-
Notifications
You must be signed in to change notification settings - Fork 5
/
vit_l2.py
756 lines (645 loc) · 33.9 KB
/
vit_l2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
""" Vision Transformer (ViT) in PyTorch
A PyTorch implement of Vision Transformers as described in
'An Image Is Worth 16 x 16 Words: Transformers for Image Recognition at Scale' - https://arxiv.org/abs/2010.11929
The official jax code is released and available at https://github.com/google-research/vision_transformer
Acknowledgments:
* The paper authors for releasing code and weights, thanks!
* I fixed my class token impl based on Phil Wang's https://github.com/lucidrains/vit-pytorch ... check it out
for some einops/einsum fun
* Simple transformer style inspired by Andrej Karpathy's https://github.com/karpathy/minGPT
* Bert reference code checks against Huggingface Transformers and Tensorflow Bert
DeiT model defs and weights from https://github.com/facebookresearch/deit,
paper `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877
Hacked together by / Copyright 2020 Ross Wightman
"""
import math
import logging
from functools import partial
from collections import OrderedDict
from copy import Error, deepcopy
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
from utils import batch_index_select
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
# coding=UTF-8
import os
_logger = logging.getLogger(__name__)
file = 'score_placeholder.json'
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
default_cfgs = {
# patch models (my experiments)
'vit_small_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth',
),
# patch models (weights ported from official Google JAX impl)
'vit_base_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
),
'vit_base_patch32_224': _cfg(
url='', # no official model weights for this combo, only for in21k
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'vit_base_patch16_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_384-83fb41ba.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_base_patch32_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p32_384-830016f5.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_large_patch16_224': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth',
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'vit_large_patch32_224': _cfg(
url='', # no official model weights for this combo, only for in21k
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'vit_large_patch16_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_384-b3be5167.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
'vit_large_patch32_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p32_384-9b920ba8.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0),
# patch models, imagenet21k (weights ported from official Google JAX impl)
'vit_base_patch16_224_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth',
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'vit_base_patch32_224_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth',
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'vit_large_patch16_224_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth',
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'vit_large_patch32_224_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth',
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
'vit_huge_patch14_224_in21k': _cfg(
hf_hub='timm/vit_huge_patch14_224_in21k',
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
# hybrid models (weights ported from official Google JAX impl)
'vit_base_resnet50_224_in21k': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_224_in21k-6f7c7740.pth',
num_classes=21843, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=0.9, first_conv='patch_embed.backbone.stem.conv'),
'vit_base_resnet50_384': _cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_resnet50_384-9fd3c705.pth',
input_size=(3, 384, 384), mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), crop_pct=1.0, first_conv='patch_embed.backbone.stem.conv'),
# hybrid models (my experiments)
'vit_small_resnet26d_224': _cfg(),
'vit_small_resnet50d_s3_224': _cfg(),
'vit_base_resnet26d_224': _cfg(),
'vit_base_resnet50d_224': _cfg(),
# deit models (FB weights)
'vit_deit_tiny_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'),
'vit_deit_small_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'),
'vit_deit_base_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth',),
'vit_deit_base_patch16_384': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth',
input_size=(3, 384, 384), crop_pct=1.0),
'vit_deit_tiny_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth'),
'vit_deit_small_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth'),
'vit_deit_base_distilled_patch16_224': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', ),
'vit_deit_base_distilled_patch16_384': _cfg(
url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth',
input_size=(3, 384, 384), crop_pct=1.0),
}
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def softmax_with_policy(self, attn, policy, eps=1e-6):
B, N, _ = policy.size()
B, H, N, N = attn.size()
attn_policy = policy.reshape(B, 1, 1, N) # * policy.reshape(B, 1, N, 1)
eye = torch.eye(N, dtype=attn_policy.dtype, device=attn_policy.device).view(1, 1, N, N)
attn_policy = attn_policy + (1.0 - attn_policy) * eye
max_att = torch.max(attn, dim=-1, keepdim=True)[0]
attn = attn - max_att
attn = attn.to(torch.float32).exp_() * attn_policy.to(torch.float32)
attn = (attn + eps/N) / (attn.sum(dim=-1, keepdim=True) + eps)
return attn.type_as(max_att)
def forward(self, x, policy):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
#with torch.cuda.amp.autocast(enabled=False):
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
if policy is None:
attn = attn.softmax(dim=-1)
elif not self.training:
attn = self.softmax_with_policy(attn, policy, 0)
else:
attn = self.softmax_with_policy(attn, policy, 1e-6)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, policy=None, i=None):
if i is None: # first 3 layers, no need to save rep. token for placeholder
x = x + self.drop_path(self.attn(self.norm1(x), policy=policy))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
else:
x_1 = self.drop_path(self.attn(self.norm1(x), policy=policy))
rep_1 = x_1[:,-1:] # output rep token of MSA [96, 1, 384]
x = x + x_1 #skip connection
x_2 = self.drop_path(self.mlp(self.norm2(x)))
rep_2 = x_2[:, -1:] # output rep token of FFN [96, 1, 384]
x = x + x_2
return x, rep_1, rep_2
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class HybridEmbed(nn.Module):
""" CNN Feature Map Embedding
Extract feature map from CNN, flatten, project to embedding dim.
"""
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
super().__init__()
assert isinstance(backbone, nn.Module)
img_size = to_2tuple(img_size)
self.img_size = img_size
self.backbone = backbone
if feature_size is None:
with torch.no_grad():
# FIXME this is hacky, but most reliable way of determining the exact dim of the output feature
# map for all networks, the feature metadata has reliable channel and stride info, but using
# stride to calc feature dim requires info about padding of each stage that isn't captured.
training = backbone.training
if training:
backbone.eval()
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))
if isinstance(o, (list, tuple)):
o = o[-1] # last feature if backbone outputs list/tuple of features
feature_size = o.shape[-2:]
feature_dim = o.shape[1]
backbone.train(training)
else:
feature_size = to_2tuple(feature_size)
if hasattr(self.backbone, 'feature_info'):
feature_dim = self.backbone.feature_info.channels()[-1]
else:
feature_dim = self.backbone.num_features
self.num_patches = feature_size[0] * feature_size[1]
self.proj = nn.Conv2d(feature_dim, embed_dim, 1)
def forward(self, x):
x = self.backbone(x)
if isinstance(x, (list, tuple)):
x = x[-1] # last feature if backbone outputs list/tuple of features
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class PredictorLG(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, embed_dim=384):
super().__init__()
self.in_conv = nn.Sequential(
nn.LayerNorm(embed_dim),
nn.Linear(embed_dim, embed_dim),
nn.GELU()
)
self.out_conv = nn.Sequential(
nn.Linear(embed_dim, embed_dim // 2),
nn.GELU(),
nn.Linear(embed_dim // 2, embed_dim // 4),
nn.GELU(),
nn.Linear(embed_dim // 4, 2),
nn.LogSoftmax(dim=-1)
)
def forward(self, x, policy):
x = self.in_conv(x)
B, N, C = x.size()
local_x = x[:,:, :C//2]
global_x = (x[:,:, C//2:] * policy).sum(dim=1, keepdim=True) / torch.sum(policy, dim=1, keepdim=True)
x = torch.cat([local_x, global_x.expand(B, N, C//2)], dim=-1) # 后一半 global 大家都一样。自己的和全局的做merge。
return self.out_conv(x)
class MultiheadPredictorLG(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, num_heads=6, embed_dim=384):
super().__init__()
self.num_heads=num_heads
self.embed_dim = embed_dim
onehead_in_conv = nn.Sequential(
nn.LayerNorm(embed_dim // num_heads),
nn.Linear(embed_dim // num_heads, embed_dim // num_heads),
nn.GELU()
)
onehead_out_conv = nn.Sequential(
nn.Linear(embed_dim // num_heads, embed_dim // num_heads // 2),
nn.GELU(),
nn.Linear(embed_dim // num_heads // 2, embed_dim // num_heads // 4),
nn.GELU(),
nn.Linear(embed_dim // num_heads // 4, 2),
#nn.LogSoftmax(dim=-1)
)
in_conv_list = [onehead_in_conv for _ in range(num_heads)]
out_conv_list = [onehead_out_conv for _ in range(num_heads)]
self.in_conv = nn.ModuleList(in_conv_list)
self.out_conv = nn.ModuleList(out_conv_list)
def forward(self, x, policy):
multihead_score = 0
multihead_softmax_score = 0
for i in range(self.num_heads):
x_single = x[:,:,self.embed_dim//self.num_heads*i:self.embed_dim//self.num_heads*(i+1)] #([96, 196, 64])
x_single = self.in_conv[i](x_single)
B, N, C = x_single.size() #([96, 196, 64])
local_x = x_single[:,:, :C//2] #([96, 196, 32])
global_x = (x_single[:,:, C//2:] * policy).sum(dim=1, keepdim=True) / torch.sum(policy, dim=1, keepdim=True) #([96, 1, 32])
x_single = torch.cat([local_x, global_x.expand(B, N, C//2)], dim=-1) #([96, 196, 64])
x_single = self.out_conv[i](x_single) #([96, 196, 2])
# for placeholder
m = nn.Softmax(dim=-1)
score_softmax = m(x_single)
multihead_softmax_score += score_softmax
# for gumble
n = nn.LogSoftmax(dim=-1)
score_single = n(x_single)
multihead_score += score_single
# for gumble
multihead_score = multihead_score / self.num_heads # ([96, 196, 2])
# for placeholder
multihead_softmax_score = multihead_softmax_score / self.num_heads # get softmax keep/drop probability
return multihead_score, multihead_softmax_score #, represent_token, placeholder_weights, placeholder_score3
class VisionTransformerDiffPruning(nn.Module):
""" Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
https://arxiv.org/abs/2010.11929
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None,
pruning_loc=None, token_ratio=None, distill=False):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
hybrid_backbone (nn.Module): CNN backbone to use in-place of PatchEmbed module
norm_layer: (nn.Module): normalization layer
"""
super().__init__()
print('## diff vit pruning method')
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.depth = depth
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
#self.pre_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # 咱们多生成一个 pre_token
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
#self.pos_embed_re = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# Representation layer
if representation_size:
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(embed_dim, representation_size)),
('act', nn.Tanh())
]))
else:
self.pre_logits = nn.Identity()
# Classifier head
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
predictor_list = [MultiheadPredictorLG(num_heads,embed_dim) for _ in range(len(pruning_loc))]
self.score_predictor = nn.ModuleList(predictor_list)
self.distill = distill
self.pruning_loc = pruning_loc
self.token_ratio = token_ratio
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
p_count = 0
out_pred_prob = []
init_n = 14 * 14
sparse = []
score_dict = {}
policy = torch.ones(B, init_n + 1, 1, dtype=x.dtype, device=x.device)
prev_decision = torch.ones(B, init_n, 1, dtype=x.dtype, device=x.device)
for i, blk in enumerate(self.blocks):
if i in self.pruning_loc:
spatial_x = x[:, 1:]
if i != self.pruning_loc[0]:
rep_decision = torch.ones(B, 1, 1, dtype=x.dtype, device=x.device)
prev_decision = torch.cat([prev_decision, rep_decision], dim=1)
pred_score, softmax_score = self.score_predictor[p_count](spatial_x, prev_decision)
pred_score = pred_score.reshape(B, -1, 2)
softmax_score = softmax_score.reshape(B, -1, 2)
#-------------------- 确定 informative token 和 placeholder 的 mask
if i == self.pruning_loc[0]:
hard_keep_decision = F.gumbel_softmax(pred_score, hard=True)[:, :, 0:1] * prev_decision
hard_drop_decision = (1 - hard_keep_decision) - (1 - prev_decision) # current drop decision
else:
hard_keep_decision_all = F.gumbel_softmax(pred_score, hard=True)[:, :, 0:1] * prev_decision
hard_keep_decision = torch.cat([hard_keep_decision_all[:,:-1], rep_decision], dim=1)
hard_drop_decision = (1 - hard_keep_decision) - (1 - prev_decision)
############### end
###get representative token (regularization)
softmax_score = softmax_score[:, :, 0:1] # softmax score of all tokens to keep
placeholder_score = softmax_score * hard_drop_decision #keep score of only placeholder tokens
x2 = spatial_x * placeholder_score # placehoder score [96, 196, 384]
x2_sum = torch.sum(x2, dim=1) # sum by the N dimension, output (B,N,C)-->(B,C) [96, 384]
x2_sum = torch.unsqueeze(x2_sum, dim=1) # resize to (B,1,C) [96, 1, 384]
#--------------------
placeholder_score_sum = torch.sum(placeholder_score, dim=1) # sum of token score, [96, 196, 1]-->[96, 1]
placeholder_score_sum = torch.unsqueeze(placeholder_score_sum, dim=1) # resize to [96, 1, 1]
#--------------------
represent_token = x2_sum / placeholder_score_sum # regularization --> [96, 1, 384] representitave token
rep_mean = represent_token.mean()
if torch.isnan(rep_mean):
print('has nan')
represent_token = torch.nan_to_num(represent_token, nan = 1e-6)
if i == self.pruning_loc[0]:
x = torch.cat((x,represent_token), dim=1)
else:
represent_token = x[:, -1:, :] + represent_token
x = x[:,:-1]
x = torch.cat((x,represent_token), dim=1)
hard_keep_decision = hard_keep_decision[:,:-1]
if self.training:
out_pred_prob.append(hard_keep_decision.reshape(B, init_n))
cls_policy = torch.ones(B, 1, 1, dtype=hard_keep_decision.dtype, device=hard_keep_decision.device)
rep_policy = torch.ones(B, 1, 1, dtype=hard_keep_decision.dtype, device=hard_keep_decision.device)
policy = torch.cat([cls_policy, hard_keep_decision, rep_policy], dim=1)
x = blk(x, policy=policy) #when i=None, means no output rep. token. Such as first 3 layers.
prev_decision = hard_keep_decision
else:
cls_policy = torch.ones(B, 1,1, dtype=hard_keep_decision.dtype, device=hard_keep_decision.device)
rep_policy = torch.ones(B, 1, 1, dtype=hard_keep_decision.dtype, device=hard_keep_decision.device)
policy = torch.cat([cls_policy, hard_keep_decision, rep_policy], dim=1)
x = blk(x, policy=policy) #when i=None, means no output rep. token. Such as first 3 layers.
prev_decision = hard_keep_decision
zeros, unzeros = test_irregular_sparsity(p_count, policy)
sparse.append([zeros, unzeros])
score = pred_score[:, :, 0:1].cpu().numpy().tolist()
score_dict[p_count] = score[0]
p_count += 1
### first 3 layers. No rep token, placeholder, etc.
else:
x = blk(x, policy)
############### end
x = self.norm(x)
features = x[:, 1:-1]
x = x[:, 0]
x = self.pre_logits(x)
x = self.head(x)
if self.training:
if self.distill:
return x, features, prev_decision.detach(), out_pred_prob
else:
return x, out_pred_prob
else:
with open(file, 'a') as f: # ins
json.dump(score_dict, f)
f.write('\n')
sparse = torch.FloatTensor(sparse).cuda()
return x, sparse.detach()
class VisionTransformerTeacher(nn.Module):
""" Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
https://arxiv.org/abs/2010.11929
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
hybrid_backbone (nn.Module): CNN backbone to use in-place of PatchEmbed module
norm_layer: (nn.Module): normalization layer
"""
super().__init__()
print('## diff vit pruning method')
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
if hybrid_backbone is not None:
self.patch_embed = HybridEmbed(
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
else:
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# Representation layer
if representation_size:
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(embed_dim, representation_size)),
('act', nn.Tanh())
]))
else:
self.pre_logits = nn.Identity()
# Classifier head
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
trunc_normal_(self.pos_embed, std=.02)
trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward(self, x):
B = x.shape[0]
x = self.patch_embed(x)
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
x = x + self.pos_embed
x = self.pos_drop(x)
for i, blk in enumerate(self.blocks):
x = blk(x)
feature = self.norm(x)
cls = feature[:, 0]
tokens = feature[:, 1:]
cls = self.pre_logits(cls)
cls = self.head(cls)
return cls, tokens
def resize_pos_embed(posemb, posemb_new):
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
ntok_new = posemb_new.shape[1]
if True:
posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:]
ntok_new -= 1
else:
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(math.sqrt(len(posemb_grid)))
gs_new = int(math.sqrt(ntok_new))
_logger.info('Position embedding grid-size from %s to %s', gs_old, gs_new)
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear')
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new * gs_new, -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
def checkpoint_filter_fn(state_dict, model):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
if 'model' in state_dict:
# For deit models
state_dict = state_dict['model']
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
# For old models that I trained prior to conv based patchification
O, I, H, W = model.patch_embed.proj.weight.shape
v = v.reshape(O, -1, H, W)
elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
# To resize pos embedding when using model at different size from pretrained weights
v = resize_pos_embed(v, model.pos_embed)
out_dict[k] = v
return out_dict
def test_irregular_sparsity(name,matrix):
# continue
zeros = np.sum(matrix.cpu().detach().numpy() == 0)
non_zeros = np.sum(matrix.cpu().detach().numpy() != 0)
# print(name, non_zeros)
#print(" {}, all weights: {}, irregular zeros: {}, irregular sparsity is: {:.4f}".format( name, zeros+non_zeros, zeros, zeros / (zeros + non_zeros)))
# print(non_zeros+zeros)
# total_nonzeros += 128000
return zeros,non_zeros