Skip to content

Commit

Permalink
black reformat
Browse files Browse the repository at this point in the history
  • Loading branch information
cameron-a-johnson committed Oct 25, 2024
1 parent 6782a23 commit c933cac
Showing 1 changed file with 31 additions and 25 deletions.
56 changes: 31 additions & 25 deletions tcn_hpl/data/vectorize.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@
from tcn_hpl.data.vectorize_classic import (
obj_det2d_set_to_feature,
zero_joint_offset,
default_bbox
default_bbox,
)


Expand Down Expand Up @@ -85,7 +85,7 @@ def __bool__(self):

@functools.lru_cache()
def _class_labels_to_map(
class_labels: tg.Sequence[tg.Optional[str]]
class_labels: tg.Sequence[tg.Optional[str]],
) -> tg.Dict[str, int]:
"""
Transform a sequence of class label strings into a mapping from label name
Expand All @@ -100,8 +100,8 @@ def _class_labels_to_map(
min_cat = min(lbl_to_idx.values())
for k in lbl_to_idx:
lbl_to_idx[k] -= min_cat
assert (
set(lbl_to_idx.values()) == set(range(len(lbl_to_idx)))
assert set(lbl_to_idx.values()) == set(
range(len(lbl_to_idx))
), "Resulting category indices must start at 0 and be contiguous."
return lbl_to_idx

Expand Down Expand Up @@ -171,33 +171,38 @@ def vectorize_window(
best_pose_score = np.max(f_poses.scores)
pose_kps = [
{"xy": joint_pt, "score": joint_score}
for (joint_pt, joint_score) in zip(f_poses.joint_positions[best_pose_idx], f_poses.joint_scores[best_pose_idx])
for (joint_pt, joint_score) in zip(
f_poses.joint_positions[best_pose_idx],
f_poses.joint_scores[best_pose_idx],
)
]
else:
# special value for the classic method to indicate no pose joints.
pose_kps = zero_joint_offset

frame_feat = obj_det2d_set_to_feature_by_method_new(
label_vec=[det_class_labels[lbl] for lbl in f_dets.labels],
xs=det_xs,
ys=det_ys,
ws=det_ws,
hs=det_hs,
label_confidences=f_dets.scores,
pose_confidence=best_pose_score,
pose_keypoints=pose_kps,
obj_label_to_ind=obj_label_to_ind,
top_k_objects=top_k_objects,
).ravel().astype(feat_dtype)
frame_feat = (
obj_det2d_set_to_feature_by_method_new(
label_vec=[det_class_labels[lbl] for lbl in f_dets.labels],
xs=det_xs,
ys=det_ys,
ws=det_ws,
hs=det_hs,
label_confidences=f_dets.scores,
pose_confidence=best_pose_score,
pose_keypoints=pose_kps,
obj_label_to_ind=obj_label_to_ind,
top_k_objects=top_k_objects,
)
.ravel()
.astype(feat_dtype)
)
feat_dim = frame_feat.size
f_vecs[i] = frame_feat

# If a caller is getting this, we could start to throw a more specific
# error, and the caller could safely catch it to consider this window as
# whatever the "background" class is.
assert (
feat_dim is not None
), "No features computed for any frame this window?"
assert feat_dim is not None, "No features computed for any frame this window?"

# If a feature fails to be generated for a frame:
# * insert zero-vector matching dimensionality.
Expand All @@ -208,6 +213,7 @@ def vectorize_window(

return np.asarray(f_vecs)


def obj_det2d_set_to_feature_by_method_new(
label_vec: List[str],
xs: List[float],
Expand All @@ -219,7 +225,7 @@ def obj_det2d_set_to_feature_by_method_new(
pose_keypoints: List[Dict],
obj_label_to_ind: Dict[str, int],
top_k_objects: int = 1,
):
):
"""
:param label_vec: List of object labels for each detection (length: # detections)
:param xs: List of x values for each detection (length: # detections)
Expand Down Expand Up @@ -321,11 +327,11 @@ def find_hand(hand_str):
right_hand_bbox, right_hand_conf
feature_vec[i] = right_hand_conf
i += 1
feature_vec[i:i+4] = right_hand_bbox
feature_vec[i : i + 4] = right_hand_bbox
i += 4
feature_vec[i] = left_hand_conf
i += 1
feature_vec[i:i+4] = left_hand_bbox
feature_vec[i : i + 4] = left_hand_bbox
i += 4

# OBJECTS
Expand All @@ -338,7 +344,7 @@ def find_hand(hand_str):
feature_vec[i] = det_class_max_conf[obj_ind][0]
i += 1
# Coordinates
feature_vec[i:i+4] = det_class_bbox[0][obj_ind]
feature_vec[i : i + 4] = det_class_bbox[0][obj_ind]
i += 4

# CASUALTY
Expand All @@ -353,7 +359,7 @@ def find_hand(hand_str):
jx, jy = joint["xy"]
feature_vec[i] = joint["score"]
i += 1
feature_vec[i:i+2] = joint["xy"]
feature_vec[i : i + 2] = joint["xy"]
i += 2

return feature_vec

0 comments on commit c933cac

Please sign in to comment.