forked from llSourcell/AI_Composer
-
Notifications
You must be signed in to change notification settings - Fork 1
/
nottingham_util.py
522 lines (419 loc) · 17.8 KB
/
nottingham_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
import numpy as np
import os
import midi
import cPickle
from pprint import pprint
import midi_util
import mingus
import mingus.core.chords
import sampling
PICKLE_LOC = 'data/nottingham.pickle'
NOTTINGHAM_MELODY_MAX = 88
NOTTINGHAM_MELODY_MIN = 55
# add one to the range for silence in melody
NOTTINGHAM_MELODY_RANGE = NOTTINGHAM_MELODY_MAX - NOTTINGHAM_MELODY_MIN + 1 + 1
CHORD_BASE = 48
CHORD_BLACKLIST = ['major third', 'minor third', 'perfect fifth']
NO_CHORD = 'NONE'
SHARPS_TO_FLATS = {
"A#": "Bb",
"B#": "C",
"C#": "Db",
"D#": "Eb",
"E#": "F",
"F#": "Gb",
"G#": "Ab",
}
def resolve_chord(chord):
"""
Resolves rare chords to their closest common chord, to limit the total
amount of chord classes.
"""
if chord in CHORD_BLACKLIST:
return None
# take the first of dual chords
if "|" in chord:
chord = chord.split("|")[0]
# remove 7ths, 11ths, 9s, 6th,
if chord.endswith("11"):
chord = chord[:-2]
if chord.endswith("7") or chord.endswith("9") or chord.endswith("6"):
chord = chord[:-1]
# replace 'dim' with minor
if chord.endswith("dim"):
chord = chord[:-3] + "m"
return chord
def prepare_nottingham_pickle(time_step, chord_cutoff=64, filename=PICKLE_LOC, verbose=False):
"""
time_step: the time step to discretize all notes into
chord_cutoff: if chords are seen less than this cutoff, they are ignored and marked as
as rests in the resulting dataset
filename: the location where the pickle will be saved to
"""
data = {}
store = {}
chords = {}
max_seq = 0
seq_lens = []
for d in ["train", "test", "valid"]:
print "Parsing {}...".format(d)
parsed = parse_nottingham_directory("data/Nottingham/{}".format(d), time_step, verbose=False)
metadata = [s[0] for s in parsed]
seqs = [s[1] for s in parsed]
data[d] = seqs
data[d + '_metadata'] = metadata
lens = [len(s[1]) for s in seqs]
seq_lens += lens
max_seq = max(max_seq, max(lens))
for _, harmony in seqs:
for h in harmony:
if h not in chords:
chords[h] = 1
else:
chords[h] += 1
avg_seq = float(sum(seq_lens)) / len(seq_lens)
chords = { c: i for c, i in chords.iteritems() if chords[c] >= chord_cutoff }
chord_mapping = { c: i for i, c in enumerate(chords.keys()) }
num_chords = len(chord_mapping)
store['chord_to_idx'] = chord_mapping
if verbose:
pprint(chords)
print "Number of chords: {}".format(num_chords)
print "Max Sequence length: {}".format(max_seq)
print "Avg Sequence length: {}".format(avg_seq)
print "Num Sequences: {}".format(len(seq_lens))
def combine(melody, harmony):
full = np.zeros((melody.shape[0], NOTTINGHAM_MELODY_RANGE + num_chords))
assert melody.shape[0] == len(harmony)
# for all melody sequences that don't have any notes, add the empty melody marker (last one)
for i in range(melody.shape[0]):
if np.count_nonzero(melody[i, :]) == 0:
melody[i, NOTTINGHAM_MELODY_RANGE-1] = 1
# all melody encodings should now have exactly one 1
for i in range(melody.shape[0]):
assert np.count_nonzero(melody[i, :]) == 1
# add all the melodies
full[:, :melody.shape[1]] += melody
harmony_idxs = [ chord_mapping[h] if h in chord_mapping else chord_mapping[NO_CHORD] \
for h in harmony ]
harmony_idxs = [ NOTTINGHAM_MELODY_RANGE + h for h in harmony_idxs ]
full[np.arange(len(harmony)), harmony_idxs] = 1
# all full encodings should have exactly two 1's
for i in range(full.shape[0]):
assert np.count_nonzero(full[i, :]) == 2
return full
for d in ["train", "test", "valid"]:
print "Combining {}".format(d)
store[d] = [ combine(m, h) for m, h in data[d] ]
store[d + '_metadata'] = data[d + '_metadata']
with open(filename, 'w') as f:
cPickle.dump(store, f, protocol=-1)
return True
def parse_nottingham_directory(input_dir, time_step, verbose=False):
"""
input_dir: a directory containing MIDI files
returns a list of [T x D] matrices, where each matrix represents a
a sequence with T time steps over D dimensions
"""
files = [ os.path.join(input_dir, f) for f in os.listdir(input_dir)
if os.path.isfile(os.path.join(input_dir, f)) ]
sequences = [ \
parse_nottingham_to_sequence(f, time_step=time_step, verbose=verbose) \
for f in files ]
if verbose:
print "Total sequences: {}".format(len(sequences))
# filter out the non 2-track MIDI's
sequences = filter(lambda x: x[1] != None, sequences)
if verbose:
print "Total sequences left: {}".format(len(sequences))
return sequences
def parse_nottingham_to_sequence(input_filename, time_step, verbose=False):
"""
input_filename: a MIDI filename
returns a [T x D] matrix representing a sequence with T time steps over
D dimensions
"""
sequence = []
pattern = midi.read_midifile(input_filename)
metadata = {
"path": input_filename,
"name": input_filename.split("/")[-1].split(".")[0]
}
# Most nottingham midi's have 3 tracks. metadata info, melody, harmony
# throw away any tracks that don't fit this
if len(pattern) != 3:
if verbose:
"Skipping track with {} tracks".format(len(pattern))
return (metadata, None)
# ticks_per_quarter = -1
for msg in pattern[0]:
if isinstance(msg, midi.TimeSignatureEvent):
metadata["ticks_per_quarter"] = msg.get_metronome()
ticks_per_quarter = msg.get_metronome()
if verbose:
print "{}".format(input_filename)
print "Track resolution: {}".format(pattern.resolution)
print "Number of tracks: {}".format(len(pattern))
print "Time step: {}".format(time_step)
print "Ticks per quarter: {}".format(ticks_per_quarter)
# Track ingestion stage
track_ticks = 0
melody_notes, melody_ticks = midi_util.ingest_notes(pattern[1])
harmony_notes, harmony_ticks = midi_util.ingest_notes(pattern[2])
track_ticks = midi_util.round_tick(max(melody_ticks, harmony_ticks), time_step)
if verbose:
print "Track ticks (rounded): {} ({} time steps)".format(track_ticks, track_ticks/time_step)
melody_sequence = midi_util.round_notes(melody_notes, track_ticks, time_step,
R=NOTTINGHAM_MELODY_RANGE, O=NOTTINGHAM_MELODY_MIN)
for i in range(melody_sequence.shape[0]):
if np.count_nonzero(melody_sequence[i, :]) > 1:
if verbose:
print "Double note found: {}: {} ({})".format(i, np.nonzero(melody_sequence[i, :]), input_filename)
return (metadata, None)
harmony_sequence = midi_util.round_notes(harmony_notes, track_ticks, time_step)
harmonies = []
for i in range(harmony_sequence.shape[0]):
notes = np.where(harmony_sequence[i] == 1)[0]
if len(notes) > 0:
notes_shift = [ mingus.core.notes.int_to_note(h%12) for h in notes]
chord = mingus.core.chords.determine(notes_shift, shorthand=True)
if len(chord) == 0:
# try flat combinations
notes_shift = [ SHARPS_TO_FLATS[n] if n in SHARPS_TO_FLATS else n for n in notes_shift]
chord = mingus.core.chords.determine(notes_shift, shorthand=True)
if len(chord) == 0:
if verbose:
print "Could not determine chord: {} ({}, {}), defaulting to last steps chord" \
.format(notes_shift, input_filename, i)
if len(harmonies) > 0:
harmonies.append(harmonies[-1])
else:
harmonies.append(NO_CHORD)
else:
resolved = resolve_chord(chord[0])
if resolved:
harmonies.append(resolved)
else:
harmonies.append(NO_CHORD)
else:
harmonies.append(NO_CHORD)
return (metadata, (melody_sequence, harmonies))
class NottinghamMidiWriter(midi_util.MidiWriter):
def __init__(self, chord_to_idx, verbose=False):
super(NottinghamMidiWriter, self).__init__(verbose)
self.idx_to_chord = { i: c for c, i in chord_to_idx.items() }
self.note_range = NOTTINGHAM_MELODY_RANGE + len(self.idx_to_chord)
def dereference_chord(self, idx):
if idx not in self.idx_to_chord:
raise Exception("No chord index found: {}".format(idx))
shorthand = self.idx_to_chord[idx]
if shorthand == NO_CHORD:
return []
chord = mingus.core.chords.from_shorthand(shorthand)
return [ CHORD_BASE + mingus.core.notes.note_to_int(n) for n in chord ]
def note_on(self, val, tick):
if val >= NOTTINGHAM_MELODY_RANGE:
notes = self.dereference_chord(val - NOTTINGHAM_MELODY_RANGE)
else:
# if note is the top of the range, then it stands for gap in melody
if val == NOTTINGHAM_MELODY_RANGE - 1:
notes = []
else:
notes = [NOTTINGHAM_MELODY_MIN + val]
# print 'turning on {}'.format(notes)
for note in notes:
self.track.append(midi.NoteOnEvent(tick=tick, pitch=note, velocity=70))
tick = 0 # notes that come right after each other should have zero tick
return tick
def note_off(self, val, tick):
if val >= NOTTINGHAM_MELODY_RANGE:
notes = self.dereference_chord(val - NOTTINGHAM_MELODY_RANGE)
else:
notes = [NOTTINGHAM_MELODY_MIN + val]
# print 'turning off {}'.format(notes)
for note in notes:
self.track.append(midi.NoteOffEvent(tick=tick, pitch=note))
tick = 0
return tick
class NottinghamSampler(object):
def __init__(self, chord_to_idx, method = 'sample', harmony_repeat_max = 16, melody_repeat_max = 16, verbose=False):
self.verbose = verbose
self.idx_to_chord = { i: c for c, i in chord_to_idx.items() }
self.method = method
self.hlast = 0
self.hcount = 0
self.hrepeat = harmony_repeat_max
self.mlast = 0
self.mcount = 0
self.mrepeat = melody_repeat_max
def visualize_probs(self, probs):
if not self.verbose:
return
melodies = sorted(list(enumerate(probs[:NOTTINGHAM_MELODY_RANGE])),
key=lambda x: x[1], reverse=True)[:4]
harmonies = sorted(list(enumerate(probs[NOTTINGHAM_MELODY_RANGE:])),
key=lambda x: x[1], reverse=True)[:4]
harmonies = [(self.idx_to_chord[i], j) for i, j in harmonies]
print 'Top Melody Notes: '
pprint(melodies)
print 'Top Harmony Notes: '
pprint(harmonies)
def sample_notes_static(self, probs):
top_m = probs[:NOTTINGHAM_MELODY_RANGE].argsort()
if top_m[-1] == self.mlast and self.mcount >= self.mrepeat:
top_m = top_m[:-1]
self.mcount = 0
elif top_m[-1] == self.mlast:
self.mcount += 1
else:
self.mcount = 0
self.mlast = top_m[-1]
top_melody = top_m[-1]
top_h = probs[NOTTINGHAM_MELODY_RANGE:].argsort()
if top_h[-1] == self.hlast and self.hcount >= self.hrepeat:
top_h = top_h[:-1]
self.hcount = 0
elif top_h[-1] == self.hlast:
self.hcount += 1
else:
self.hcount = 0
self.hlast = top_h[-1]
top_chord = top_h[-1] + NOTTINGHAM_MELODY_RANGE
chord = np.zeros([len(probs)], dtype=np.int32)
chord[top_melody] = 1.0
chord[top_chord] = 1.0
return chord
def sample_notes_dist(self, probs):
idxed = [(i, p) for i, p in enumerate(probs)]
notes = [n[0] for n in idxed]
ps = np.array([n[1] for n in idxed])
r = NOTTINGHAM_MELODY_RANGE
assert np.allclose(np.sum(ps[:r]), 1.0)
assert np.allclose(np.sum(ps[r:]), 1.0)
# renormalize so numpy doesn't complain
ps[:r] = ps[:r] / ps[:r].sum()
ps[r:] = ps[r:] / ps[r:].sum()
melody = np.random.choice(notes[:r], p=ps[:r])
harmony = np.random.choice(notes[r:], p=ps[r:])
chord = np.zeros([len(probs)], dtype=np.int32)
chord[melody] = 1.0
chord[harmony] = 1.0
return chord
def sample_notes(self, probs):
self.visualize_probs(probs)
if self.method == 'static':
return self.sample_notes_static(probs)
elif self.method == 'sample':
return self.sample_notes_dist(probs)
def accuracy(batch_probs, data, num_samples=1):
"""
Batch Probs: { num_time_steps: [ time_step_1, time_step_2, ... ] }
Data: [
[ [ data ], [ target ] ], # batch with one time step
[ [ data1, data2 ], [ target1, target2 ] ], # batch with two time steps
...
]
"""
def calc_accuracy():
total = 0
melody_correct, harmony_correct = 0, 0
melody_incorrect, harmony_incorrect = 0, 0
for _, batch_targets in data:
num_time_steps = len(batch_targets)
for ts_targets, ts_probs in zip(batch_targets, batch_probs[num_time_steps]):
assert ts_targets.shape == ts_targets.shape
for seq_idx in range(ts_targets.shape[1]):
for step_idx in range(ts_targets.shape[0]):
idxed = [(n, p) for n, p in \
enumerate(ts_probs[step_idx, seq_idx, :])]
notes = [n[0] for n in idxed]
ps = np.array([n[1] for n in idxed])
r = NOTTINGHAM_MELODY_RANGE
assert np.allclose(np.sum(ps[:r]), 1.0)
assert np.allclose(np.sum(ps[r:]), 1.0)
# renormalize so numpy doesn't complain
ps[:r] = ps[:r] / ps[:r].sum()
ps[r:] = ps[r:] / ps[r:].sum()
melody = np.random.choice(notes[:r], p=ps[:r])
harmony = np.random.choice(notes[r:], p=ps[r:])
melody_target = ts_targets[step_idx, seq_idx, 0]
if melody_target == melody:
melody_correct += 1
else:
melody_incorrect += 1
harmony_target = ts_targets[step_idx, seq_idx, 1] + r
if harmony_target == harmony:
harmony_correct += 1
else:
harmony_incorrect += 1
return (melody_correct, melody_incorrect, harmony_correct, harmony_incorrect)
maccs, haccs, taccs = [], [], []
for i in range(num_samples):
print "Sample {}".format(i)
m, mi, h, hi = calc_accuracy()
maccs.append( float(m) / float(m + mi))
haccs.append( float(h) / float(h + hi))
taccs.append( float(m + h) / float(m + h + mi + hi) )
print "Melody Precision/Recall: {}".format(sum(maccs)/len(maccs))
print "Harmony Precision/Recall: {}".format(sum(haccs)/len(haccs))
print "Total Precision/Recall: {}".format(sum(taccs)/len(taccs))
def seperate_accuracy(batch_probs, data, num_samples=1):
def calc_accuracy():
total = 0
total_correct, total_incorrect = 0, 0
for _, batch_targets in data:
num_time_steps = len(batch_targets)
for ts_targets, ts_probs in zip(batch_targets, batch_probs[num_time_steps]):
assert ts_targets.shape == ts_targets.shape
for seq_idx in range(ts_targets.shape[1]):
for step_idx in range(ts_targets.shape[0]):
idxed = [(n, p) for n, p in \
enumerate(ts_probs[step_idx, seq_idx, :])]
notes = [n[0] for n in idxed]
ps = np.array([n[1] for n in idxed])
r = NOTTINGHAM_MELODY_RANGE
assert np.allclose(np.sum(ps), 1.0)
ps = ps / ps.sum()
note = np.random.choice(notes, p=ps)
target = ts_targets[step_idx, seq_idx]
if target == note:
total_correct += 1
else:
total_incorrect += 1
return (total_correct, total_incorrect)
taccs = []
for i in range(num_samples):
print "Sample {}".format(i)
c, ic = calc_accuracy()
taccs.append( float(c) / float(c + ic))
print "Precision/Recall: {}".format(sum(taccs)/len(taccs))
def i_vi_iv_v(chord_to_idx, repeats, input_dim):
r = NOTTINGHAM_MELODY_RANGE
i = np.zeros(input_dim)
i[r + chord_to_idx['CM']] = 1
vi = np.zeros(input_dim)
vi[r + chord_to_idx['Am']] = 1
iv = np.zeros(input_dim)
iv[r + chord_to_idx['FM']] = 1
v = np.zeros(input_dim)
v[r + chord_to_idx['GM']] = 1
full_seq = [i] * 16 + [vi] * 16 + [iv] * 16 + [v] * 16
full_seq = full_seq * repeats
return full_seq
def create_model():
resolution = 480
time_step = 120
assert resolve_chord("GM7") == "GM"
assert resolve_chord("G#dim|AM7") == "G#m"
assert resolve_chord("Dm9") == "Dm"
assert resolve_chord("AM11") == "AM"
prepare_nottingham_pickle(time_step, verbose=True)
print('Model created!')
if __name__ == '__main__':
resolution = 480
time_step = 120
assert resolve_chord("GM7") == "GM"
assert resolve_chord("G#dim|AM7") == "G#m"
assert resolve_chord("Dm9") == "Dm"
assert resolve_chord("AM11") == "AM"
prepare_nottingham_pickle(time_step, verbose=True)