-
Notifications
You must be signed in to change notification settings - Fork 15
/
utils.py
254 lines (190 loc) · 8.31 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import torch.nn as nn
import numpy as np
from scipy.interpolate import interp1d
import os
import sys
import random
import config
def upgrade_resolution(arr, scale):
x = np.arange(0, arr.shape[0])
f = interp1d(x, arr, kind='linear', axis=0, fill_value='extrapolate')
scale_x = np.arange(0, arr.shape[0], 1 / scale)
up_scale = f(scale_x)
return up_scale
def get_proposal_oic(tList, wtcam, final_score, c_pred, scale, v_len, sampling_frames, num_segments, _lambda=0.25, gamma=0.2):
t_factor = float(16 * v_len) / (scale * num_segments * sampling_frames)
temp = []
for i in range(len(tList)):
c_temp = []
temp_list = np.array(tList[i])[0]
if temp_list.any():
grouped_temp_list = grouping(temp_list)
for j in range(len(grouped_temp_list)):
inner_score = np.mean(wtcam[grouped_temp_list[j], i, 0])
len_proposal = len(grouped_temp_list[j])
outer_s = max(0, int(grouped_temp_list[j][0] - _lambda * len_proposal))
outer_e = min(int(wtcam.shape[0] - 1), int(grouped_temp_list[j][-1] + _lambda * len_proposal))
outer_temp_list = list(range(outer_s, int(grouped_temp_list[j][0]))) + list(range(int(grouped_temp_list[j][-1] + 1), outer_e + 1))
if len(outer_temp_list) == 0:
outer_score = 0
else:
outer_score = np.mean(wtcam[outer_temp_list, i, 0])
c_score = inner_score - outer_score + gamma * final_score[c_pred[i]]
t_start = grouped_temp_list[j][0] * t_factor
t_end = (grouped_temp_list[j][-1] + 1) * t_factor
c_temp.append([c_pred[i], c_score, t_start, t_end])
temp.append(c_temp)
return temp
def result2json(result):
result_file = []
for i in range(len(result)):
line = {'label': config.class_dict[result[i][0]], 'score': result[i][1],
'segment': [result[i][2], result[i][3]]}
result_file.append(line)
return result_file
def grouping(arr):
return np.split(arr, np.where(np.diff(arr) != 1)[0] + 1)
def save_best_record_thumos(test_info, file_path):
fo = open(file_path, "w")
fo.write("Step: {}\n".format(test_info["step"][-1]))
fo.write("Test_acc: {:.4f}\n".format(test_info["test_acc"][-1]))
fo.write("average_mAP[0.1:0.7]: {:.4f}\n".format(test_info["average_mAP[0.1:0.7]"][-1]))
fo.write("average_mAP[0.1:0.5]: {:.4f}\n".format(test_info["average_mAP[0.1:0.5]"][-1]))
fo.write("average_mAP[0.3:0.7]: {:.4f}\n".format(test_info["average_mAP[0.3:0.7]"][-1]))
tIoU_thresh = np.linspace(0.1, 0.7, 7)
for i in range(len(tIoU_thresh)):
fo.write("mAP@{:.1f}: {:.4f}\n".format(tIoU_thresh[i], test_info["mAP@{:.1f}".format(tIoU_thresh[i])][-1]))
fo.close()
def minmax_norm(act_map, min_val=None, max_val=None):
if min_val is None or max_val is None:
relu = nn.ReLU()
max_val = relu(torch.max(act_map, dim=1)[0])
min_val = relu(torch.min(act_map, dim=1)[0])
delta = max_val - min_val
delta[delta <= 0] = 1
ret = (act_map - min_val) / delta.detach()
ret[ret > 1] = 1
ret[ret < 0] = 0
return ret
def nms(proposals, thresh):
proposals = np.array(proposals)
x1 = proposals[:, 2]
x2 = proposals[:, 3]
scores = proposals[:, 1]
areas = x2 - x1 + 1
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(proposals[i].tolist())
xx1 = np.maximum(x1[i], x1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
inter = np.maximum(0.0, xx2 - xx1 + 1)
iou = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(iou < thresh)[0]
order = order[inds + 1]
return keep
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
torch.backends.cudnn.deterministic=True
torch.backends.cudnn.benchmark=False
def save_config(config, file_path):
fo = open(file_path, "w")
fo.write("Configurtaions:\n")
fo.write(str(config))
fo.close()
def feature_sampling(features, start, end, num_divide):
step = (end - start) / num_divide
feature_lst = torch.zeros((num_divide, features.shape[1])).cuda()
for i in range(num_divide):
start_point = int(start + step * i)
end_point = int(start + step * (i+1))
if start_point >= end_point:
end_point += 1
sample_id = np.random.randint(start_point, end_point)
feature_lst[i] = features[sample_id]
return feature_lst.mean(dim=0)
def get_oic_score(cas_sigmoid_fuse, start, end, delta=0.25):
length = end - start + 1
inner_score = torch.mean(cas_sigmoid_fuse[start:end+1])
outer_s = max(0, int(start - delta * length))
outer_e = min(int(cas_sigmoid_fuse.shape[0] - 1), int(end + delta * length))
outer_seg = list(range(outer_s, start)) + list(range(end + 1, outer_e + 1))
if len(outer_seg) == 0:
outer_score = 0
else:
outer_score = torch.mean(cas_sigmoid_fuse[outer_seg])
return inner_score - outer_score
def select_seed(cas_sigmoid_fuse, point_anno):
point_anno_agnostic = point_anno.max(dim=2)[0]
bkg_seed = torch.zeros_like(point_anno_agnostic)
act_seed = point_anno.clone().detach()
act_thresh = 0.1
bkg_thresh = 0.95
bkg_score = cas_sigmoid_fuse[:,:,-1]
for b in range(point_anno.shape[0]):
act_idx = torch.nonzero(point_anno_agnostic[b]).squeeze(1)
""" most left """
if act_idx[0] > 0:
bkg_score_tmp = bkg_score[b,:act_idx[0]]
idx_tmp = bkg_seed[b,:act_idx[0]]
idx_tmp[bkg_score_tmp >= bkg_thresh] = 1
if idx_tmp.sum() >= 1:
start_index = idx_tmp.nonzero().squeeze(1)[-1]
idx_tmp[:start_index] = 1
else:
max_index = bkg_score_tmp.argmax(dim=0)
idx_tmp[:max_index+1] = 1
""" pseudo action point selection """
for j in range(act_idx[0] - 1, -1, -1):
if bkg_score[b][j] <= act_thresh and bkg_seed[b][j] < 1:
act_seed[b, j] = act_seed[b, act_idx[0]]
else:
break
""" most right """
if act_idx[-1] < (point_anno.shape[1] - 1):
bkg_score_tmp = bkg_score[b,act_idx[-1]+1:]
idx_tmp = bkg_seed[b,act_idx[-1]+1:]
idx_tmp[bkg_score_tmp >= bkg_thresh] = 1
if idx_tmp.sum() >= 1:
start_index = idx_tmp.nonzero().squeeze(1)[0]
idx_tmp[start_index:] = 1
else:
max_index = bkg_score_tmp.argmax(dim=0)
idx_tmp[max_index:] = 1
""" pseudo action point selection """
for j in range(act_idx[-1] + 1, point_anno.shape[1]):
if bkg_score[b][j] <= act_thresh and bkg_seed[b][j] < 1:
act_seed[b, j] = act_seed[b, act_idx[-1]]
else:
break
""" between two instances """
for i in range(len(act_idx) - 1):
if act_idx[i+1] - act_idx[i] <= 1:
continue
bkg_score_tmp = bkg_score[b,act_idx[i]+1:act_idx[i+1]]
idx_tmp = bkg_seed[b,act_idx[i]+1:act_idx[i+1]]
idx_tmp[bkg_score_tmp >= bkg_thresh] = 1
if idx_tmp.sum() >= 2:
start_index = idx_tmp.nonzero().squeeze(1)[0]
end_index = idx_tmp.nonzero().squeeze(1)[-1]
idx_tmp[start_index+1:end_index] = 1
else:
max_index = bkg_score_tmp.argmax(dim=0)
idx_tmp[max_index] = 1
""" pseudo action point selection """
for j in range(act_idx[i] + 1, act_idx[i+1]):
if bkg_score[b][j] <= act_thresh and bkg_seed[b][j] < 1:
act_seed[b, j] = act_seed[b, act_idx[i]]
else:
break
for j in range(act_idx[i+1] - 1, act_idx[i], -1):
if bkg_score[b][j] <= act_thresh and bkg_seed[b][j] < 1:
act_seed[b, j] = act_seed[b, act_idx[i+1]]
else:
break
return act_seed, bkg_seed