgDB+oNByYcAHoC6ei8CP1tXc/HR1dm/eEHqFfPrqYKHk54OHzxBbz5ps0FtbboaJgqaNHdZOuacXE6R8WhQ/a01KMRwXUUCQl6t85v5uu/24FrgVroEuVNbV0vNBS++gomTtTCKwilxWKBUaO0i6Gp+butNnr9oAd6V+NSW9f8809yhwzhz/R0u5rqqcgn1xH89ZfOibB9u2mX9eg3c0dgLcX4y5o1gy1b4MYb7Wej4L1cdZV+bw4aZNolBFiBjgG/G3jTpF92ZCT3z5tH9I4dHBHRLRYRXHtz6ZIWxr17TbusRO9tvwGdXCTE1vUGDNBi27LYLQ+CUHJCQ+HLL2HkSNMuvmihfRW9iPu/K9qzqlVj2Bdf8Fl2NqezsugbE8PxDJsxDl6PCK49ycyE22/XwecmLESvBD8IfAYE2rreU0/pvezh4fa0UhA0fn7w1lvwv/+ZZlmzoMPFZgHj0eILkBEezh0rVvBFoWRLJzIz6RcTw6nMTAcbXnGRsDB7kZsL99wDS809Xv+HTh7yHHpbpWkkQkCADvl66CG7mykIhqxYAcOHgw23wBxgNDC5UiU2fvstP5hIR4ugIH7u1ImaNhbnvBWZ4doDpWDMGJti+wk66cwLwMvYENvgYPj6axFbwbncfjusXw81aph2GQX8LyiIFzMy+GHhQtN+B9LTGbBzJ8mSU7cIIrj2YNo0mDvXtHkF2oXwFDDF1nVCQ+H773V0gyA4m27d9HpB69aGzRfDw1n21VcwbhwsXAjvv68nGwbsSk3l/v37sbr3D2inI4JbXubPh//8x7T5W2AoerV3BjZmthEReiumJAgXXEnDhjrrWOfOl50+X60a/ZYuZZOPDwweDOPH65wKixebXurLxESm2MiG542I4JaHlSt1pQYTfkZn2R8GzMWG2NaurXPiXnWVvS0UhNJTrZrerBMdDcDZyEiuW7KE7YVzMtx0k65QMn++/lVmwn+PH2eJ5F0oQAS3rOzerRcZTNLVbUUnobkJXXfM9Ilu0EBndGrTxiFmCkKZCAuD778nftAg+nz2GbuMEuAMGaJzhLz2mq6cbMI/YmPZkZzsOFsrECK4ZeHiRZ3PNi3NsPkoWmivBT4F/Myu06yZLupoY9ePILiM0FAqr1hBWLVq5n0ee0xnD5s8GQ4cMOySbrVy6549/JWV5SBDKw4iuKXFaoUHH4TDxqk9LgK3oNMqLsFG0vAGDbTPtn59h5gpCPagSkAA37RvT5cqVYw7+Pjomnlt2ugE+KdOGXY7mZnJnXv2kOXlCcxFcEvLq6/qHToG5KD9tYnoHKOmO8giInTl1brFZrsVBJdT1c+P79q3p33lysYd/P11lYmICJ3r48IFw26/XbrEyIMHcfPQf4ciglsafvgBnn/etHk88BM6l6hpltDgYL17TLbqChWIav7+/NChA62Cg407VK6sJyO5uTBlCpjE4C6Ij+ctk1mwNyCCW1JOnNA7yUx+Er2LLsy3EF2LzBA/P50xP9q0hyC4LTUCAvixQwfqmO0gq1ZN1+s7cMBm0clxhw+z1mQW7OmI4JaEzEy9IpuYaNi8Fl1VdzLapWDK++/DDTfY3z5BcBJ1AgNZ2bYtgSa5F2jaFJ5+GpYtg7VrDbvkAnft3cufXpjoRgS3JIwbB9u2GTadRKevG4IWXFNmzoT777e/bYLgZLqGhvJeixbmHfr311uFZ86Eo0cNu1zIyeExL/TniuAWx9dfw9tvGzblAMOB6sB72NjYMGaM/tYXBA/hvlq1eMZWhM0TT+iwxxdegJQUwy7fnD/Pwvh4B1nonojg2iIxER5+2LR5KnqDw+fYiEjo3Vt/0wuCh/Fy48YMMovR9ffXsbnp6fDyy6ZrH+MOH/Yq14IIri1GjgSTb+Cf0KWlZwEdzMbXqQOff64XywTBw/C1WPi0dWtamKVNjYjQEQtbt+rPgQEXc3O9yrUggmvG55/DkiWGTWfRroTbAdNMCn5+Ol1jzZqOsU8Q3ICqfn6sateOMLNJRbt28M9/wgcf6Eq/BniTa0EE14hz5+DJJw2brMA/0DvIbPptX38drr7aEdYJglvRPDiYz1u3NheToUOheXPtWjDZ3ustrgURXCNGj9ZVdw2YDXyPLo9jWvhm+HCdSUkQvIQB1aoxs0kT40ZfX73t9/Rp+PBDwy7e4loQwb2SVatMc3weASYB/0GXkDakXTsd9G0WpygIHsrYevUYWr26cWPdujpyYfFinWnPgG/On+dDD3ctSE2zwly8qLPdnz5dpEkB16P9t9sxSUpTubIuINmsmUPNFAR3JSErizbbtnE2O7too1Lw7LPw55/w3ntg8Hmu6uvL3m7dqBtos7xqhUVmuIV56SVDsQW9ZfcntN/WNAPYrFkitoJXExkQwDvNmxs3WiwwYQIkJ5vGtl/MzeXRAwc81rUggpvPkSMwe7ZhUzy6HtlobORJuPFGePRRx9gmCBWI26tX5x6zYpSRkXoj0OrVsGePYZdvzp9n2blzDrTQdYjg5jNxIhj9DEILbVV03K0h1arBggXitxWEPN5s2pQa/v7GjX376nJSs2fr7GIGTDp2jGwPzJ1rV8FdsmQJ48ePZ+TIkfzyyy9F2hs2bEifPn3o06cPb731lj0funz88ovO4mXAl8BS4B1s7CZ7801dl0wQBKAEroXRo+HYMb1IbcCh9HQ+8MAFNLstmiUnJ9O7d2+2b99ORkYGXbt2ZdeuXfj4/K3pU6ZMYcqUKaW6rsMXzaxWXR56+/YiTWlAC6AP8LHZ+Jtu0j+PZHYrCEW4d98+PjMrIvnOO/DVV7r6b3jRIMvaAQEcjo4m2KieWgXFbjPczZs306JFCywWC0FBQVSuXJkjV+ws2bBhAzNmzGDy5MmcNlmcys7OJj09/bLDoXz8saHYgt62m4Qub25IlSra+S9iKwiGzGnWzNy18MADOlJh/nzD5jNZWbz5558OtM752E1wExISCAn5+0d3lSpVSLhi88DLL7/MhAkTGD58OLfffrvhdaZNm0ZwcHDBERERYS8Ti5KaCv/+t2FTPDAdmAjUMhv/6qtSk0wQbBDh72/uWggO1rG5334Le/cadnn15EkumKytVETsJriRkZGkFErDlpycTGRk5GV9ovMqHTRv3pzjx49f1j+fSZMmkZaWVnAkmiT9tguvvWYaBjYZCENHJxjSsaOuWCoIgk1sRi1cdx106mS6gJaUk8P0EyccbKHzsJvgRkdHc/DgQQAyMjJITU2lcePGnDlzBoC1a9fyww8/AHDp0iV8fX2pbFCUzt/fn6CgoMsOh3DunGnaxD3oeNtpgEkFJx1z60G+JUFwJK83bUplHwO5sVhg1ChdBXv9esOxb5465TF5FuyWNzA0NJSJEycyceJE0tLSmDt3LnFxcdx7771s2bKFiIgIpk6dyq5du4iNjeW9997D4krf5+zZkJZm2PQM0B4wrc9w6636m1kQhBJRMyCAcfXr89Lx40UbGzWC66+HhQuhT58iE5kMq5Wpx48z31aViQqCd27tvXQJGjTQW3mv4AdgALpOWV+jsX5+2t9k5pcSBMGQSzk5NN68mUSjir6nTulFtPHj9SaiK/AF9nbrRguzqsEVBO/c+PDOO4Ziq4BngUGYiC3otI0itoJQakL9/JgUFWXcWLeuFtoPPzTcgJQLTDKpj1aR8D7BzcjQuWoN+A74A106x5Bq1XSNJkEQysQTdepQ3ywxzf33w/nzuo6gAcsTEtienOxA6xyP9wnuwoWmZXNeBgYCnc3GTpliGKAtCELJqOTry9SGDY0ba9aEm2+GRYsgM9Owy5wKHpfrXYKbk6NDwQzYkHc8Zza2SRMYMcJBhgmC93B/rVq0NvPFDh+u11i+/NKwefHZsyRW4Lhc7xLcJUv0/m0DXgGuBnqZjX3mGV2JVBCEcuFrsfBy48bGjRERMHiwrgdosLiWqRQf5IWaVkS8R3CVgunTDZt2AN8A/8akRlnt2vDgg46zTRC8jMEREfQIDTVuvOMO7cs1SIAF8Pbp01jdO7jKFO8R3J9+Mi3t8Qo67naQ2dinngIPzUAvCK7AYrEw3WyWW7s29OwJy5YZNh/NyOC78+cdaJ3j8B7Bff99w9OHgWXYmN2Gh8PjjzvOLkHwUnqFhdE3LMy4ccgQ2L8f9u0zbJ5nsiXf3fEOwU1KMs13Ox+oA9xpNvbJJ3VWMEEQ7M6TdesaN7Rrp8tVmcxy1yQmEufoTIIOwDsE99NPdfztFWQCHwCPYLLHOThYJ0oWBMEh3BIRQd0AgyqBFoue5f78Mxjk01XAuxVw8cw7BNfEnbASOA88bDbu0Ud1DSZBEByCn48Pj9epY9zYpw+EhcHKlYbN7505Q2YFK8Pj+YK7c6dpgvH56IUyw4y2FguMG+dAwwRBAHikdm38jBJZBQToELE1awy3+yZkZ1e4YpOeL7gLFhiePgSsA0wz2vbvD2b7vgVBsBu1AwO5w+yX5A036I0QW7YYNs87dcqBltkfzxbcjAy9TdCA/wPqAUXzEuXxsKmjQRAEOzPSbPGsZk2d7P/77w2bN166xG6DQgbuimcL7pdfwoULRU5noRfLHsZksaxaNZ3zVhAEp9CralXz7b4DBsDmzXqma8DKK0p5uTOeLbiffmp4+nsgAXjIbNx998lGB0FwIhaLxXyW26uXXlMxqQixypFluOyM5wpuejrklfS5kmVAd8DUQ/vPfzrIKEEQzLi/Zk3jMjyVK8M115i6FX5PTuaUSXYxd8NzBXftWi26V5AFfAkMMRvXuTN06OBAwwRBMCLUz4/7a5nUyO7fX1daMVkk+6qCzHI9V3BXrTI8vQ5IwsbOMlksEwSXcV/NmsYNXbvqbfY//mjYvKqC+HE9U3CtVvjqK8OmZUAXoKFRo78/DBvmOLsEQbBJ99BQIo3SoPr6wrXXwm+/GY5be+ECqQZl1t0NzxTc7dvBYNtfNrACG+6EPn2kooMguBBfi4WbqlUzbuzRAw4dAoPNDplK8UMFyCDmmYJr4k5Yj97Kayq4gwc7xh5BEErMYLNNEJ066eghk00QFSFawTMFd/Vqw9NfAB2BJmbjbrnFMfYIglBiBoSHE2C01TcwUIvu5s2G475KTCTXzROTe57gHj+u8ycY8AM2koy3by9beQXBDQjx86OfmWuve3ftMszKKtJ0LjubLSabI9wFzxPcb74xPH0cOAL0Mxsn7gRBcBsGR0QYN3Tvrrfsm0yq3D1awfME12QVcx0QCPQwGyfuBEFwG242E9yaNaFRI1O3grv7cT1PcDdtMjy9FugJBBk11qoFXbo40ChBEEpDvUqVuCokxLixe3fYutWwaX9amluXUfcswf3rLzhypMhphZ7h9jUbd/PNYLSlUBAEl2EardChA/z5p2FiKoDtyckOtKp8eJbKmMxuY4Ez2PDf9unjGHsEQSgzpn7c1q31X5MCkyK4zsJEcNcBVdA7zAy5+moHGSQIQlnpGBJCNT+DBKpVquiIor17Dcf9LoLrJDZuNDz9M3AtJrlva9aEhg0dZ5MgCGXCYrHQ2axidps2poIrM1xnkJUFv/9u2PQHxcxujYKsBUFwOTYFNzbWsNbZ8cxMt1048xzBjYkxLIV+ER1/e5XZuB6mgWKCILiYzmaRCm3b6knW4cOGze46y/UcwTVxJ+SHR3cyGyf+W0FwW0xnuPXqQWhohXMreI7g7t5tePoPoBompdD9/XXCcUEQ3JKGlSoZL5z5+EDLltqtYIC7Lpx5juAePGh4egfanWDopb3qKqhUyYFGCYJQHmwunDVsCCdOGDbJDNfR2BBcU3eC7C4TBLfHVHAbNNCCa7UWaXLXhTPPENykJDh7tsjpdGAfNgS3ZUvH2SQIgl0wXTiLioLMTMPPPrjnLNczBPfQIcPTB4FcoL3ZuObNHWSQIAj2oovZDDc/nerx44bNO1JSHGRR2fEMwTVxJxzL+9vYbJwIriC4PVFmC2dVquiSWCaC+96ZM3xx7hw5Bi4HV+HxglsTkwxhgYFQ3zB2QRAEN8GqFF8mJGBaxyEqynTh7HB6Onfu3UvdTZuYGhdHfGamw+wsKZ4huAcOGJ4+BjQyG9O0qa4EKgiCW3I4LY2eO3Zw+969JOXkGHdq0MB0hpvP2exs/nv8OE22bOG906dRLizD4xmCazLDjcOG4Io7QRDcEqtSzP7zT9ps21YQT2sqkfXqwenTxV4zRynSrFYePXiQ/jt3csJgV6oz8AzBNdnedwxoaDZGBFcQ3I5Mq5W79u5l3OHDZClFTnGz0YgIHaWUm1vix/j54kXab9vG7y6of1bxBTczEwzCPxTFuBREcAXBrciyWrl1927bPtsrqVZNx+FevFjix8lRipTcXHrHxLC5FOPsQcUXXJMaRolAKjYEt149BxkkCEJpsSrF8P37+fHCBUo+V0ULLsD586V6vFwgw2plwK5d7E1NLdXY8uCxgnsq729ds3Fm2eQFQXA6754+zfJz50ontvD357iUggtgBdJyc7lr716ynBQ65rGCm5T3t5rZOBFcQXALjqWn89SRIyV3IxQmOFiHeJaxWm8ucCAtjZeKiXSwFx4vuFXNxongCoLLUUrxYGxs8YtjZlgs+rNchhluPlZg2vHj/OGErcAeLbiV8o4i+PuD2f5sQRCcxtoLF9hw8WLZBRf0brMyznDzsQD/OXas2H7lxWMF9wIQbjYmIkLK6giCGzDn1CnjWoOloWpVw0il0pALfHP+PHHp6eW1xiYeK7hJQJjZGHEnCILL+TMjg9WJiZjsISs5AQG63E458bVYmH/mTLmvYwsRXEEQXMJHf/2Frz1+adpJcHOUYr6Dt/5WfME1+SmRhA3BrWYauyAIgpP47eJFcu0hbnYSXIDEnBziHLjtt+ILrklSizQg2GyMlNURBJezNTm5bKFgV2JHwQXHJi4vt7+6MEuWLGHr1q2kpaUxbNgwevXqdVn77NmzSUxM5MyZM4wbN47WrVuX/0Ft7KE2/bFilFtTEASncSYzkwR7lcCxo+AGWCxsT0lhSI0adrneldhNeZKTk5k+fTrbt28nIyODrl27smvXLnx89CT6yJEjrFmzhu+//57jx4/z4IMPsn79+vI/cCmSVhQgaRkFwaUcsmc0gB0FN0spDqal2eVaRtjNpbB582ZatGiBxWIhKCiIypUrc+TIkYL2devW0TmvJHlUVBSxsbFkGTxJ2dnZpKenX3bYRARXECoc6fbcSnvxIsTF2e1yqWXRlBJiN8FNSEggpNBmgipVqpCQkGDaHhISQqJBhMG0adMIDg4uOCKKiyho1Ajat4c2baBFC51YvFEjCArSvtqaNSEyUgdHV62qNzy4YTVPQfAmrPaMBCikM/bALgt5JtjNpRAZGUlKoaJtycnJREZGXtZ+9OjRgv+npKQYiumkSZOYOHFiwf/T09Nti+7x47Brl3m70YqjzHAFwaVU8rHjen2zZnDypN0uV9mB+mC3u46OjuZgXuWFjIwMUlNTady4MWfyAon79u3Ljh07ADhx4gQtW7YkICCgyHX8/f0JCgq67LBJWZ4cs3IdgiA4hbqBgfa7WFaWTmBjB/wtFurZ07YrsNsMNzQ0lIkTJzJx4kTS0tKYO3cucXFx3HvvvWzZsoUmTZpw4403MnXqVE6dOsW8efPs88BlEVwH+mgEQSiepkFBBPv4kGYPX25Wll44swO5StHZrCy7HbBrfNTdd9/N3Xfffdm5LVu2FPx7zJgx9nw4jYng+gOm0XTiwxUEl+JjsdApJITf7FHmxo6CawWHCm7F3/gQbLy9IYy/UzQW4cIFx9giCEKJ6R4air89tvbaUXADLRZam2iKPaj4gmuyoBaODcEtZyo3QRDKz7AaNci2R0SAnQTXz2JhSPXq+NlzQe8KPFZwwxDBFQR3pktoKB1DQsovQllZOsd1OclRiifrmhblsgsiuIIguIwxdeuWP59CSoqpa7GkWIC2lSsTHRpaXmts4tGCmwzGuTbT0ozjcwVBcCpDa9SgTkBA+YTo/Plyp1xVwPNRUVgcXJjAYwU3v9qDadV5meUKgssJ8vXlo1atKFdw2Pnz5Uq56mexcEtEBHdXr14eK0qExwpuWN7fJLNxIriC4Bb0DQ9nRJ06ZYtRzczULoVyCG6wjw/zmzd3+OwWPFhw85OrmRbMEMEVBLfhtcaNiapUCb/Sil5+iGc5XAoLWrSglgN3lxXGYwW3DnrzQ5zZuPh4x9gjCEKpqeLnx/qOHanh71860c2fOJVxhvtWs2YOy31rRMUX3MqVDfdR+wINANPCx4cPO9AoQRBKS71Kldh41VXUDQgoueieP6//hpvW6C5C/pXnNmvGvxwcBnYlFV9wLRZo2NCwqRE2BPfAAQcZJAhCWYmqVIktnTtzfUkFNDERQkNLvPHBz2IhzM+PFW3aMNLJYgueILgAzZsbnm6EDZdCXmYzQRDci5oBAXzdrh0ftmxJiK+v7dlufDyUwCWQL3S3R0ZysFs3bnNCRIItOyo2JoLbEBsz3IMHwYGJhgVBKDsWi4UHatXiQLduPFa7trlQHT8ODRqYXic/V0P30FBWtW3LkjZtiLRT3oWy4NGC2wg4icnmh4sX4dw5BxolCEJ5qRMYyNzmzc1z1J44AVFRhk0BFguP1K7N7i5d+O2qq7ilUEEEV+EZgtuiheHpRkAuWnQNEbeCILg9idnZnMjMLNqQmQlnzpgK7jP16zOveXPaFirt5Wo8Q3BNZrj5MrzPbJwIriC4PduTTTJbnzyp3YImLoUObiS0+XiG4NaqpYtDXkE42o/7h9k4iVQQBLfHVHBPnAAfH6hXz7DZkYnEy4pnCK7FYjrL7QTsMBsXE+MggwRBsBe/mwnu8eNQt65hasZwPz8aVqrkYMtKj2cILpRNcDdvBnvUVBIEwWGYznBtRCh0qVLFKbkRSovnCG6rVoanr0LH4p43arx0CfaZengFQXAxidnZHDdaMAPtEmza1LDJHd0J4EmC26OH4elOeX9jzMZt3OgAYwRBsAems9uEBL3poW1bw+bObrhgBp4kuNHR2pd7BbXRmcNM3QqbNjnQKEEQyoOp/3bvXv15N/llKzNcRxMaavhtZ0HPcrebjZMZriC4LaYz3H37oFEjnbzqCtx1wQw8SXDB1K3QE/gFjGsnHTyof54IguB2mAru3r3Qpo1hk7sumIGnCe7VVxue7gecAky3OWze7CCDBEEoKyczMowXzLKy9ETJRHDd1Z0AXiK4XYEQYJ3ZuF9/dZBBgiCUldVmVVkOHoTs7Aq3YAaeJrhNm4JBggp/oBc2BHfNGgcaJQhCWVhl5urbvRvCwqBOHcNmmeE6C4vF1I/bF/gJjKuD7tkDR4860DBBEErDpZwc1iUlGTdu3QqdOxtGJdX093fbBTPwNMEFm37cRGCX2bjVqx1kkCAIpeX78+fJNspXnZKiZ7jduxuOuzkiwm0XzMATBXfAAMPT7YEIYK3ZOBFcQXAbVpn5b3//XWcI69bNsNkdct7awvMEt1MnndDiCnyA64DvzMb9/DOY/YQRBMFp5FitfG0muJs3Q+vWOu7+Cir5+JS8FpqL8DzBtVjgllsMm25D+3EN8yrk5MC33zrOLkEQSsSmS5dIzDGo02K1av+tiTvh+vBwKvv6Oti68uF5ggumgnsz+oZXmY0Tt4IguBxTd8KBA3DhgqngDo6IcKBV9sEzBbdvXwgOLnK6KjAAWGY27uuvdXyfIAguwzQcbNMmqF4dGjc2bL5ZBNdFVKoEAwcaNg0BvgcuGjUmJWnRFQTBJRxIS+NgenrRBqVgwwYd9mkQhdCtShVqmxWadCM8U3DB1K0wGJ1TwdStsGCBgwwSBKE4lp49a9xw+DDExcH11xs2D3bz6IR8PFdwb7rJ8JswHLieYtwKZ8440DBBEIzIsVqZb/bZ+/57vbPMZDvvLRXAnQCeLLg1apg61+9Ch4ddMmrMzYWPPnKgYYIgGLHm/HlOGiWryc2FtWv17NZgEhUVGEg7gzSN7ojnCi7AXXcZnr4N7Vb43Gzc++9rn5EgCE5j3qlTxg3bt+voBJNNTYMjI916d1lhPFtw77vPsKJnNfTi2XyzcQcPwm+/OdAwQRAKcygtje8vXDBu/O47nYrRYEMTVIxwsHw8W3CrV4fBgw2bHgN+B/4wGyuLZ4LgNN45fdq4IS1NT3769zdsblipEte5+e6ywni24AI8/LDh6V5AC2zMcpcs0VV9BUFwKGm5uXwQH2/cuH699uH26WPYPKJOHXwriDsBvEFwBwww/CliQc9yPwFSjMalpWlfriAIDuXzs2e5YLSVVylYuRJ69YKqVYs0B1gs/LNWLccbaEc8X3B9feEf/zBsehDIAj4zG/u//+lyHoIgOIx5Zu6EnTvh0CEYMsSw+e4aNageEOBAy+yP5wsuwEMPGZ6OoJjFsz//hEWLHGSUIAjbLl0yL4W+fLleLDMphT7SpOKDO+MdgtukiakP6HH04plpGclXX9U+JEEQ7I7p7Pb0ab1Yduedhs0dQ0LobpCi0d3xDsEF08Wza9FFJqebjTt4UPuRBEGwK3Hp6Xzy11/GjStW6CijXr0Mm0fWqVNhYm8L4z2Ce+ed+gW8Agvwb+BLYI/Z2FdekY0QgmBnXoiLMy6jk5qqt9jfdpteg7mCUF9f7q1Z0/EGOgDvEdygIBg71rBpMNAaG7Pc7dvhxx8dY5cgeCG7UlJYZDa7/eYbnWz8ppsMm/9Rq5bbJxo3w3sEF2DkSDAooewDPIeOVjCt3fvyy46zSxC8jEnHjmH4mzEzEz7/HG64wbCMDsATFXCxLB/vEtywMC26BgwDGgCvmY1dv15nLBIEoVz8mpTEV2ZVHVav1huOhg83bO4XFkbLCpKoxgjvElzQbgWDRMV+wDPAB4DJuik89ZSufSYIQplQSvHsUZPfkenp8OmncOutYJLfdqRJPoWKgvcJbq1a8M9/GjY9hM6XazrL3bsX3nvPQYYJgufzVWIiv5ltmV+xQovuvfcaNncKCeG2CpJo3AzvE1yACRMMVz8rAf8B5gGHzca+8AJcNCzQIwiCDXKV4jmz2W1KCixerHeVhYUZdnmlcWN8KmAoWGG8U3AbNYJhwwybHgMaoxfRDDl3DqZNc5BhguC5fPLXX+xNSzNuXLZMRybcfbdhc5+wMAZUoKxgZthVcJ9//nmmTZvGI488wmmDHSTr16+nY8eO9OnThz59+vDrr7/a8+FLx7PPGp72R7sUlgEbzcbOng1m39SCIBQh02rlhWPHjBsvXoSlS2HoUMMoIoDpjRtXyI0OV2I3wV23bh1//fUXkyZN4v777+e554zniG+88Qbr169n/fr1XHPNNfZ6+NLTtq3pLPcWoDfwNBiHrmRlwTPPOM42QfAwZp08yXGj8jkAH3wAAQGm23jviIwkugJu4zXCboK7du1aunTpAkC3bt340WSjwKJFi5g5cyYzZswg0+AFyM7OJj09/bLDYUyfrkuqX4EF+B86v8JSs7HLl+tQMUEQbLI3NZUpcXHGjYcO6VCwxx+H4OAizT7AS40aOdQ+Z2I3wU1ISCAkJASAoKAgkpKSivRp1aoVzz//POPHjyc8PJxJkyYV6TNt2jSCg4MLjghHls+IitKhXgZ0Bu4DngVMvpfhscf0qqogCIbkWK38IzaWLKMtvFards+1amVar+yhWrVoVYHjbq/EolTJkwTk5ubSs2fPIuc7dOhAZGQkDRo04PHHHyc9PZ2mTZtyyqwoHBAbG8t9993H77//ftn57OxscgrFuqanpxMREUFaWhpBQUElNbXkJCdDs2ZgsM3wBLoqxAvYWESbOFHPlAVBKML048d5zsx3++23MGMGvPOO/gxeQaDFwuHoaOoZ/AqtqPiVprOvry+bNxsnMly3bh2LFy8GYNu2bVx//fUAZGRkkJaWRrVq1Zg+fTpPPPEEVatWJS4ujoYNGxa5jr+/P/4GhR8dRpUq8NJL8OijRZoaAM8DU9F5c4u+JYCZM3V14M6dHWqmIFQ09qamMtnMlZCcDO++q2sOGogtwKh69TxKbKGUM9zieP755wkJCeHo0aNMmTKFOnXq8NFHHxETE8OsWbNYtGgRP/74I+3atSMmJoYpU6bQpEkTm9dMT08nODjYcTNc0PluO3fWGeavIAvogk5Wvg7t3y1Cu3awbZvhDjZB8EZyrFZ67Nhhnlz8zTfhp5/go48MIxOq+vpytHt3qjlz8uUE7Cq4jsApgguwbh3062fYtBXoAbwLPGI2/tlndRpHQRBsuxIOHYIRI+Dpp2HQIMMuLzdqxHNRUQ600DWI4Bbm1lth1SrDpqeA94F9gGGuIh8f2LABrr7acfYJQgVgb2oqV/3+u/FCWVYWPPEEVK4Mb7yhPzdX0CwoiJguXQiuoCkYbeGdO83MmDlTxwMa8F90noVRZmOtVnjgAb1FURC8FJtRCQALF+ryORMnGoqtBfigZUuPFFsQwb2cZs1g8mTDpspol8IXeYchR47oUDH3/tEgCA5jxsmT5n7b3bt1voSRI8Ek69fYevXoaVAS3VMQl8KVZGdDt24QE2PY/BCwBtgJ1Da7xuzZMHq0Q8wTBHfl56Qkrt+5kxwjSUlPh0cegfr19VqHwTZdT3Yl5CMz3Cvx94f33zfMJgYwGwhFb4owreX79NPgyjwRguBk4tLTGbJ3r7HYAsybp91tEyYYiq2nuxLyEcE1olMn7WMyIBRYDGzARg20nBwdm3vmjGPsEwQ3IiUnh1v37CEhO9u4w+bN8NVXMG4cmOwc9XRXQj4iuGa88AK0b2/Y1AV4Fb0DzXQeGx+vsx+ZvQkFwQOwKsUDsbHsSk017pCYCK+9pkMu+/Qx7NIsKMij8iXYQgTXjMBAHZRtEng9FhgE3AOcN7vGhg2mM2VB8ASmxsWxIiHBuDE7G6ZM0SFgJhWzvcWVkI8Iri06dICpUw2bLOj6Zwq9kGa68vj663plVhA8jOXnzvHi8ePmHd5+Gw4f1p+hvMRWV+ItroR8RHCLY8IEMEjYAxAJfAp8BcyydY1//AN++cXupgmCq9iZksID+/ebd/jhB12jbMIEXWHFAG9yJeQjglscvr56hlq9umFzL+AVdMXfr82ukZmpk3Ts2uUYGwXBiZzLyuLW3btJs1qNOxw+DP/7n1447tvXsIsFeL9FC69xJeQjglsS6tXTomuwMwZgAnA/MAzYY3aNixfhhhvALHuSIFQAsqxWhuzda1694dIlveDcsqVOKm7C9MaNucakWKQnI4JbUvr2NU1OY0HvQusA3AycNbvGmTMwcKAuRCkIFYxcpXgwNpZfzKpW5+ToVKfZ2Vp0TWavw2vUYEL9+g601H0RwS0NEybA7bcbNgWit/z6ALcDGWbXOHgQbrpJci4IFQqrUjwcG8visybTCaVg1iztNps6FapVM+zWpUoV/q9FC48oCFkWRHBLg8Wik280b27YXB1YDexGl1s3jVzYtk0XzMvKcoSVgmBXlFKMPHiQDw2qohTwwQfw3Xc6F0mrVoZdagUEsLJtW4K8zG9bGBHc0hIaCl98oWMLDWgDfA58gs4wZsr338Pw4SK6glujlGLc4cO8a2vX5KpV8PHHuj5gjx6GXQItFla2bUtdL0/SL4JbFtq0gQULTJtvBN4CJqNzL5iybBnccYcUohTcE6U4P3ky67dsMe/z6686WdM//qFdZSbMb9HCY0qdlwcR3LIydKjNXWRPoLf/jgXes3WdNWvEpyu4H0rBmDFE/Pe/bHnmGdrHxxfts3s3/Pe/umrDAw+YXurpevV4oFYtBxpbcRDBLQ8vv2zzjfYM8B+0P/dTW9f56SddJtqgtLwgOB2rVVdlmDMHgMAzZ9j6zDO0Kxxdc/gwTJoEXbrobbsmi2A3VKvGq8XULfQmJB9uecnO1qV5vvnGsFkBTwNvAsuA22xdq2NH7ds12WQhCA4nK0vnrf344yJNmQ0b0nXmTHYnJsL48dC0qZ50mFTWbR4UxJarriLMwwpBlgcRXHuQmgrXX6/T0BmggBHAQmAVMNDWtVq10tsiTTLiC4LDuHBBrymsX2/a5be6demdlERuy5Y65tZEbKv6+rKlc2daBAc7yNiKibgU7EHlyjrfZ8uWhs0WYB5wFzpG91tb19q/H669Fvbts7uZgmDK0aO6AKoNsd0MDDp1in5K0e6550zFtrKPD2vatxexNUAE115EROg4RJOZqS96hjsEuAWdxNyUY8ege3ct4oLgaDZv1u+32FjTLhuBAcC1wJdpafz+wgt0Sksr0q+Sjw+r27XzqgxgpUEE1540aKBF12SPuB9adJ8E7gXetnWt5GSd8ObVV6UopeA4li2D666zud18A9oNdh2wHKgEBOzbx+bnnqNzoTjyAIuFFW3acF14uIONrriI4NqbNm10qJfJxggfdCrHqcBI9OYIUzlVCp59Fu67T2J1BfuiFMyYoTN6ZZhuROcL9My2P7AUvYU9n4Bdu9j43HN0zc3Fz2JhaZs23GBSQkfQyKKZo9i8GW680Wao19vAv4DRaBG2+e3XpQusXCmLaUL5SU7WYV+ffGLaRQFvoCNsHgfmoH+hGZF19dX8uHIlgyS6plhkhusounfX8bU23oRPAJ+hF9QeBEwS3ml+/12L7qZNdjVT8DJ27IDOnW2KbQ4wCngKvXlnHuZii58fAU89JWJbQkRwHUnHjrrSQ506pl2GohPefIn2kdms8xsfD716wbRpkGtapF0QiqIUzJ2rJwKHDpl2S0FH0rwHLEHnejbN6xUQoPOK3Hmnva31WMSl4AyOHtVxuseOmXbZDwwG0oAVQLfirtmzpw5O97ISJUIZuHABHn5Yl7yxwWl0PueT6AnA1bY6BwZqF9cNN9jLSq9AZrjOoHFjPdNt0cK0SytgK9AOXbbno+Ku+dtvusjlRx9JFINgzubN0KlTsWK7Ef0ln4KOt7UptuHhOhpHxLbUiOA6i3r1tOh26GDaJRxYg15EexC9YJFj65rJyfDggzBsGJw3LdYueCOZmfDii3oTjY3Kugq9YNsbXbFkE2Az80HjxnodoXdve1rrNYjgOpMaNfRCmklhPdAbJF4DPgbmAoOwUbInnyVLoH17+PFHe1kqVGQ2bNDrB1Om6LI3JiQBd6L9tFPRawk2g7p69NAzZhu/1ATbiOA6m/Bw+PZbGDXKZrf7gF+BA0B7itkODHDqFPTvD/ffr2unCd5HUpIu3Nirl81dYwA7gM5oV8Ja4DmKEYO77oK1ayWxUjkRwXUF/v7w5pswf77+twldgJ1AH3RS8zHYqJWWz6JFegbyxhs2ZzeCB6EULF2qEx/Nn2+7KzAf6AE0AGLQ7y+bPPusrlpdURet3QiJUnA1GzboDE0JCaZdFLAIvUkiCp1bt11Jrt2uHbz1lp7xCJ7JyZMwcmSJ8m6cQWetWwX8G3gRG/G1oKvuvv02PPqoPSwVkBmu67n2Wr2poX170y4W4H70bKQK0BWdX7fYb8rdu/Xixv336xhewXO4cEHPPFu0KFZs87+w26ALnK4DplGM2EZEwNdfi9jaGRFcdyAqSod5FRNA3hj4BXgWGIfe324ewl6IfDfDK69IKZ+KTno6vPYaNGmiExsVk2PjNHAr+gt7OLALvcHGJtdeCzExugqJYFdEcN2FkBAdbfDSS/qnnAl+wBT0gtpfaNfCVIrZFgxw6RL8+996o8Rrr+mk6ULFIScH3nsPmjXTtfQuXLDZXaFjudsAe4Gf0PkQQmwNsljgP/+Bdet0GKNgd8SH645s2aIzhB0+bLNbNvA6WoAbAO9QggWQfKpXhwkTtP/PJLOZu3Px4kX++OMPtm/fTkxMDAkJCWRkZBAQEEBYWBjt27enc+fOdO7cmRo1arja3LKhlN60MGlSsZEH+RxCFy/9Gp0T4RWg2Fe4Vi39S6hfv3IYKxSLcnPS0tIUoNLS0lxtinNJTlbq0UeV0h85m8cxUDfpSY16ANTZEowpOGrUUGrmTKVSU119xyUiIyNDLVq0SHXr1k2Rd8/+/v7Kx8en4P+AslgsKiAgoOD/zZs3V2+99Za6ePGiq2+hZGRmKvXhh0p16FDi1zIJ1HhQ/qBag1pf0vdA//5Kxce7+o69AhFcd2fFCqUiIor90FhBLQdVF1Q1UHNAZZZGeGvWVOrll5U6d87Vd2xIamqqev7551V4eLiyWCxFBLYkh4+Pj6pUqZIaMWKEOnv2rKtvyZhz55R66SWlatUq8WuXA+r/QNUAFZ732meXZKyvr1KvvKJUbq6r79prEMGtCJw+rdQNN5Tow3cJ1NOgAkA1BvUpqNzSCG9goFIPPaTUjh2uvusCNmzYoKKiopSvr2+pRdbo8PPzU+Hh4Wrp0qWuvrW/2b9fqccfV6pSpZK/VqB+AdUJlC+oJ0EllHRsq1ZKbdzo6rv2OkRwKwpWq1Jz5pT4AxmHdi9Y8j6Q36JnwaX5MKsePZRauNBl7obs7Gw1btw4ZbFY7Ca2hV0OgLrzzjtd52bIylLqq6+UGjSodK8LqF2g7sy7l36gdpd0bECAUlOnKpWR4Zp79nJEcCsaBw8qNXBgqT6YN+d9MK8DtbW0ogtKhYUpNWqUUtu2aeF3Aunp6ermm28uk+ugtLPdjh07qnPOcqVYrUpt3qzUk08qVb16qV+LGFB35NneFtTK0nyR9uqlVGysc+5TMEQEtyJitSr1xRdKNWhQ4g/qBlBX531Qb0IvqJR6xgtKNWqk1IQJSm3Z4jDxzcrKUoMGDbL7rNaW6LZt21ZduHDBIfejlFLq0CGlpkxRqmnT0j/noP4AdVuevR3Q/voSu4rCwpR67z3x1boBIrgVmdRUpSZN0j8TS/DBs4JaDeqavA9uV1BLKOECi9HRoIFSTz2lfYF2/DA/8sgjThPbwqLbs2dPlZOTY5+bsFr1bPKNN5SKji7b8wtqG6jBeTZ2ArWiNEILSt1zj0QguBEiuJ5AKd0MCtQm9E9TC6hG6JXtlLIKLyhVr57+mbxihVKJiWW+lTVr1jhVaK/0686aNavsr0NSklLLlyv12GNKRUWV+bnMALUIVPc8uzqDWkUpf5G0bKnU11+X/V4EhyCC6ymUwc2gQB0ENQJUJXQ42bN558osvKCUxaLjR8eMKZUAX7hwQdWoUcPhfltbR0BAgDp48GDJnvPsbO1amTpVqZ49dZhVOZ6346D+Dao6OurgTlDrSiu09eoptWCBtk1wO2SnmaeRng7vvKP32f/1V4mHnUUnPH8Pvf/+WuCfwBCK2Q5aEiwWnZynTx/o1g3attW5HQIDL+v26KOPsnDhQnJcmFbSz8+P6Ohofv3118sblIK4OJ1oaMsW2LoVtm+HtLRyPZ4VnUxmLjqLV3XgsbyjVJtrw8P11u1//UvSKLoxIrieSlqaTq336qtw7lyJh+UA3wPvowUgAF1Z+J/oOlemFVxLi58fNG+uxbdtWy7Wr0/0I49wKDcXq70eowwEAPWBr956i5YBATrjWkwM7Nyp81HYAQVsBxYDnwN/Aj3R6TfvzLOhxAQFwdix8MwzEBZmF/sExyGC6+mkpsK8eTphjY2cu0YkAJ+gxXcX0Aw9470VnSLSEZmPMtAz7NPo/K2Fj/xzCehkPZlAFrbrvlnQeQSqoGfqhf/WRecXbljob20cl9FpH/AZWmgPo7O/DQPuAdqW9mK+vvDII/DCC1Cnjl3tFByHCK63kJLyt/AmJpZqqEKXZPkIWAkcRwvTrXnHdUCg2WAnYEULbxZ/i7AvWljL7Q4pB7nAH+jySMvQX1q10b8Y7kF/aZX6F0NIiBba0aN15jehQiGC622kpGhXw1tvwYkTpR6u0MKxMu+IQc8WbwRuQld/jbKTqRWRU2iXzHfAj0AiUAsYjBbZa9FfBqUmKkqL7MMPQ9WqdrJWcDYiuN5KTg6sWgVz5sD69WW+zHHgS7T4/opOGRkF9Cp0NMOOvl834wywFdiAFtk9aB9sL2AAMBCds7jM99+jB4wbB7ffrv3eQoVGBFeAXbv0rPeTTyA5ucyXSQO2oKtS/AJsAtKBmmgB6ooWn/bon9YVTYQvAr8D29AiuxU9owVoxd8C2xsILs8D+fjo6h/jxmnBFTwGuwru6tWrGTt2LJ988gndu3cv0p6dnc348eOpVasWcXFxzJgxg9DQUJvXFMF1Iikp8Pnn8O67sG1buS+XhV6NzxfgP4D8ymrV0OJb+GgE1MC1ZUis6MW5Q3nH4by/+9El6wHqAN3yjq7o6sph9njwq67SieeHDYPate1xRcHNsNtvlKSkJPz8/Khfv75pn48//pgaNWrw3HPP8eGHH/K///2PF1980V4mCOUlJET7CB9+WIdBLVmiy28fKlHltCIEoMtx9wAm5p1LQBcyzD+2AR8AqYXG1EXHoNYv9LcuWtTyowwKH7bexFb04lUW2p+akHecu+LffwFH0AKbXyWsMtodkh+d0QUtsHVL+0TYIipKi+zw4brMueDR2N2l0KdPH6ZPn244wx0+fDgPPPAAAwcOZP/+/TzyyCP89ttvl/XJzs6+LPA9PT2diIgImeG6CqV0LOrSpfo4cKD4MaXEivYFx6FjUk8W+pv/b1txFZXQ4qjQIWKFD7OYXj8gstBRAx2mlS+wTdGLXQ5xe4SHw913a6G9+mrtQhC8Aqd64RMSEggJ0YE6VapUIcEgLnTatGky63Un8neJtW8PU6fC3r2wbJkW33377PIQPmh3gq0gpwzgEpBicCSjZ8g+6De00eGPdmNEondzVcXJPuQmTWDgQLjxRujfv8guO8E7KJXg5ubm0rNnzyLnO3TowLvvvlvs+MjISFLyynQnJycTGRlZpM+kSZOYOHFiwf/zZ7iCG2CxFOwMY8oU2L8ffvhBRzn8/DOcP++wh66Ud1SYUpAhIdC3rxbZgQO14ApeT6kE19fXl82bN5fqATIyMkhLS6NatWr069eP7du3M3DgQLZt28b1119fpL+/vz/+/v6legzBRbRqpY/Ro8FqhT17tPg6QYDdDh8f6Njxb4Ht0QMCSrVJV/AC7OrDnTVrFnPmzGHgwIGMGDGCjh078tFHHxETE8OsWbPIzs5mwoQJ1K1blyNHjvDaa69JlIKnUliAN27UfuADByA319WW2YeoKIiO1sl4unXTEQYVtNy84DwkDldwHpmZWnT37NHH7t36b1ycqy0zp1o1vYW2XTs9g+3YUfuzw8NdbZlQARHBFVxO/MGD3N6iBQ3QGyJqo2NdC//bUfL2F39HSFz5d/6333L1wIEOemTBGxHBFdyCm2++me+++840F24ldJhWTXSinEB0zG7+EXjFv0FHL6TY+JuKedhY48aNOXz4MBZLRdsPJ7gzsjlbcAtGjRrFmjVrTNsz0LPOOCfY4uvry5gxY0RsBbsjM1zBLbBarTRq1IiTJ0/i6rdkYGAg8fHxhElCb8HOyBYXwS3w8fHhjTfecLnY+vj4MHnyZBFbwSHIDFdwK4YOHcoXX3zhkrpmfn5+tGvXjq1bt+InqRAFByCCK7gVCQkJtGjRggsXLjh9tuvn50dMTAxt2rRx6uMK3oO4FAS3IjIykuXLl+Pn5+f0Rav58+eL2AoORQRXcDv69OnD8uXL8fHxcZrovvHGGzz00ENOeSzBexHBFdySW265hW+++YbAwECH+VN9fX2xWCzMnz+fMWPGOOQxBKEwIriC29K/f392795N165d7T7T9fX1pWHDhmzcuJFHH33UrtcWBDNEcAW3pmnTpvz666+8/vrrdpnt+vv7Y7FYePrpp9mzZ49honxBcBQSpSBUGOLj41mwYAFvvfUW8fHx+Pn5lSh8zNfXF6vVSpUqVXjsscd4/PHHadq0qRMsFoTLEcEVKhw5OTmsWbOGb775hk2bNrFv3z5D4bVYLDRr1owePXrQt29f7rrrLnkPCS5FBFeo8GRlZbF//36SkpLIyMggICCAKlWq0Lp1a4KDy1WwXBDsigiuIAiCk5BFM0EQBCchgisIguAkRHAFQRCchAiuIAiCkxDBFQRBcBIiuIIgCE5CBFcQBMFJiOAKgiA4CRFcQRAEJyGCKwiC4CREcAVBEJyE25cmzU/1kJ6e7mJLBEEQbFOpUiWbyfLdXnAzMjIAiIiIcLElgiAItikuyZbbZwuzWq0kJSUV+81xJenp6URERJCYmOh1Wcbk3r3v3r31vsG97r3Cz3B9fHyoVq1amccHBQW5/EVwFXLv3nfv3nrfUDHuXRbNBEEQnIQIriAIgpPwWMH18/Nj8uTJ5a7yWhGRe/e+e/fW+4aKde9uv2gmCILgKXjsDFcQBMHdEMEVBEFwEiK4giAITsL9vcxlYPXq1YwdO5ZPPvmE7t27F2nPzs5m/Pjx1KpVi7i4OGbMmEFoaKgLLLUvzz//PEFBQRw7doypU6dSp06dy9rXr1/P2LFjCQsLA+Cll17immuucYGl9mHJkiVs3bqVtLQ0hg0bRq9evS5rnz17NomJiZw5c4Zx48bRunVrF1lqf4q794YNG9KwYUMAhgwZwpNPPukCK+3Pvn37GDlyJDfccAPPPvtskXa3f82Vh3HhwgX19ddfq969e6tNmzYZ9lmwYIF66aWXlFJKLVy4UL3wwgvONNEhrF27Vj3yyCNKKaXWr1+vHnjggSJ9fvrpJ/XTTz852TLHcOnSJdWpUydltVpVWlqaatOmjcrNzS1oP3z4sOrfv79SSqm4uDjVu3dvF1lqf4q7d6WUmjx5smuMczCLFy9Wzz//vHrllVeKtFWE19zjXAphYWHceOONNvusXbuWLl26ANCtWzd+/PFHZ5jmUEp6T4sWLWLmzJnMmDGDzMxMZ5poVzZv3kyLFi2wWCwEBQVRuXJljhw5UtC+bt06OnfuDEBUVBSxsbFkZWW5yly7Uty9A2zYsIEZM2YwefJkTp8+7SJL7c/QoUPx9fU1bKsIr7nHCW5JSEhIICQkBIAqVaqQkJDgYovKT+F7CgoKIikpqUifVq1a8fzzzzN+/HjCw8OZNGmSk620H4XvF4q+jle2h4SEkJiY6FQbHUVx9w7w8ssvM2HCBIYPH87tt9/ubBNdQkV4zSukDzc3N5eePXsWOd+hQwfefffdYsdHRkaSkpICQHJyMpGRkXa30RHYuu/C95Senl7gpy1MzZo1C/59zTXX8M477zjMVkdT+H6h6OsYGRnJ0aNHC/6fkpLiMRnnirt3gOjoaACaN2/O8ePHSUlJuUyMPJGK8JpXSMH19fVl8+bNpRqTkZFBWloa1apVo1+/fmzfvp2BAweybds2rr/+egdZal9s3fe6detYvHgxwGX3VPi+p0+fzhNPPEHVqlWJi4srWFSpiERHRxcsmmRkZJCamkrjxo05c+YMtWvXpm/fvixfvhyAEydO0LJlSwICAlxpst0o7t7Xrl2L1Wqlf//+XLp0CV9fXypXruxiqx2DUor4+PgK85p75E6zWbNmMWfOHAYOHMiIESPo2LEjH330ETExMcyaNYvs7GwmTJhA3bp1OXLkCK+99prHRCmEhIRw9OhRpkyZQp06dS6770WLFvHjjz/Srl07YmJimDJlCk2aNHG12WVmyZIlbN++nbS0NIYMGUK9evW499572bJlC6BXrC9evMipU6cYM2aM+61YlwNb9x4TE8PUqVPp2bMnsbGx3HHHHcWua1QUli9fzty5c/H392fkyJG0bdu2Qr3mHim4giAI7ohXLpoJgiC4AhFcQRAEJyGCKwiC4CREcAVBEJyECK4gCIKTEMEVBEFwEiK4giAITkIEVxAEwUmI4AqCIDgJEVxBEAQn8f/lRATYmF2t0wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "print(\"The same two nodes with symmetry set to true\")\n", + "print(\"Notice now the red node is given more weight\")\n", + "print(\n", + " \"because there is implicitly a duplicate of that node (in black) across the axis of symmetry.\"\n", + ")\n", + "theta = np.linspace(0, 2 * np.pi, 100)\n", + "radius = 1\n", + "a = radius * np.cos(theta)\n", + "b = radius * np.sin(theta)\n", + "\n", + "figure, axes = plt.subplots(1)\n", + "axes.plot(a, b, color=\"k\")\n", + "axes.add_patch(plt.Circle((0, 1), 0.15, color=\"r\"))\n", + "axes.add_patch(plt.Circle((1, 0), 0.15, color=\"c\"))\n", + "axes.add_patch(plt.Circle((0, -1), 0.15, color=\"k\"))\n", + "axes.add_patch(Arc((0, 0), 2, 2, theta1=45, theta2=180, color=\"r\", linewidth=10))\n", + "axes.add_patch(Arc((0, 0), 2, 2, theta1=-45, theta2=+45, color=\"c\", linewidth=10))\n", + "axes.add_patch(Arc((0, 0), 2, 2, theta1=-180, theta2=-45, color=\"r\", linewidth=10))\n", + "axes.set_aspect(1)\n", "plt.title(\"Circle with circumference 2$\\pi$\")\n", "plt.show()" ] @@ -892,14 +1019,16 @@ "When we set stellarator symmetry on, we delete the extra modes from the basis functions.\n", "This makes equilibrium solves and optimizations faster.\n", "\n", - "Under this condition, we may also delete all the nodes on the collocation grid with $\\theta$ coordinate > $\\pi$.3\n", + "Under this condition, we can usually also delete all the nodes on the collocation grid above the midplane $\\theta$ coordinate > $\\pi$.3\n", "Reducing the size of the grid saves time and memory.\n", "\n", - "The caveat is that we need to be careful to preserve the node volume and node area invariants mentioned earlier.\n", + "There are some caveats discussed in the next section.\n", + "When we delete the nodes above the midplane, we need to preserve the node volume and node area invariants mentioned earlier.\n", "In particular, on any given $\\theta$ curve (nodes on the intersection of a constant $\\rho$ and constant $\\zeta$ surface), the sum of the $d\\theta$ of each node should be $2\\pi$.\n", "(If this is not obvious, look at the circle illustration above.\n", "The sum of the distance between all nodes on a theta curve sum to $2\\pi$).\n", "To ensure this property is preserved, we upscale the $d\\theta$ spacing of the remaining nodes.\n", + "The upscale factor is given below.\n", "$$d\\theta = \\frac{2\\pi}{\\text{number of nodes remaining on that } \\theta \\text{ curve}} = \\frac{2\\pi}{\\text{number of nodes on that } \\theta \\text{ curve}} \\times \\frac{\\text{number of nodes on that } \\theta \\text{ curve}}{\\text{number of nodes on that } \\theta \\text{ curve} - \\text{number of nodes to delete on that } \\theta \\text{ curve}} $$\n", "The term on the left hand side is our desired end result.\n", "The first term on the right is the $d\\theta$ spacing that was correct before any nodes were deleted.\n", @@ -915,7 +1044,11 @@ " - The assumption is made that the number of nodes to delete on a given $\\theta$ curve is constant over $\\zeta$.\n", " This is the same as assuming that each $\\zeta$ surface has nodes patterned in the same way, which is an assumption\n", " we can make for the predefined grid types.\n", - "3. upscales the remaining nodes' $d\\theta$ weight" + "3. upscales the remaining nodes' $d\\theta$ weight\n", + "\n", + "Specifically, we upscale the $d\\theta$ spacing of any node with $\\theta$ coordinate not a multiple of $\\pi$, (those that are off the symmetry line), so that these nodes' spacings account for the node that is their reflection across the symmetry line.\n", + "\n", + "Footnote [3]: We could also instead delete all the nodes with $\\zeta$ coordinate > $\\pi$." ] }, { @@ -930,16 +1063,45 @@ "It also helps to consider how this affects surface integral computations.\n", "\n", "After deleting the nodes, but before upscaling them we are missing perhaps $1/2$ of the $d\\theta$ weight.\n", - "So if we performed a surface integral over the grid in this state, we would be computing one of the following depending on the surface label.\n", + "So if we performed a flux surface integral over the grid in this state, we would be computing\n", "$$ \\int_0^{\\pi}\\int_0^{2\\pi} d\\theta d\\zeta Q\\ + 0 \\times \\int_{\\pi}^{2\\pi}\\int_0^{2\\pi} d\\theta d\\zeta Q \\approx \\int_0^{2\\pi}\\int_0^{2\\pi} (\\frac{1}{2} d\\theta) \\ d\\zeta \\ Q$$\n", - "$$ \\int_0^{1}\\int_0^{\\pi} d\\rho d\\theta Q\\ + 0 \\times \\int_{0}^{1}\\int_{\\pi}^{2\\pi} d\\rho d\\theta Q \\approx \\int_0^{1}\\int_0^{2\\pi} d\\rho \\ (\\frac{1}{2} d\\theta) \\ Q$$\n", - "$$ \\int_0^{1}\\int_0^{2\\pi} d\\rho d\\zeta \\ Q$$\n", "\n", - "The approximate equality follows from the assumption that $Q$ is symmetric. Clearly the integrals over $\\rho$ and $\\zeta$ surfaces would be off by some factor.\n", + "The approximate equality follows from the assumption that $Q$ is stellarator symmetric. Clearly the integrals over $\\rho$ and $\\zeta$ surfaces would be off by some factor.\n", "Notice that upscaling $d\\theta$ alone is enough to recover the correct integrals.\n", - "This should make sense as deleting all the nodes with $\\theta$ coordinate > $\\pi$ does not change the number of nodes over any $\\theta$ surfaces $\\implies$ integrals over $\\theta$ surfaces are not affected.\n", + "This should make sense as deleting all the nodes with $\\theta$ coordinate > $\\pi$ does not change the number of nodes over any $\\theta$ surfaces $\\implies$ integrals over $\\theta$ surfaces are not affected." + ] + }, + { + "cell_type": "markdown", + "id": "09fd0f43-c35e-4a54-9a35-4e8497e243e4", + "metadata": {}, + "source": [ + "### Poloidal midplane symmetry is not stellarator symmetry\n", "\n", - "Footnote [3]: We could also instead delete all the nodes with $\\zeta$ coordinate > $\\pi$." + "The caveat mentioned above with deleting nodes above the midplane is discussed here.\n", + "Recall from `R.L. Dewar, S.R. Hudson, Stellarator symmetry, doi 10.1016/S0167-2789(97)00216-9`, that stellarator symmetry is a property of a curvilinear coordinate system, $(\\rho, \\theta, \\zeta)$, such that $f(\\rho, \\theta, \\zeta) = f(\\rho, -\\theta, -\\zeta)$ `Dewar, Hudson eq.8`. The DESC coordinate system will be a stellarator symmetric coordinate system if the Fourier expansion of the flux surfaces have either the cosine or sine symmetry.\n", + "\n", + "Now, assuming stellarator symmetry gives the first relation\n", + "$$f(\\rho, -\\theta, -\\zeta) = f(\\rho, \\theta, \\zeta) \\neq f(\\rho, -\\theta, \\zeta \\neq 0)$$\n", + "but the second relation does not follow (hence the $\\neq$). So we should not expect any of our computations to be invariant to truncating the poloidal domain to above the midplane $\\theta \\in [0, \\pi] \\subset [0, 2 \\pi)$.\n", + "\n", + "If we are computing some function $g \\colon \\rho, \\theta, \\zeta \\mapsto g(\\rho, \\theta, \\zeta)$ that is just a pointwise evaluation of the basis functions, then we will of course still compute $g$ accurately above the midplane. However, if we are computing any function that is not a pointwise evaluation of the basis function, i.e. a function whose input takes multiple nodes as input and performs some type of reduction, e.g. $F \\colon \\rho, \\theta, \\zeta \\mapsto \\int f(\\rho, \\theta, \\zeta) d S$, then in general $F$ will not be computed accurately if the computational domain is truncated to above the midplane.\n", + "\n", + "In general, given\n", + "\n", + "1. $f$ that evaluates the basis functions pointwise\n", + "1. $F$ that performs a reduction on $f$\n", + "2. stellarator symmetry: $f(\\rho, \\theta, \\zeta) = f(\\rho, -\\theta, -\\zeta)$\n", + " \n", + "then $F$ is guaranteed to be able to be computed accurately on the truncated domain of computation $\\theta \\in [0, \\pi] \\subset [0, 2\\pi)$ only[^1] if $F$ is a linear reduction over $D \\equiv [0, \\pi] \\times [0, 2 \\pi) \\ni (\\theta, \\zeta)$.\n", + "\n", + "> This means that if $F$ is a flux surface integral or volume integral of $f$, then it can be computed on grids that have nodes only above the midplane, i.e. grids such that `grid.sym == True`.\n", + "\n", + "If $F$ is a nonlinear reduction or any reduction that is over a proper subset of $D$, then $F$ may not be computed accurately when the domain is truncated to above the midplane unless there is the additional symmetry\n", + "$$f(\\rho, \\theta, \\zeta) = f(\\rho, -\\theta, \\zeta)$$\n", + "Stellarator symmetry implies this relation holds for $\\zeta = 0$. Therefore, stellarator symmetry and $\\partial f / \\partial \\zeta = 0$ is sufficient, but not necessary, for this additional symmetry.\n", + "\n", + "> This means that if $F$ is a non-flux surface integral or line integral, then it cannot be computed accurately on grids that have nodes only above the midplane, i.e. grids such that `grid.sym == True`, unless the additional symmetry is satisfied." ] }, { @@ -972,7 +1134,25 @@ "\n", "To emphasize: the columns of `grid.spacing` do not correspond to the distance between coordinates of nodes.\n", "Instead they correspond to the differential element weights $d\\rho, d\\theta, d\\zeta$.\n", - "These differential element weights should have whatever values are needed to maintain the node volume and area invariants discussed earlier." + "These differential element weights should have whatever values are needed to maintain the node volume and area invariants discussed earlier.\n", + "The docstring of `grid.spacing` defines this attribute as\n", + "\n", + " Quadrature weights for integration over surfaces.\n", + "\n", + " This is typically the distance between nodes when ``NFP=1``, as the quadrature\n", + " weight is by default a midpoint rule. The returned matrix has three columns,\n", + " corresponding to the radial, poloidal, and toroidal coordinate, respectively.\n", + " Each element of the matrix specifies the quadrature area associated with a\n", + " particular node for each coordinate. I.e. on a grid with coordinates\n", + " of \"rtz\", the columns specify dρ, dθ, dζ, respectively. An integration\n", + " over a ρ flux surface will assign quadrature weight dθ*dζ to each node.\n", + " Note that dζ is the distance between toroidal surfaces multiplied by ``NFP``.\n", + "\n", + " On a LinearGrid with duplicate nodes, the columns of spacing no longer\n", + " specify dρ, dθ, dζ. Rather, the product of each adjacent column specifies\n", + " dρ*dθ, dθ*dζ, dζ*dρ, respectively.\n", + "\n", + "Below the issue of duplicate nodes are discussed." ] }, { @@ -989,12 +1169,11 @@ "...\n", "z = np.linspace(0, 2 * np.pi / self.NFP, int(zeta), endpoint=endpoint)\n", "...\n", - "# for all grids\n", "r, t, z = np.meshgrid(r, t, z, indexing=\"ij\")\n", - "r = r.flatten()\n", - "t = t.flatten()\n", - "z = z.flatten()\n", - "nodes = np.stack([r, t, z]).T\n", + "r = r.ravel()\n", + "t = t.ravel()\n", + "z = z.ravel()\n", + "nodes = np.column_stack([r, t, z])\n", "```\n", "\n", "The extra value of $\\theta = 2 \\pi$ and/or $\\zeta = 2\\pi / \\text{NFP}$ in the array duplicates the $\\theta = 0$ and/or $\\zeta = 0$ surfaces.\n", @@ -1006,7 +1185,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 11, "id": "e74adbc8-f1db-417a-bbc0-11db702f3b42", "metadata": {}, "outputs": [ @@ -1071,7 +1250,7 @@ "1. Upscale the weight of all the nodes so that each distinct, non-duplicate, node has the correct weight.\n", "2. Reduce the weight of all the duplicate nodes by dividing by the duplicity of that node. (This needs to be done in a more careful way than is suggested above).\n", "\n", - "The first step is _much easier_ to handle before we make the `grid.nodes` mesh from the node coordinates.\n", + "The first step is easier to handle before we make the `grid.nodes` mesh from the node coordinates.\n", "The second step is handled by the `scale_weights` function.\n", "```python\n", "z = np.linspace(0, 2 * np.pi / self.NFP, int(zeta), endpoint=endpoint)\n", @@ -1281,49 +1460,17 @@ }, { "cell_type": "markdown", - "id": "23dc9427-5308-40f9-90f7-123a1bf5bfbd", + "id": "c2cf249f-b4ee-405a-8666-01e404a1992f", "metadata": {}, "source": [ - "### Duplicate nodes on custom user-defined grids\n", - "\n", - "At the start of this section it was mentioned that\n", - "> The first step is _much easier_ to handle before we make the `grid.nodes` mesh from the node coordinates.\n", - "The second step is handled by the `scale_weights` function.\n", + "### `LinearGrid` with `endpoint` duplicate\n", "\n", + "The main use case for duplicate nodes on `LinearGrid` is to add one at the endpoint of the periodic domains to make closed intervals for plotting purposes.\n", "Before the `grid.nodes` mesh is created on `LinearGrid` we have access to three arrays which specify the values of all the surfaces: `rho`, `theta`, and `zeta`.\n", "If there is a duplicate surface, we can just check for a repeated value in these arrays.\n", "This makes it easy to find the correct upscale factor of (number of surfaces / number of unique surfaces) for this surface's spacing.\n", "\n", - "For custom user-defined grids, the user provides the `grid.nodes` mesh directly.\n", - "Because `grid.nodes` is just a list of coordinates, it is hard to determine what surface a duplicate node belongs to.\n", - "Any point in space lies on all three surfaces.\n", - "\n", - "Because of this, the `scale_weights` function includes a line of code to attempt to address step 1 for areas:\n", - "```python\n", - "# scale areas sum to full area\n", - "# The following operation is not a general solution to return the weight\n", - "# removed from the duplicate nodes back to the unique nodes.\n", - "# For this reason, duplicates should typically be deleted rather than rescaled.\n", - "# Note we multiply each column by duplicates^(1/6) to account for the extra\n", - "# division by duplicates^(1/2) in one of the columns above.\n", - "self._spacing *= (\n", - " 4 * np.pi**2 / (self.spacing * duplicates ** (1 / 6)).prod(axis=1).sum()\n", - ") ** (1 / 3)\n", - "```\n", - "For grids without duplicates and grids with duplicates which have already done the upscaling mentioned in the first step (such as `LinearGrid`), this line of code will have no effect.\n", - "It should only affect custom grids with duplicates.\n", - "As the comment mentions, this line does not do its job ideally because it scales up the volumes rather than each of the areas.\n", - "There is a method to upscale the areas correctly after the node mesh is created, but I do not think there is a valid use case that justifies developing it.\n", - "The main use case for duplicate nodes on `LinearGrid` is to add one at the endpoint of the periodic domains to make closed intervals for plotting purposes." - ] - }, - { - "cell_type": "markdown", - "id": "c2cf249f-b4ee-405a-8666-01e404a1992f", - "metadata": {}, - "source": [ "### `LinearGrid` with `endpoint` duplicate at $\\theta = 2\\pi$ and `symmetry`\n", - "\n", "If this is the case, the duplicate surface at $\\theta = 2\\pi$ will be deleted by symmetry,\n", "while the remaining surface at $\\theta = 0$ will remain.\n", "As this surface will no longer be a duplicate, we need to prevent both step 1 and step 2 from occurring.\n", @@ -1356,7 +1503,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.16" + "version": "3.12.4" }, "toc-autonumbering": true, "toc-showcode": true, diff --git a/docs/notebooks/tutorials/coil_stage_two_optimization.ipynb b/docs/notebooks/tutorials/coil_stage_two_optimization.ipynb index d6e47ab940..369f54fca6 100644 --- a/docs/notebooks/tutorials/coil_stage_two_optimization.ipynb +++ b/docs/notebooks/tutorials/coil_stage_two_optimization.ipynb @@ -64,7 +64,7 @@ ")\n", "from desc.optimize import Optimizer\n", "from desc.magnetic_fields import field_line_integrate\n", - "from desc.singularities import compute_B_plasma\n", + "from desc.integrals import compute_B_plasma\n", "import time\n", "import plotly.express as px\n", "import plotly.io as pio\n", @@ -632694,7 +632694,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.11" + "version": "3.12.4" } }, "nbformat": 4, diff --git a/tests/test_axis_limits.py b/tests/test_axis_limits.py index 9ac4db81ea..5c38730326 100644 --- a/tests/test_axis_limits.py +++ b/tests/test_axis_limits.py @@ -12,10 +12,11 @@ import pytest from desc.compute import data_index -from desc.compute.utils import _grow_seeds, dot, surface_integrals_map +from desc.compute.utils import _grow_seeds, dot from desc.equilibrium import Equilibrium from desc.examples import get from desc.grid import LinearGrid +from desc.integrals import surface_integrals_map from desc.objectives import GenericObjective, ObjectiveFunction # Unless mentioned in the source code of the compute function, the assumptions diff --git a/tests/test_compute_utils.py b/tests/test_compute_utils.py index 12dcf64fea..83a31ed3bb 100644 --- a/tests/test_compute_utils.py +++ b/tests/test_compute_utils.py @@ -5,611 +5,7 @@ import pytest from desc.backend import jnp -from desc.basis import FourierZernikeBasis from desc.compute.geom_utils import rotation_matrix -from desc.compute.utils import ( - _get_grid_surface, - line_integrals, - surface_averages, - surface_integrals, - surface_integrals_transform, - surface_max, - surface_min, - surface_variance, -) -from desc.examples import get -from desc.grid import ConcentricGrid, LinearGrid, QuadratureGrid -from desc.transform import Transform - -# arbitrary choice -L = 5 -M = 5 -N = 2 -NFP = 3 - - -class TestComputeUtils: - """Tests for compute utilities related to surface averaging, etc.""" - - @staticmethod - def surface_integrals(grid, q=np.array([1.0]), surface_label="rho"): - """Compute a surface integral for each surface in the grid. - - Notes - ----- - It is assumed that the integration surface has area 4π² when the - surface label is rho and area 2π when the surface label is theta or - zeta. You may want to multiply q by the surface area Jacobian. - - Parameters - ---------- - grid : Grid - Collocation grid containing the nodes to evaluate at. - q : ndarray - Quantity to integrate. - The first dimension of the array should have size ``grid.num_nodes``. - - When ``q`` is 1-dimensional, the intention is to integrate, - over the domain parameterized by rho, theta, and zeta, - a scalar function over the previously mentioned domain. - - When ``q`` is 2-dimensional, the intention is to integrate, - over the domain parameterized by rho, theta, and zeta, - a vector-valued function over the previously mentioned domain. - - When ``q`` is 3-dimensional, the intention is to integrate, - over the domain parameterized by rho, theta, and zeta, - a matrix-valued function over the previously mentioned domain. - surface_label : str - The surface label of rho, theta, or zeta to compute the integration over. - - Returns - ------- - integrals : ndarray - Surface integral of the input over each surface in the grid. - - """ - _, _, spacing, _, _ = _get_grid_surface(grid, grid.get_label(surface_label)) - if surface_label == "rho": - has_endpoint_dupe = False - elif surface_label == "theta": - has_endpoint_dupe = (grid.nodes[grid.unique_theta_idx[0], 1] == 0) & ( - grid.nodes[grid.unique_theta_idx[-1], 1] == 2 * np.pi - ) - else: - has_endpoint_dupe = (grid.nodes[grid.unique_zeta_idx[0], 2] == 0) & ( - grid.nodes[grid.unique_zeta_idx[-1], 2] == 2 * np.pi / grid.NFP - ) - weights = (spacing.prod(axis=1) * np.nan_to_num(q).T).T - - surfaces = {} - nodes = grid.nodes[:, {"rho": 0, "theta": 1, "zeta": 2}[surface_label]] - # collect node indices for each surface_label surface - for grid_row_idx, surface_label_value in enumerate(nodes): - surfaces.setdefault(surface_label_value, []).append(grid_row_idx) - # integration over non-contiguous elements - integrals = [weights[surfaces[key]].sum(axis=0) for key in sorted(surfaces)] - if has_endpoint_dupe: - integrals[0] = integrals[-1] = integrals[0] + integrals[-1] - return np.asarray(integrals) - - @pytest.mark.unit - def test_surface_integrals(self): - """Test surface_integrals against a more intuitive implementation. - - This test should ensure that the algorithm in implementation is correct - on different types of grids (e.g. LinearGrid, ConcentricGrid). Each test - should also be done on grids with duplicate nodes (e.g. endpoint=True). - """ - - def test_b_theta(surface_label, grid, eq): - q = eq.compute("B_theta", grid=grid)["B_theta"] - integrals = surface_integrals(grid, q, surface_label, expand_out=False) - unique_size = { - "rho": grid.num_rho, - "theta": grid.num_theta, - "zeta": grid.num_zeta, - }[surface_label] - assert integrals.shape == (unique_size,), surface_label - - desired = self.surface_integrals(grid, q, surface_label) - np.testing.assert_allclose( - integrals, desired, atol=1e-16, err_msg=surface_label - ) - - eq = get("W7-X") - with pytest.warns(UserWarning, match="Reducing radial"): - eq.change_resolution(3, 3, 3, 6, 6, 6) - lg = LinearGrid(L=L, M=M, N=N, NFP=eq.NFP, endpoint=False) - lg_endpoint = LinearGrid(L=L, M=M, N=N, NFP=eq.NFP, endpoint=True) - cg_sym = ConcentricGrid(L=L, M=M, N=N, NFP=eq.NFP, sym=True) - for label in ("rho", "theta", "zeta"): - test_b_theta(label, lg, eq) - test_b_theta(label, lg_endpoint, eq) - if label != "theta": - # theta integrals are poorly defined on concentric grids - test_b_theta(label, cg_sym, eq) - - @pytest.mark.unit - def test_unknown_unique_grid_integral(self): - """Test that averages are invariant to whether grids have unique_idx.""" - lg = LinearGrid(L=L, M=M, N=N, NFP=NFP, endpoint=False) - q = jnp.arange(lg.num_nodes) ** 2 - result = surface_integrals(lg, q, surface_label="rho") - del lg._unique_rho_idx - np.testing.assert_allclose( - surface_integrals(lg, q, surface_label="rho"), result - ) - result = surface_averages(lg, q, surface_label="theta") - del lg._unique_poloidal_idx - np.testing.assert_allclose( - surface_averages(lg, q, surface_label="theta"), result - ) - result = surface_variance(lg, q, surface_label="zeta") - del lg._unique_zeta_idx - np.testing.assert_allclose( - surface_variance(lg, q, surface_label="zeta"), result - ) - - @pytest.mark.unit - def test_surface_integrals_transform(self): - """Test surface integral of a kernel function.""" - - def test(surface_label, grid): - ints = np.arange(grid.num_nodes) - # better to test when all elements have the same sign - q = np.abs(np.outer(np.cos(ints), np.sin(ints))) - # This q represents the kernel function - # K_{u_1} = |cos(x(u_1, u_2, u_3)) * sin(x(u_4, u_5, u_6))| - # The first dimension of q varies the domain u_1, u_2, and u_3 - # and the second dimension varies the codomain u_4, u_5, u_6. - integrals = surface_integrals_transform(grid, surface_label)(q) - unique_size = { - "rho": grid.num_rho, - "theta": grid.num_theta, - "zeta": grid.num_zeta, - }[surface_label] - assert integrals.shape == (unique_size, grid.num_nodes), surface_label - - desired = self.surface_integrals(grid, q, surface_label) - np.testing.assert_allclose(integrals, desired, err_msg=surface_label) - - cg = ConcentricGrid(L=L, M=M, N=N, sym=True, NFP=NFP) - lg = LinearGrid(L=L, M=M, N=N, sym=True, NFP=NFP, endpoint=True) - test("rho", cg) - test("theta", lg) - test("zeta", cg) - - @pytest.mark.unit - def test_surface_averages_vector_functions(self): - """Test surface averages of vector-valued, function-valued integrands.""" - - def test(surface_label, grid): - g_size = grid.num_nodes # not a choice; required - f_size = g_size // 10 + (g_size < 10) - # arbitrary choice, but f_size != v_size != g_size is better to test - v_size = g_size // 20 + (g_size < 20) - g = np.cos(np.arange(g_size)) - fv = np.sin(np.arange(f_size * v_size).reshape(f_size, v_size)) - # better to test when all elements have the same sign - q = np.abs(np.einsum("g,fv->gfv", g, fv)) - sqrt_g = np.arange(g_size).astype(float) - - averages = surface_averages(grid, q, sqrt_g, surface_label) - assert averages.shape == q.shape == (g_size, f_size, v_size), surface_label - - desired = ( - self.surface_integrals(grid, (sqrt_g * q.T).T, surface_label).T - / self.surface_integrals(grid, sqrt_g, surface_label) - ).T - np.testing.assert_allclose( - grid.compress(averages, surface_label), desired, err_msg=surface_label - ) - - cg = ConcentricGrid(L=L, M=M, N=N, sym=True, NFP=NFP) - lg = LinearGrid(L=L, M=M, N=N, sym=True, NFP=NFP, endpoint=True) - test("rho", cg) - test("theta", lg) - test("zeta", cg) - - @pytest.mark.unit - def test_surface_area(self): - """Test that surface_integrals(ds) is 4π² for rho, 2pi for theta, zeta. - - This test should ensure that surfaces have the correct area on grids - constructed by specifying L, M, N and by specifying an array of nodes. - Each test should also be done on grids with duplicate nodes - (e.g. endpoint=True) and grids with symmetry. - """ - - def test(surface_label, grid): - areas = surface_integrals( - grid, surface_label=surface_label, expand_out=False - ) - correct_area = 4 * np.pi**2 if surface_label == "rho" else 2 * np.pi - np.testing.assert_allclose(areas, correct_area, err_msg=surface_label) - - lg = LinearGrid(L=L, M=M, N=N, NFP=NFP, sym=False, endpoint=False) - lg_sym = LinearGrid(L=L, M=M, N=N, NFP=NFP, sym=True, endpoint=False) - lg_endpoint = LinearGrid(L=L, M=M, N=N, NFP=NFP, sym=False, endpoint=True) - lg_sym_endpoint = LinearGrid(L=L, M=M, N=N, NFP=NFP, sym=True, endpoint=True) - rho = np.linspace(1, 0, L)[::-1] - theta = np.linspace(0, 2 * np.pi, M, endpoint=False) - theta_endpoint = np.linspace(0, 2 * np.pi, M, endpoint=True) - zeta = np.linspace(0, 2 * np.pi / NFP, N, endpoint=False) - zeta_endpoint = np.linspace(0, 2 * np.pi / NFP, N, endpoint=True) - lg_2 = LinearGrid( - rho=rho, theta=theta, zeta=zeta, NFP=NFP, sym=False, endpoint=False - ) - lg_2_sym = LinearGrid( - rho=rho, theta=theta, zeta=zeta, NFP=NFP, sym=True, endpoint=False - ) - lg_2_endpoint = LinearGrid( - rho=rho, - theta=theta_endpoint, - zeta=zeta_endpoint, - NFP=NFP, - sym=False, - endpoint=True, - ) - lg_2_sym_endpoint = LinearGrid( - rho=rho, - theta=theta_endpoint, - zeta=zeta_endpoint, - NFP=NFP, - sym=True, - endpoint=True, - ) - cg = ConcentricGrid(L=L, M=M, N=N, NFP=NFP, sym=False) - cg_sym = ConcentricGrid(L=L, M=M, N=N, NFP=NFP, sym=True) - - for label in ("rho", "theta", "zeta"): - test(label, lg) - test(label, lg_sym) - test(label, lg_endpoint) - test(label, lg_sym_endpoint) - test(label, lg_2) - test(label, lg_2_sym) - test(label, lg_2_endpoint) - test(label, lg_2_sym_endpoint) - if label != "theta": - # theta integrals are poorly defined on concentric grids - test(label, cg) - test(label, cg_sym) - - @pytest.mark.unit - def test_line_length(self): - """Test that line_integrals(dl) is 1 for rho, 2π for theta, zeta. - - This test should ensure that lines have the correct length on grids - constructed by specifying L, M, N and by specifying an array of nodes. - """ - - def test(grid): - if not isinstance(grid, ConcentricGrid): - for theta_val in grid.nodes[grid.unique_theta_idx, 1]: - result = line_integrals( - grid, - line_label="rho", - fix_surface=("theta", theta_val), - expand_out=False, - ) - np.testing.assert_allclose(result, 1) - for rho_val in grid.nodes[grid.unique_rho_idx, 0]: - result = line_integrals( - grid, - line_label="zeta", - fix_surface=("rho", rho_val), - expand_out=False, - ) - np.testing.assert_allclose(result, 2 * np.pi) - for zeta_val in grid.nodes[grid.unique_zeta_idx, 2]: - result = line_integrals( - grid, - line_label="theta", - fix_surface=("zeta", zeta_val), - expand_out=False, - ) - np.testing.assert_allclose(result, 2 * np.pi) - - lg = LinearGrid(L=L, M=M, N=N, NFP=NFP, sym=False) - lg_sym = LinearGrid(L=L, M=M, N=N, NFP=NFP, sym=True) - rho = np.linspace(1, 0, L)[::-1] - theta = np.linspace(0, 2 * np.pi, M, endpoint=False) - zeta = np.linspace(0, 2 * np.pi / NFP, N, endpoint=False) - lg_2 = LinearGrid(rho=rho, theta=theta, zeta=zeta, NFP=NFP, sym=False) - lg_2_sym = LinearGrid(rho=rho, theta=theta, zeta=zeta, NFP=NFP, sym=True) - cg = ConcentricGrid(L=L, M=M, N=N, NFP=NFP, sym=False) - cg_sym = ConcentricGrid(L=L, M=M, N=N, NFP=NFP, sym=True) - - test(lg) - test(lg_sym) - test(lg_2) - test(lg_2_sym) - test(cg) - test(cg_sym) - - @pytest.mark.unit - def test_surface_averages_identity_op(self): - """Test flux surface averages of surface functions are identity operations.""" - eq = get("W7-X") - with pytest.warns(UserWarning, match="Reducing radial"): - eq.change_resolution(3, 3, 3, 6, 6, 6) - grid = ConcentricGrid(L=L, M=M, N=N, NFP=eq.NFP, sym=eq.sym) - data = eq.compute(["p", "sqrt(g)"], grid=grid) - pressure_average = surface_averages(grid, data["p"], data["sqrt(g)"]) - np.testing.assert_allclose(data["p"], pressure_average) - - @pytest.mark.unit - def test_surface_averages_homomorphism(self): - """Test flux surface averages of surface functions are additive homomorphisms. - - Meaning average(a + b) = average(a) + average(b). - """ - eq = get("W7-X") - with pytest.warns(UserWarning, match="Reducing radial"): - eq.change_resolution(3, 3, 3, 6, 6, 6) - grid = ConcentricGrid(L=L, M=M, N=N, NFP=eq.NFP, sym=eq.sym) - data = eq.compute(["|B|", "|B|_t", "sqrt(g)"], grid=grid) - a = surface_averages(grid, data["|B|"], data["sqrt(g)"]) - b = surface_averages(grid, data["|B|_t"], data["sqrt(g)"]) - a_plus_b = surface_averages(grid, data["|B|"] + data["|B|_t"], data["sqrt(g)"]) - np.testing.assert_allclose(a_plus_b, a + b) - - @pytest.mark.unit - def test_surface_integrals_against_shortcut(self): - """Test integration against less general methods.""" - grid = ConcentricGrid(L=L, M=M, N=N, NFP=NFP) - ds = grid.spacing[:, :2].prod(axis=-1) - # something arbitrary that will give different sum across surfaces - q = np.arange(grid.num_nodes) ** 2 - # The predefined grids sort nodes in zeta surface chunks. - # To compute a quantity local to a surface, we can reshape it into zeta - # surface chunks and compute across the chunks. - result = grid.expand( - (ds * q).reshape((grid.num_zeta, -1)).sum(axis=-1), - surface_label="zeta", - ) - np.testing.assert_allclose( - surface_integrals(grid, q, surface_label="zeta"), - desired=result, - ) - - @pytest.mark.unit - def test_surface_averages_against_shortcut(self): - """Test averaging against less general methods.""" - # test on zeta surfaces - grid = LinearGrid(L=L, M=M, N=N, NFP=NFP) - # something arbitrary that will give different average across surfaces - q = np.arange(grid.num_nodes) ** 2 - # The predefined grids sort nodes in zeta surface chunks. - # To compute a quantity local to a surface, we can reshape it into zeta - # surface chunks and compute across the chunks. - mean = grid.expand( - q.reshape((grid.num_zeta, -1)).mean(axis=-1), - surface_label="zeta", - ) - # number of nodes per surface - n = grid.num_rho * grid.num_theta - np.testing.assert_allclose(np.bincount(grid.inverse_zeta_idx), desired=n) - ds = grid.spacing[:, :2].prod(axis=-1) - np.testing.assert_allclose( - surface_integrals(grid, q / ds, surface_label="zeta") / n, - desired=mean, - ) - np.testing.assert_allclose( - surface_averages(grid, q, surface_label="zeta"), - desired=mean, - ) - - # test on grids with a single rho surface - eq = get("W7-X") - with pytest.warns(UserWarning, match="Reducing radial"): - eq.change_resolution(3, 3, 3, 6, 6, 6) - rho = np.array((1 - 1e-4) * np.random.default_rng().random() + 1e-4) - grid = LinearGrid(rho=rho, M=eq.M_grid, N=eq.N_grid, NFP=eq.NFP, sym=eq.sym) - data = eq.compute(["|B|", "sqrt(g)"], grid=grid) - np.testing.assert_allclose( - surface_averages(grid, data["|B|"], data["sqrt(g)"]), - np.mean(data["sqrt(g)"] * data["|B|"]) / np.mean(data["sqrt(g)"]), - err_msg="average with sqrt(g) fail", - ) - np.testing.assert_allclose( - surface_averages(grid, data["|B|"]), - np.mean(data["|B|"]), - err_msg="average without sqrt(g) fail", - ) - - @pytest.mark.unit - def test_symmetry_surface_average_1(self): - """Test surface average of a symmetric function.""" - - def test(grid): - r = grid.nodes[:, 0] - t = grid.nodes[:, 1] - z = grid.nodes[:, 2] * grid.NFP - true_surface_avg = 5 - function_of_rho = 1 / (r + 0.35) - f = ( - true_surface_avg - + np.cos(t) - - 0.5 * np.cos(z) - + 3 * np.cos(t) * np.cos(z) ** 2 - - 2 * np.sin(z) * np.sin(t) - ) * function_of_rho - np.testing.assert_allclose( - surface_averages(grid, f), - true_surface_avg * function_of_rho, - rtol=1e-15, - err_msg=type(grid), - ) - - # these tests should be run on relatively low resolution grids, - # or at least low enough so that the asymmetric spacing test fails - L = [3, 3, 5, 3] - M = [3, 6, 5, 7] - N = [2, 2, 2, 2] - NFP = [5, 3, 5, 3] - sym = np.array([True, True, False, False]) - # to test code not tested on grids made with M=. - even_number = 4 - n_theta = even_number - sym - - # asymmetric spacing - with pytest.raises(AssertionError): - theta = 2 * np.pi * np.array([t**2 for t in np.linspace(0, 1, max(M))]) - test(LinearGrid(L=max(L), theta=theta, N=max(N), sym=False)) - - for i in range(len(L)): - test(LinearGrid(L=L[i], M=M[i], N=N[i], NFP=NFP[i], sym=sym[i])) - test(LinearGrid(L=L[i], theta=n_theta[i], N=N[i], NFP=NFP[i], sym=sym[i])) - test( - LinearGrid( - L=L[i], - theta=np.linspace(0, 2 * np.pi, n_theta[i]), - N=N[i], - NFP=NFP[i], - sym=sym[i], - ) - ) - test( - LinearGrid( - L=L[i], - theta=np.linspace(0, 2 * np.pi, n_theta[i] + 1), - N=N[i], - NFP=NFP[i], - sym=sym[i], - ) - ) - test(QuadratureGrid(L=L[i], M=M[i], N=N[i], NFP=NFP[i])) - test(ConcentricGrid(L=L[i], M=M[i], N=N[i], NFP=NFP[i], sym=sym[i])) - # nonuniform spacing when sym is False, but spacing is still symmetric - test( - LinearGrid( - L=L[i], - theta=np.linspace(0, np.pi, n_theta[i]), - N=N[i], - NFP=NFP[i], - sym=sym[i], - ) - ) - test( - LinearGrid( - L=L[i], - theta=np.linspace(0, np.pi, n_theta[i] + 1), - N=N[i], - NFP=NFP[i], - sym=sym[i], - ) - ) - - @pytest.mark.unit - def test_symmetry_surface_average_2(self): - """Tests that surface averages are correct using specified basis.""" - - def test(grid, basis, true_avg=1): - transform = Transform(grid, basis) - - # random data with specified average on each surface - coeffs = np.random.rand(basis.num_modes) - coeffs[np.all(basis.modes[:, 1:] == [0, 0], axis=1)] = 0 - coeffs[np.all(basis.modes == [0, 0, 0], axis=1)] = true_avg - - # compute average for each surface in grid - values = transform.transform(coeffs) - numerical_avg = surface_averages(grid, values, expand_out=False) - np.testing.assert_allclose( - # values closest to axis are never accurate enough - numerical_avg[isinstance(grid, ConcentricGrid) :], - true_avg, - err_msg=str(type(grid)) + " " + str(grid.sym), - ) - - M = 5 - M_grid = 13 - test( - QuadratureGrid(L=M_grid, M=M_grid, N=0), FourierZernikeBasis(L=M, M=M, N=0) - ) - test( - LinearGrid(L=M_grid, M=M_grid, N=0, sym=True), - FourierZernikeBasis(L=M, M=M, N=0, sym="cos"), - ) - test( - ConcentricGrid(L=M_grid, M=M_grid, N=0), FourierZernikeBasis(L=M, M=M, N=0) - ) - test( - ConcentricGrid(L=M_grid, M=M_grid, N=0, sym=True), - FourierZernikeBasis(L=M, M=M, N=0, sym="cos"), - ) - - @pytest.mark.unit - def test_surface_variance(self): - """Test correctness of variance against less general methods.""" - grid = LinearGrid(L=L, M=M, N=N, NFP=NFP) - # something arbitrary that will give different variance across surfaces - q = np.arange(grid.num_nodes) ** 2 - - # Test weighted sample variance with different weights. - # positive weights to prevent cancellations that may hide implementation error - weights = np.cos(q) * np.sin(q) + 5 - biased = surface_variance( - grid, q, weights, bias=True, surface_label="zeta", expand_out=False - ) - unbiased = surface_variance( - grid, q, weights, surface_label="zeta", expand_out=False - ) - # The predefined grids sort nodes in zeta surface chunks. - # To compute a quantity local to a surface, we can reshape it into zeta - # surface chunks and compute across the chunks. - chunks = q.reshape((grid.num_zeta, -1)) - # The ds weights are built into the surface variance function. - # So weights for np.cov should be ds * weights. Since ds is constant on - # LinearGrid, we need to get the same result if we don't multiply by ds. - weights = weights.reshape((grid.num_zeta, -1)) - for i in range(grid.num_zeta): - np.testing.assert_allclose( - biased[i], - desired=np.cov(chunks[i], bias=True, aweights=weights[i]), - ) - np.testing.assert_allclose( - unbiased[i], - desired=np.cov(chunks[i], aweights=weights[i]), - ) - - # Test weighted sample variance converges to unweighted sample variance - # when all weights are equal. - chunks = grid.expand(chunks, surface_label="zeta") - np.testing.assert_allclose( - surface_variance(grid, q, np.e, bias=True, surface_label="zeta"), - desired=chunks.var(axis=-1), - ) - np.testing.assert_allclose( - surface_variance(grid, q, np.e, surface_label="zeta"), - desired=chunks.var(axis=-1, ddof=1), - ) - - @pytest.mark.unit - def test_surface_min_max(self): - """Test the surface_min and surface_max functions.""" - for grid_type in [LinearGrid, QuadratureGrid, ConcentricGrid]: - grid = grid_type(L=L, M=M, N=N, NFP=NFP) - rho = grid.nodes[:, 0] - theta = grid.nodes[:, 1] - zeta = grid.nodes[:, 2] - # Make up an arbitrary function of the coordinates: - B = ( - 1.7 - + 0.4 * rho * np.cos(theta) - + 0.8 * rho * rho * np.cos(2 * theta - 3 * zeta) - ) - Bmax_alt = np.zeros(grid.num_rho) - Bmin_alt = np.zeros(grid.num_rho) - for j in range(grid.num_rho): - mask = grid.inverse_rho_idx == j - Bmax_alt[j] = np.max(B[mask]) - Bmin_alt[j] = np.min(B[mask]) - np.testing.assert_allclose(Bmax_alt, grid.compress(surface_max(grid, B))) - np.testing.assert_allclose(Bmin_alt, grid.compress(surface_min(grid, B))) @pytest.mark.unit diff --git a/tests/test_integrals.py b/tests/test_integrals.py new file mode 100644 index 0000000000..b15b019283 --- /dev/null +++ b/tests/test_integrals.py @@ -0,0 +1,690 @@ +"""Test integration algorithms.""" + +import numpy as np +import pytest + +from desc.basis import FourierZernikeBasis +from desc.equilibrium import Equilibrium +from desc.examples import get +from desc.grid import ConcentricGrid, LinearGrid, QuadratureGrid +from desc.integrals import ( + DFTInterpolator, + FFTInterpolator, + line_integrals, + singular_integral, + surface_averages, + surface_integrals, + surface_integrals_transform, + surface_max, + surface_min, + surface_variance, + virtual_casing_biot_savart, +) +from desc.integrals.singularities import _get_quadrature_nodes +from desc.integrals.surface_integral import _get_grid_surface +from desc.transform import Transform + + +class TestSurfaceIntegral: + """Tests for non-singular surface integrals.""" + + # arbitrary choice + L = 5 + M = 5 + N = 2 + NFP = 3 + + @staticmethod + def _surface_integrals(grid, q=np.array([1.0]), surface_label="rho"): + """Compute a surface integral for each surface in the grid.""" + _, _, spacing, has_endpoint_dupe, _ = _get_grid_surface( + grid, grid.get_label(surface_label) + ) + weights = (spacing.prod(axis=1) * np.nan_to_num(q).T).T + surfaces = {} + nodes = grid.nodes[:, {"rho": 0, "theta": 1, "zeta": 2}[surface_label]] + for grid_row_idx, surface_label_value in enumerate(nodes): + surfaces.setdefault(surface_label_value, []).append(grid_row_idx) + integrals = [weights[surfaces[key]].sum(axis=0) for key in sorted(surfaces)] + if has_endpoint_dupe: + integrals[0] = integrals[-1] = integrals[0] + integrals[-1] + return np.asarray(integrals) + + @pytest.mark.unit + def test_unknown_unique_grid_integral(self): + """Test that averages are invariant to whether grids have unique_idx.""" + lg = LinearGrid(L=self.L, M=self.M, N=self.N, NFP=self.NFP, endpoint=False) + q = np.arange(lg.num_nodes) ** 2 + result = surface_integrals(lg, q, surface_label="rho") + del lg._unique_rho_idx + np.testing.assert_allclose( + surface_integrals(lg, q, surface_label="rho"), result + ) + result = surface_averages(lg, q, surface_label="theta") + del lg._unique_poloidal_idx + np.testing.assert_allclose( + surface_averages(lg, q, surface_label="theta"), result + ) + result = surface_variance(lg, q, surface_label="zeta") + del lg._unique_zeta_idx + np.testing.assert_allclose( + surface_variance(lg, q, surface_label="zeta"), result + ) + + @pytest.mark.unit + def test_surface_integrals_transform(self): + """Test surface integral of a kernel function.""" + + def test(surface_label, grid): + ints = np.arange(grid.num_nodes) + # better to test when all elements have the same sign + q = np.abs(np.outer(np.cos(ints), np.sin(ints))) + # This q represents the kernel function + # K_{u_1} = |cos(x(u_1, u_2, u_3)) * sin(x(u_4, u_5, u_6))| + # The first dimension of q varies the domain u_1, u_2, and u_3 + # and the second dimension varies the codomain u_4, u_5, u_6. + integrals = surface_integrals_transform(grid, surface_label)(q) + unique_size = { + "rho": grid.num_rho, + "theta": grid.num_theta, + "zeta": grid.num_zeta, + }[surface_label] + assert integrals.shape == (unique_size, grid.num_nodes), surface_label + + desired = self._surface_integrals(grid, q, surface_label) + np.testing.assert_allclose(integrals, desired, err_msg=surface_label) + + cg = ConcentricGrid(L=self.L, M=self.M, N=self.N, sym=True, NFP=self.NFP) + lg = LinearGrid( + L=self.L, M=self.M, N=self.N, sym=True, NFP=self.NFP, endpoint=True + ) + test("rho", cg) + test("theta", lg) + test("zeta", cg) + + @pytest.mark.unit + def test_surface_averages_vector_functions(self): + """Test surface averages of vector-valued, function-valued integrands.""" + + def test(surface_label, grid): + g_size = grid.num_nodes # not a choice; required + f_size = g_size // 10 + (g_size < 10) + # arbitrary choice, but f_size != v_size != g_size is better to test + v_size = g_size // 20 + (g_size < 20) + g = np.cos(np.arange(g_size)) + fv = np.sin(np.arange(f_size * v_size).reshape(f_size, v_size)) + # better to test when all elements have the same sign + q = np.abs(np.einsum("g,fv->gfv", g, fv)) + sqrt_g = np.arange(g_size).astype(float) + + averages = surface_averages(grid, q, sqrt_g, surface_label) + assert averages.shape == q.shape == (g_size, f_size, v_size), surface_label + + desired = ( + self._surface_integrals(grid, (sqrt_g * q.T).T, surface_label).T + / self._surface_integrals(grid, sqrt_g, surface_label) + ).T + np.testing.assert_allclose( + grid.compress(averages, surface_label), desired, err_msg=surface_label + ) + + cg = ConcentricGrid(L=self.L, M=self.M, N=self.N, sym=True, NFP=self.NFP) + lg = LinearGrid( + L=self.L, M=self.M, N=self.N, sym=True, NFP=self.NFP, endpoint=True + ) + test("rho", cg) + test("theta", lg) + test("zeta", cg) + + @pytest.mark.unit + def test_surface_area(self): + """Test that surface_integrals(ds) is 4π² for rho, 2pi for theta, zeta. + + This test should ensure that surfaces have the correct area on grids + constructed by specifying L, M, N and by specifying an array of nodes. + Each test should also be done on grids with duplicate nodes + (e.g. endpoint=True) and grids with symmetry. + """ + + def test(surface_label, grid): + areas = surface_integrals( + grid, surface_label=surface_label, expand_out=False + ) + correct_area = 4 * np.pi**2 if surface_label == "rho" else 2 * np.pi + np.testing.assert_allclose(areas, correct_area, err_msg=surface_label) + + lg = LinearGrid( + L=self.L, M=self.M, N=self.N, NFP=self.NFP, sym=False, endpoint=False + ) + lg_sym = LinearGrid( + L=self.L, M=self.M, N=self.N, NFP=self.NFP, sym=True, endpoint=False + ) + lg_endpoint = LinearGrid( + L=self.L, M=self.M, N=self.N, NFP=self.NFP, sym=False, endpoint=True + ) + lg_sym_endpoint = LinearGrid( + L=self.L, M=self.M, N=self.N, NFP=self.NFP, sym=True, endpoint=True + ) + rho = np.linspace(1, 0, self.L)[::-1] + theta = np.linspace(0, 2 * np.pi, self.M, endpoint=False) + theta_endpoint = np.linspace(0, 2 * np.pi, self.M, endpoint=True) + zeta = np.linspace(0, 2 * np.pi / self.NFP, self.N, endpoint=False) + zeta_endpoint = np.linspace(0, 2 * np.pi / self.NFP, self.N, endpoint=True) + lg_2 = LinearGrid( + rho=rho, theta=theta, zeta=zeta, NFP=self.NFP, sym=False, endpoint=False + ) + lg_2_sym = LinearGrid( + rho=rho, theta=theta, zeta=zeta, NFP=self.NFP, sym=True, endpoint=False + ) + lg_2_endpoint = LinearGrid( + rho=rho, + theta=theta_endpoint, + zeta=zeta_endpoint, + NFP=self.NFP, + sym=False, + endpoint=True, + ) + lg_2_sym_endpoint = LinearGrid( + rho=rho, + theta=theta_endpoint, + zeta=zeta_endpoint, + NFP=self.NFP, + sym=True, + endpoint=True, + ) + cg = ConcentricGrid(L=self.L, M=self.M, N=self.N, NFP=self.NFP, sym=False) + cg_sym = ConcentricGrid(L=self.L, M=self.M, N=self.N, NFP=self.NFP, sym=True) + + for label in ("rho", "theta", "zeta"): + test(label, lg) + test(label, lg_sym) + test(label, lg_endpoint) + test(label, lg_sym_endpoint) + test(label, lg_2) + test(label, lg_2_sym) + test(label, lg_2_endpoint) + test(label, lg_2_sym_endpoint) + if label != "theta": + # theta integrals are poorly defined on concentric grids + test(label, cg) + test(label, cg_sym) + + @pytest.mark.unit + def test_line_length(self): + """Test that line_integrals(dl) is 1 for rho, 2π for theta, zeta. + + This test should ensure that lines have the correct length on grids + constructed by specifying L, M, N and by specifying an array of nodes. + """ + + def test(grid): + if not isinstance(grid, ConcentricGrid): + for theta_val in grid.nodes[grid.unique_theta_idx, 1]: + result = line_integrals( + grid, + line_label="rho", + fix_surface=("theta", theta_val), + expand_out=False, + ) + np.testing.assert_allclose(result, 1) + for rho_val in grid.nodes[grid.unique_rho_idx, 0]: + result = line_integrals( + grid, + line_label="zeta", + fix_surface=("rho", rho_val), + expand_out=False, + ) + np.testing.assert_allclose(result, 2 * np.pi) + for zeta_val in grid.nodes[grid.unique_zeta_idx, 2]: + result = line_integrals( + grid, + line_label="theta", + fix_surface=("zeta", zeta_val), + expand_out=False, + ) + np.testing.assert_allclose(result, 2 * np.pi) + + lg = LinearGrid(L=self.L, M=self.M, N=self.N, NFP=self.NFP, sym=False) + lg_sym = LinearGrid(L=self.L, M=self.M, N=self.N, NFP=self.NFP, sym=True) + rho = np.linspace(1, 0, self.L)[::-1] + theta = np.linspace(0, 2 * np.pi, self.M, endpoint=False) + zeta = np.linspace(0, 2 * np.pi / self.NFP, self.N, endpoint=False) + lg_2 = LinearGrid(rho=rho, theta=theta, zeta=zeta, NFP=self.NFP, sym=False) + lg_2_sym = LinearGrid(rho=rho, theta=theta, zeta=zeta, NFP=self.NFP, sym=True) + cg = ConcentricGrid(L=self.L, M=self.M, N=self.N, NFP=self.NFP, sym=False) + cg_sym = ConcentricGrid(L=self.L, M=self.M, N=self.N, NFP=self.NFP, sym=True) + + test(lg) + test(lg_sym) + test(lg_2) + test(lg_2_sym) + test(cg) + test(cg_sym) + + @pytest.mark.unit + def test_surface_averages_identity_op(self): + """Test flux surface averages of surface functions are identity operations.""" + eq = get("W7-X") + with pytest.warns(UserWarning, match="Reducing radial"): + eq.change_resolution(3, 3, 3, 6, 6, 6) + grid = ConcentricGrid(L=self.L, M=self.M, N=self.N, NFP=eq.NFP, sym=eq.sym) + data = eq.compute(["p", "sqrt(g)"], grid=grid) + pressure_average = surface_averages(grid, data["p"], data["sqrt(g)"]) + np.testing.assert_allclose(data["p"], pressure_average) + + @pytest.mark.unit + def test_surface_averages_homomorphism(self): + """Test flux surface averages of surface functions are additive homomorphisms. + + Meaning average(a + b) = average(a) + average(b). + """ + eq = get("W7-X") + with pytest.warns(UserWarning, match="Reducing radial"): + eq.change_resolution(3, 3, 3, 6, 6, 6) + grid = ConcentricGrid(L=self.L, M=self.M, N=self.N, NFP=eq.NFP, sym=eq.sym) + data = eq.compute(["|B|", "|B|_t", "sqrt(g)"], grid=grid) + a = surface_averages(grid, data["|B|"], data["sqrt(g)"]) + b = surface_averages(grid, data["|B|_t"], data["sqrt(g)"]) + a_plus_b = surface_averages(grid, data["|B|"] + data["|B|_t"], data["sqrt(g)"]) + np.testing.assert_allclose(a_plus_b, a + b) + + @pytest.mark.unit + def test_surface_integrals_against_shortcut(self): + """Test integration against less general methods.""" + grid = ConcentricGrid(L=self.L, M=self.M, N=self.N, NFP=self.NFP) + ds = grid.spacing[:, :2].prod(axis=-1) + # something arbitrary that will give different sum across surfaces + q = np.arange(grid.num_nodes) ** 2 + # The predefined grids sort nodes in zeta surface chunks. + # To compute a quantity local to a surface, we can reshape it into zeta + # surface chunks and compute across the chunks. + result = grid.expand( + (ds * q).reshape((grid.num_zeta, -1)).sum(axis=-1), + surface_label="zeta", + ) + np.testing.assert_allclose( + surface_integrals(grid, q, surface_label="zeta"), + desired=result, + ) + + @pytest.mark.unit + def test_surface_averages_against_shortcut(self): + """Test averaging against less general methods.""" + # test on zeta surfaces + grid = LinearGrid(L=self.L, M=self.M, N=self.N, NFP=self.NFP) + # something arbitrary that will give different average across surfaces + q = np.arange(grid.num_nodes) ** 2 + # The predefined grids sort nodes in zeta surface chunks. + # To compute a quantity local to a surface, we can reshape it into zeta + # surface chunks and compute across the chunks. + mean = grid.expand( + q.reshape((grid.num_zeta, -1)).mean(axis=-1), + surface_label="zeta", + ) + # number of nodes per surface + n = grid.num_rho * grid.num_theta + np.testing.assert_allclose(np.bincount(grid.inverse_zeta_idx), desired=n) + ds = grid.spacing[:, :2].prod(axis=-1) + np.testing.assert_allclose( + surface_integrals(grid, q / ds, surface_label="zeta") / n, + desired=mean, + ) + np.testing.assert_allclose( + surface_averages(grid, q, surface_label="zeta"), + desired=mean, + ) + + # test on grids with a single rho surface + eq = get("W7-X") + with pytest.warns(UserWarning, match="Reducing radial"): + eq.change_resolution(3, 3, 3, 6, 6, 6) + rho = np.array((1 - 1e-4) * np.random.default_rng().random() + 1e-4) + grid = LinearGrid(rho=rho, M=eq.M_grid, N=eq.N_grid, NFP=eq.NFP, sym=eq.sym) + data = eq.compute(["|B|", "sqrt(g)"], grid=grid) + np.testing.assert_allclose( + surface_averages(grid, data["|B|"], data["sqrt(g)"]), + np.mean(data["sqrt(g)"] * data["|B|"]) / np.mean(data["sqrt(g)"]), + err_msg="average with sqrt(g) fail", + ) + np.testing.assert_allclose( + surface_averages(grid, data["|B|"]), + np.mean(data["|B|"]), + err_msg="average without sqrt(g) fail", + ) + + @pytest.mark.unit + def test_symmetry_surface_average_1(self): + """Test surface average of a symmetric function.""" + + def test(grid): + r = grid.nodes[:, 0] + t = grid.nodes[:, 1] + z = grid.nodes[:, 2] * grid.NFP + true_surface_avg = 5 + function_of_rho = 1 / (r + 0.35) + f = ( + true_surface_avg + + np.cos(t) + - 0.5 * np.cos(z) + + 3 * np.cos(t) * np.cos(z) ** 2 + - 2 * np.sin(z) * np.sin(t) + ) * function_of_rho + np.testing.assert_allclose( + surface_averages(grid, f), + true_surface_avg * function_of_rho, + rtol=1e-15, + err_msg=type(grid), + ) + + # these tests should be run on relatively low resolution grids, + # or at least low enough so that the asymmetric spacing test fails + L = [3, 3, 5, 3] + M = [3, 6, 5, 7] + N = [2, 2, 2, 2] + NFP = [5, 3, 5, 3] + sym = np.array([True, True, False, False]) + # to test code not tested on grids made with M=. + even_number = 4 + n_theta = even_number - sym + + # asymmetric spacing + with pytest.raises(AssertionError): + theta = 2 * np.pi * np.array([t**2 for t in np.linspace(0, 1, max(M))]) + test(LinearGrid(L=max(L), theta=theta, N=max(N), sym=False)) + + for i in range(len(L)): + test(LinearGrid(L=L[i], M=M[i], N=N[i], NFP=NFP[i], sym=sym[i])) + test(LinearGrid(L=L[i], theta=n_theta[i], N=N[i], NFP=NFP[i], sym=sym[i])) + test( + LinearGrid( + L=L[i], + theta=np.linspace(0, 2 * np.pi, n_theta[i]), + N=N[i], + NFP=NFP[i], + sym=sym[i], + ) + ) + test( + LinearGrid( + L=L[i], + theta=np.linspace(0, 2 * np.pi, n_theta[i] + 1), + N=N[i], + NFP=NFP[i], + sym=sym[i], + ) + ) + test(QuadratureGrid(L=L[i], M=M[i], N=N[i], NFP=NFP[i])) + test(ConcentricGrid(L=L[i], M=M[i], N=N[i], NFP=NFP[i], sym=sym[i])) + # nonuniform spacing when sym is False, but spacing is still symmetric + test( + LinearGrid( + L=L[i], + theta=np.linspace(0, np.pi, n_theta[i]), + N=N[i], + NFP=NFP[i], + sym=sym[i], + ) + ) + test( + LinearGrid( + L=L[i], + theta=np.linspace(0, np.pi, n_theta[i] + 1), + N=N[i], + NFP=NFP[i], + sym=sym[i], + ) + ) + + @pytest.mark.unit + def test_symmetry_surface_average_2(self): + """Tests that surface averages are correct using specified basis.""" + + def test(grid, basis, true_avg=1): + transform = Transform(grid, basis) + + # random data with specified average on each surface + coeffs = np.random.rand(basis.num_modes) + coeffs[np.all(basis.modes[:, 1:] == [0, 0], axis=1)] = 0 + coeffs[np.all(basis.modes == [0, 0, 0], axis=1)] = true_avg + + # compute average for each surface in grid + values = transform.transform(coeffs) + numerical_avg = surface_averages(grid, values, expand_out=False) + np.testing.assert_allclose( + # values closest to axis are never accurate enough + numerical_avg[isinstance(grid, ConcentricGrid) :], + true_avg, + err_msg=str(type(grid)) + " " + str(grid.sym), + ) + + M = 5 + M_grid = 13 + test( + QuadratureGrid(L=M_grid, M=M_grid, N=0), FourierZernikeBasis(L=M, M=M, N=0) + ) + test( + LinearGrid(L=M_grid, M=M_grid, N=0, sym=True), + FourierZernikeBasis(L=M, M=M, N=0, sym="cos"), + ) + test( + ConcentricGrid(L=M_grid, M=M_grid, N=0), FourierZernikeBasis(L=M, M=M, N=0) + ) + test( + ConcentricGrid(L=M_grid, M=M_grid, N=0, sym=True), + FourierZernikeBasis(L=M, M=M, N=0, sym="cos"), + ) + + @pytest.mark.unit + def test_surface_variance(self): + """Test correctness of variance against less general methods.""" + grid = LinearGrid(L=self.L, M=self.M, N=self.N, NFP=self.NFP) + # something arbitrary that will give different variance across surfaces + q = np.arange(grid.num_nodes) ** 2 + + # Test weighted sample variance with different weights. + # positive weights to prevent cancellations that may hide implementation error + weights = np.cos(q) * np.sin(q) + 5 + biased = surface_variance( + grid, q, weights, bias=True, surface_label="zeta", expand_out=False + ) + unbiased = surface_variance( + grid, q, weights, surface_label="zeta", expand_out=False + ) + # The predefined grids sort nodes in zeta surface chunks. + # To compute a quantity local to a surface, we can reshape it into zeta + # surface chunks and compute across the chunks. + chunks = q.reshape((grid.num_zeta, -1)) + # The ds weights are built into the surface variance function. + # So weights for np.cov should be ds * weights. Since ds is constant on + # LinearGrid, we need to get the same result if we don't multiply by ds. + weights = weights.reshape((grid.num_zeta, -1)) + for i in range(grid.num_zeta): + np.testing.assert_allclose( + biased[i], + desired=np.cov(chunks[i], bias=True, aweights=weights[i]), + ) + np.testing.assert_allclose( + unbiased[i], + desired=np.cov(chunks[i], aweights=weights[i]), + ) + + # Test weighted sample variance converges to unweighted sample variance + # when all weights are equal. + chunks = grid.expand(chunks, surface_label="zeta") + np.testing.assert_allclose( + surface_variance(grid, q, np.e, bias=True, surface_label="zeta"), + desired=chunks.var(axis=-1), + ) + np.testing.assert_allclose( + surface_variance(grid, q, np.e, surface_label="zeta"), + desired=chunks.var(axis=-1, ddof=1), + ) + + @pytest.mark.unit + def test_surface_min_max(self): + """Test the surface_min and surface_max functions.""" + for grid_type in [LinearGrid, QuadratureGrid, ConcentricGrid]: + grid = grid_type(L=self.L, M=self.M, N=self.N, NFP=self.NFP) + rho = grid.nodes[:, 0] + theta = grid.nodes[:, 1] + zeta = grid.nodes[:, 2] + # Make up an arbitrary function of the coordinates: + B = ( + 1.7 + + 0.4 * rho * np.cos(theta) + + 0.8 * rho * rho * np.cos(2 * theta - 3 * zeta) + ) + Bmax_alt = np.zeros(grid.num_rho) + Bmin_alt = np.zeros(grid.num_rho) + for j in range(grid.num_rho): + mask = grid.inverse_rho_idx == j + Bmax_alt[j] = np.max(B[mask]) + Bmin_alt[j] = np.min(B[mask]) + np.testing.assert_allclose(Bmax_alt, grid.compress(surface_max(grid, B))) + np.testing.assert_allclose(Bmin_alt, grid.compress(surface_min(grid, B))) + + +class TestSingularities: + """Tests for high order singular integration. + + Hyperparams from Dhairya for greens ID test: + + M q Nu Nv N=Nu*Nv error + 13 10 15 13 195 0.246547 + 13 10 30 13 390 0.0313301 + 13 12 45 13 585 0.0022925 + 13 12 60 13 780 0.00024359 + 13 12 75 13 975 1.97686e-05 + 19 16 90 19 1710 1.2541e-05 + 19 16 105 19 1995 2.91152e-06 + 19 18 120 19 2280 7.03463e-07 + 19 18 135 19 2565 1.60672e-07 + 25 20 150 25 3750 7.59613e-09 + 31 22 210 31 6510 1.04357e-09 + 37 24 240 37 8880 1.80728e-11 + 43 28 300 43 12900 2.14129e-12 + + """ + + @pytest.mark.unit + def test_singular_integral_greens_id(self): + """Test high order singular integration using greens identity. + + Any harmonic function can be represented as the sum of a single layer and double + layer potential: + + Φ(r) = -1/2π ∫ Φ(r) n⋅(r-r')/|r-r'|³ da + 1/2π ∫ dΦ/dn 1/|r-r'| da + + If we choose Φ(r) == 1, then we get + + 1 + 1/2π ∫ n⋅(r-r')/|r-r'|³ da = 0 + + So we integrate the kernel n⋅(r-r')/|r-r'|³ and can benchmark the residual. + + """ + eq = Equilibrium() + Nv = np.array([30, 45, 60, 90, 120, 150, 240]) + Nu = np.array([13, 13, 13, 19, 19, 25, 37]) + ss = np.array([13, 13, 13, 19, 19, 25, 37]) + qs = np.array([10, 12, 12, 16, 18, 20, 24]) + es = np.array([0.4, 2e-2, 3e-3, 5e-5, 4e-6, 1e-6, 1e-9]) + eval_grid = LinearGrid(M=5, N=6, NFP=eq.NFP) + + for i, (m, n) in enumerate(zip(Nu, Nv)): + source_grid = LinearGrid(M=m // 2, N=n // 2, NFP=eq.NFP) + source_data = eq.compute( + ["R", "Z", "phi", "e^rho", "|e_theta x e_zeta|"], grid=source_grid + ) + eval_data = eq.compute( + ["R", "Z", "phi", "e^rho", "|e_theta x e_zeta|"], grid=eval_grid + ) + s = ss[i] + q = qs[i] + interpolator = FFTInterpolator(eval_grid, source_grid, s, q) + + err = singular_integral( + eval_data, + source_data, + "nr_over_r3", + interpolator, + loop=True, + ) + np.testing.assert_array_less(np.abs(2 * np.pi + err), es[i]) + + @pytest.mark.unit + def test_singular_integral_vac_estell(self): + """Test calculating Bplasma for vacuum estell, which should be near 0.""" + eq = get("ESTELL") + eval_grid = LinearGrid(M=8, N=8, NFP=eq.NFP) + + source_grid = LinearGrid(M=18, N=18, NFP=eq.NFP) + + keys = [ + "K_vc", + "B", + "|B|^2", + "R", + "phi", + "Z", + "e^rho", + "n_rho", + "|e_theta x e_zeta|", + ] + + source_data = eq.compute(keys, grid=source_grid) + eval_data = eq.compute(keys, grid=eval_grid) + + k = min(source_grid.num_theta, source_grid.num_zeta) + s = k // 2 + int(np.sqrt(k)) + q = k // 2 + int(np.sqrt(k)) + + interpolator = FFTInterpolator(eval_grid, source_grid, s, q) + Bplasma = virtual_casing_biot_savart( + eval_data, + source_data, + interpolator, + loop=True, + ) + # need extra factor of B/2 bc we're evaluating on plasma surface + Bplasma += eval_data["B"] / 2 + Bplasma = np.linalg.norm(Bplasma, axis=-1) + # scale by total field magnitude + B = Bplasma / np.mean(np.linalg.norm(eval_data["B"], axis=-1)) + # this isn't a perfect vacuum equilibrium (|J| ~ 1e3 A/m^2), so increasing + # resolution of singular integral won't really make Bplasma less. + np.testing.assert_array_less(B, 0.05) + + @pytest.mark.unit + def test_biest_interpolators(self): + """Test that FFT and DFT interpolation gives same result for standard grids.""" + sgrid = LinearGrid(0, 5, 6) + egrid = LinearGrid(0, 4, 7) + s = 3 + q = 4 + r, w, dr, dw = _get_quadrature_nodes(q) + interp1 = FFTInterpolator(egrid, sgrid, s, q) + interp2 = DFTInterpolator(egrid, sgrid, s, q) + + f = lambda t, z: np.sin(4 * t) + np.cos(3 * z) + + source_dtheta = sgrid.spacing[:, 1] + source_dzeta = sgrid.spacing[:, 2] / sgrid.NFP + source_theta = sgrid.nodes[:, 1] + source_zeta = sgrid.nodes[:, 2] + eval_theta = egrid.nodes[:, 1] + eval_zeta = egrid.nodes[:, 2] + + h_t = np.mean(source_dtheta) + h_z = np.mean(source_dzeta) + + for i in range(len(r)): + dt = s / 2 * h_t * r[i] * np.sin(w[i]) + dz = s / 2 * h_z * r[i] * np.cos(w[i]) + theta_i = eval_theta + dt + zeta_i = eval_zeta + dz + ff = f(theta_i, zeta_i) + + g1 = interp1(f(source_theta, source_zeta), i) + g2 = interp2(f(source_theta, source_zeta), i) + np.testing.assert_allclose(g1, g2) + np.testing.assert_allclose(g1, ff) diff --git a/tests/test_plotting.py b/tests/test_plotting.py index 59b1ada87e..c1bd782ac5 100644 --- a/tests/test_plotting.py +++ b/tests/test_plotting.py @@ -15,10 +15,10 @@ ) from desc.coils import CoilSet, FourierXYZCoil, MixedCoilSet from desc.compute import data_index -from desc.compute.utils import surface_averages from desc.examples import get from desc.geometry import FourierRZToroidalSurface, FourierXYZCurve from desc.grid import ConcentricGrid, Grid, LinearGrid, QuadratureGrid +from desc.integrals import surface_averages from desc.io import load from desc.magnetic_fields import ( OmnigenousField, diff --git a/tests/test_singularities.py b/tests/test_singularities.py deleted file mode 100644 index fd44ce05c4..0000000000 --- a/tests/test_singularities.py +++ /dev/null @@ -1,160 +0,0 @@ -"""Tests for high order singular integration. - -Hyperparams from Dhairya for greens ID test: - - M q Nu Nv N=Nu*Nv error -13 10 15 13 195 0.246547 -13 10 30 13 390 0.0313301 -13 12 45 13 585 0.0022925 -13 12 60 13 780 0.00024359 -13 12 75 13 975 1.97686e-05 -19 16 90 19 1710 1.2541e-05 -19 16 105 19 1995 2.91152e-06 -19 18 120 19 2280 7.03463e-07 -19 18 135 19 2565 1.60672e-07 -25 20 150 25 3750 7.59613e-09 -31 22 210 31 6510 1.04357e-09 -37 24 240 37 8880 1.80728e-11 -43 28 300 43 12900 2.14129e-12 - -""" - -import numpy as np -import pytest - -import desc -from desc.equilibrium import Equilibrium -from desc.grid import LinearGrid -from desc.singularities import ( - DFTInterpolator, - FFTInterpolator, - _get_quadrature_nodes, - singular_integral, - virtual_casing_biot_savart, -) - - -@pytest.mark.unit -def test_singular_integral_greens_id(): - """Test high order singular integration using greens identity. - - Any harmonic function can be represented as the sum of a single layer and double - layer potential: - - Φ(r) = -1/2π ∫ Φ(r) n⋅(r-r')/|r-r'|³ da + 1/2π ∫ dΦ/dn 1/|r-r'| da - - If we choose Φ(r) == 1, then we get - - 1 + 1/2π ∫ n⋅(r-r')/|r-r'|³ da = 0 - - So we integrate the kernel n⋅(r-r')/|r-r'|³ and can benchmark the residual. - - """ - eq = Equilibrium() - Nv = np.array([30, 45, 60, 90, 120, 150, 240]) - Nu = np.array([13, 13, 13, 19, 19, 25, 37]) - ss = np.array([13, 13, 13, 19, 19, 25, 37]) - qs = np.array([10, 12, 12, 16, 18, 20, 24]) - es = np.array([0.4, 2e-2, 3e-3, 5e-5, 4e-6, 1e-6, 1e-9]) - eval_grid = LinearGrid(M=5, N=6, NFP=eq.NFP) - - for i, (m, n) in enumerate(zip(Nu, Nv)): - source_grid = LinearGrid(M=m // 2, N=n // 2, NFP=eq.NFP) - source_data = eq.compute( - ["R", "Z", "phi", "e^rho", "|e_theta x e_zeta|"], grid=source_grid - ) - eval_data = eq.compute( - ["R", "Z", "phi", "e^rho", "|e_theta x e_zeta|"], grid=eval_grid - ) - s = ss[i] - q = qs[i] - interpolator = FFTInterpolator(eval_grid, source_grid, s, q) - - err = singular_integral( - eval_data, - source_data, - "nr_over_r3", - interpolator, - loop=True, - ) - np.testing.assert_array_less(np.abs(2 * np.pi + err), es[i]) - - -@pytest.mark.unit -def test_singular_integral_vac_estell(): - """Test calculating Bplasma for vacuum estell, which should be near 0.""" - eq = desc.examples.get("ESTELL") - eval_grid = LinearGrid(M=8, N=8, NFP=eq.NFP) - - source_grid = LinearGrid(M=18, N=18, NFP=eq.NFP) - - keys = [ - "K_vc", - "B", - "|B|^2", - "R", - "phi", - "Z", - "e^rho", - "n_rho", - "|e_theta x e_zeta|", - ] - - source_data = eq.compute(keys, grid=source_grid) - eval_data = eq.compute(keys, grid=eval_grid) - - k = min(source_grid.num_theta, source_grid.num_zeta) - s = k // 2 + int(np.sqrt(k)) - q = k // 2 + int(np.sqrt(k)) - - interpolator = FFTInterpolator(eval_grid, source_grid, s, q) - Bplasma = virtual_casing_biot_savart( - eval_data, - source_data, - interpolator, - loop=True, - ) - # need extra factor of B/2 bc we're evaluating on plasma surface - Bplasma += eval_data["B"] / 2 - Bplasma = np.linalg.norm(Bplasma, axis=-1) - # scale by total field magnitude - B = Bplasma / np.mean(np.linalg.norm(eval_data["B"], axis=-1)) - # this isn't a perfect vacuum equilibrium (|J| ~ 1e3 A/m^2), so increasing - # resolution of singular integral won't really make Bplasma less. - np.testing.assert_array_less(B, 0.05) - - -@pytest.mark.unit -def test_biest_interpolators(): - """Test that FFT and DFT interpolation gives same result for standard grids.""" - sgrid = LinearGrid(0, 5, 6) - egrid = LinearGrid(0, 4, 7) - s = 3 - q = 4 - r, w, dr, dw = _get_quadrature_nodes(q) - interp1 = FFTInterpolator(egrid, sgrid, s, q) - interp2 = DFTInterpolator(egrid, sgrid, s, q) - - f = lambda t, z: np.sin(4 * t) + np.cos(3 * z) - - source_dtheta = sgrid.spacing[:, 1] - source_dzeta = sgrid.spacing[:, 2] / sgrid.NFP - source_theta = sgrid.nodes[:, 1] - source_zeta = sgrid.nodes[:, 2] - eval_theta = egrid.nodes[:, 1] - eval_zeta = egrid.nodes[:, 2] - - h_t = np.mean(source_dtheta) - h_z = np.mean(source_dzeta) - - for i in range(len(r)): - dt = s / 2 * h_t * r[i] * np.sin(w[i]) - dz = s / 2 * h_z * r[i] * np.cos(w[i]) - theta_i = eval_theta + dt - zeta_i = eval_zeta + dz - ff = f(theta_i, zeta_i) - - g1 = interp1(f(source_theta, source_zeta), i) - g2 = interp2(f(source_theta, source_zeta), i) - np.testing.assert_allclose(g1, g2) - np.testing.assert_allclose(g1, ff)