-
Notifications
You must be signed in to change notification settings - Fork 18
/
module.py
148 lines (116 loc) · 6.8 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from __future__ import division
import tensorflow as tf
from ops import *
from utils import *
def tf_kernel_prep_3d(kernel, n_channels):
return np.tile(kernel, (n_channels, 1, 1)).swapaxes(0,1).swapaxes(1,2)
def tf_deriv(batch, ksize=3, padding='SAME'):
n_ch = int(batch.get_shape().as_list()[3])
gx = tf_kernel_prep_3d(np.array([[-1, 0, 1],
[-2, 0, 2],
[-1, 0, 1]]), n_ch)
gy = tf_kernel_prep_3d(np.array([[-1,-2, -1],
[ 0, 0, 0],
[ 1, 2, 1]]), n_ch)
kernel = tf.constant(np.stack([gx, gy], axis=-1), name="DerivKernel_image", dtype = np.float32)
return tf.nn.depthwise_conv2d(batch, kernel, [1, 1, 1, 1], padding=padding, name="GradXY")
def discriminator(image, mask, options, reuse=False, name="discriminator"):
with tf.variable_scope(name):
# image is 256 x 512 x input_c_dim
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
h0 = lrelu(conv2d(image, options.df_dim, name='d_h0_conv'))
# h0 is (128 x 256 x self.df_dim)
h1 = lrelu(instance_norm(conv2d(h0, options.df_dim*2, name='d_h1_conv'), 'd_bn1'))
# h1 is (64 x 128 x self.df_dim*2)
h2 = lrelu(instance_norm(conv2d(h1, options.df_dim*4, name='d_h2_conv'), 'd_bn2'))
# h2 is (32x 64 x self.df_dim*4)
h3 = lrelu(instance_norm(conv2d(h2, options.df_dim*8, s=1, name='d_h3_conv'), 'd_bn3'))
# h3 is (32 x 64 x self.df_dim*8)
h4 = conv2d(h3, options.segment_class, s=1, name='d_h4_conv')
h4_mask = tf.reduce_sum(tf.multiply(h4, mask), axis=-1, keep_dims=True)
# h4_mask is (32 x 64 x 1)
return h4_mask
def generator_unet(image, options, reuse=False, name="generator"):
dropout_rate = 0.5 if options.is_training else 1.0
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
e1 = instance_norm(conv2d(image, options.gf_dim, name='g_e1_conv'))
e2 = instance_norm(conv2d(lrelu(e1), options.gf_dim*2, name='g_e2_conv'), 'g_bn_e2')
e3 = instance_norm(conv2d(lrelu(e2), options.gf_dim*4, name='g_e3_conv'), 'g_bn_e3')
e4 = instance_norm(conv2d(lrelu(e3), options.gf_dim*8, name='g_e4_conv'), 'g_bn_e4')
e5 = instance_norm(conv2d(lrelu(e4), options.gf_dim*8, name='g_e5_conv'), 'g_bn_e5')
e6 = instance_norm(conv2d(lrelu(e5), options.gf_dim*8, name='g_e6_conv'), 'g_bn_e6')
e7 = instance_norm(conv2d(lrelu(e6), options.gf_dim*8, name='g_e7_conv'), 'g_bn_e7')
e8 = instance_norm(conv2d(lrelu(e7), options.gf_dim*8, name='g_e8_conv'), 'g_bn_e8')
d1 = deconv2d(tf.nn.relu(e8), options.gf_dim*8, name='g_d1')
d1 = tf.nn.dropout(d1, dropout_rate)
d1 = tf.concat([instance_norm(d1, 'g_bn_d1'), e7], 3)
d2 = deconv2d(tf.nn.relu(d1), options.gf_dim*8, name='g_d2')
d2 = tf.nn.dropout(d2, dropout_rate)
d2 = tf.concat([instance_norm(d2, 'g_bn_d2'), e6], 3)
d3 = deconv2d(tf.nn.relu(d2), options.gf_dim*8, name='g_d3')
d3 = tf.nn.dropout(d3, dropout_rate)
d3 = tf.concat([instance_norm(d3, 'g_bn_d3'), e5], 3)
d4 = deconv2d(tf.nn.relu(d3), options.gf_dim*8, name='g_d4')
d4 = tf.concat([instance_norm(d4, 'g_bn_d4'), e4], 3)
d5 = deconv2d(tf.nn.relu(d4), options.gf_dim*4, name='g_d5')
d5 = tf.concat([instance_norm(d5, 'g_bn_d5'), e3], 3)
d6 = deconv2d(tf.nn.relu(d5), options.gf_dim*2, name='g_d6')
d6 = tf.concat([instance_norm(d6, 'g_bn_d6'), e2], 3)
d7 = deconv2d(tf.nn.relu(d6), options.gf_dim, name='g_d7')
d7 = tf.concat([instance_norm(d7, 'g_bn_d7'), e1], 3)
d8 = deconv2d(tf.nn.relu(d7), options.output_c_dim, name='g_d8')
return tf.nn.tanh(d8)
def generator_resnet(image, options, reuse=False, name="generator"):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
def residule_block(x, dim, ks=3, s=1, name='res'):
p = int((ks - 1) / 2)
y = tf.pad(x, [[0, 0], [p, p], [p, p], [0, 0]], "REFLECT")
y = instance_norm(conv2d(y, dim, ks, s, padding='VALID', name=name+'_c1'), name+'_bn1')
y = tf.pad(tf.nn.relu(y), [[0, 0], [p, p], [p, p], [0, 0]], "REFLECT")
y = instance_norm(conv2d(y, dim, ks, s, padding='VALID', name=name+'_c2'), name+'_bn2')
return y + x
# Justin Johnson's model from https://github.com/jcjohnson/fast-neural-style/
# The network with 9 blocks consists of: c7s1-32, d64, d128, R128, R128, R128,
# R128, R128, R128, R128, R128, R128, u64, u32, c7s1-3
c0 = tf.pad(image, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
c1 = tf.nn.relu(instance_norm(conv2d(c0, options.gf_dim, 7, 1, padding='VALID', name='g_e1_c'), 'g_e1_bn'))
c2 = tf.nn.relu(instance_norm(conv2d(c1, options.gf_dim*2, 3, 2, name='g_e2_c'), 'g_e2_bn'))
c3 = tf.nn.relu(instance_norm(conv2d(c2, options.gf_dim*4, 3, 2, name='g_e3_c'), 'g_e3_bn'))
# define G network with 9 resnet blocks
r1 = residule_block(c3, options.gf_dim*4, name='g_r1')
r2 = residule_block(r1, options.gf_dim*4, name='g_r2')
r3 = residule_block(r2, options.gf_dim*4, name='g_r3')
r4 = residule_block(r3, options.gf_dim*4, name='g_r4')
r5 = residule_block(r4, options.gf_dim*4, name='g_r5')
r6 = residule_block(r5, options.gf_dim*4, name='g_r6')
r7 = residule_block(r6, options.gf_dim*4, name='g_r7')
r8 = residule_block(r7, options.gf_dim*4, name='g_r8')
r9 = residule_block(r8, options.gf_dim*4, name='g_r9')
d1 = deconv2d(r9, options.gf_dim*2, 3, 2, name='g_d1_dc')
d1 = tf.nn.relu(instance_norm(d1, 'g_d1_bn'))
d2 = deconv2d(d1, options.gf_dim, 3, 2, name='g_d2_dc')
d2 = tf.nn.relu(instance_norm(d2, 'g_d2_bn'))
d2 = tf.pad(d2, [[0, 0], [3, 3], [3, 3], [0, 0]], "REFLECT")
pred = tf.nn.tanh(conv2d(d2, options.output_c_dim, 7, 1, padding='VALID', name='g_pred_c'))
return pred
def abs_criterion(in_, target):
return tf.reduce_mean(tf.abs(in_ - target))
def mae_criterion(in_, target):
return tf.reduce_mean((in_-target)**2)
def sce_criterion(logits, labels):
return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels))
def gradloss_criterion(in_, target, weight):
abs_deriv = tf.abs(tf.abs(tf_deriv(in_)) - tf.abs(tf_deriv(target)))
abs_deriv = tf.reduce_mean(abs_deriv, axis=-1, keep_dims=True)
return tf.reduce_mean(tf.multiply(weight, abs_deriv))