-
Notifications
You must be signed in to change notification settings - Fork 1.2k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
PP—ShiTuV2 RPC训练数据问题确认 #3174
Comments
batch size=32 |
你好,感谢提问
|
该主体检测模型其实是一个框的召回模型,具体的识别效果取决于识别模型和你的数据库,所以可以从调整识别模型和数据库上入手调试 |
我训练rpc数据集精度很差怎么办,我感觉是因为验证集和训练集有差距的问题,你是怎么训练到map0.4的? |
你的精度有多少呢 |
我就是用他单个目标的训练集,验证集是多个目标的,map95顶多到0.24 |
PP—ShiTuV2训练主体检测的时候rpc数据集是怎么用的?多个目标的数据有没有加入到训练集里? |
多个目标也是按单类别来训练的 |
P—ShiTuV2训练主体检测的时候训练集里加了多个目标的数据吗?还是只有单个目标 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
1,数据集中的数据量,是图片数,还是分类数?
2,PRC的数据,官方给出的是200分类,训练集数据近6万。与PaddleClas给出数据不符。
请帮忙确认图片中,RPC 3K,是什么意思。如果我们只用RPC数据做迁移学习,训练数据集应如何调整?
3,我们目前用RPC全量数据做迁移学习,loss停留在0.4无法收敛,请给出优化建议。
配置如下:
BASE: [
'../../../runtime.yml',
'../../base/picodet_esnet.yml',
'../../base/optimizer_100e.yml',
'../../base/picodet_640_reader.yml',
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_lcnet_x2_5_640_mainbody.pdparams
weights: output/picodet_lcnet_x2_5_640_mainbody/model_final
find_unused_parameters: True
use_ema: true
cycle_epoch: 10
snapshot_epoch: 1
PicoDet:
backbone: LCNet
neck: CSPPAN
head: PicoHead
LCNet:
scale: 2.5
feature_maps: [3, 4, 5]
metric: COCO
num_classes: 1
LearningRate:
base_lr: 0.0005
schedulers:
max_epochs: 100
start_factor: 1
steps: 1
TrainDataset:
!COCODataSet
#image_dir: ./
image_dir: train2019/
anno_path: instances_train2019_main.json
dataset_dir: dataset/dataset_rpc/
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
EvalDataset:
!COCODataSet
image_dir: val2019/
anno_path: instances_val2019_main.json
dataset_dir: dataset/dataset_rpc/
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
TestDataset:
!ImageFolder
anno_path: ./dataset/dataset_rpc/instances_test2019_main.json
The text was updated successfully, but these errors were encountered: