An unofficial implementation (combination) of "Instant Neural Graphics Primitives with a Multiresolution Hash Encoding" and "Urban Radiance Fields"
@article{muller2022instantngp,
title={Instant neural graphics primitives with a multiresolution hash encoding},
author={M{\"u}ller, Thomas and Evans, Alex and Schied, Christoph and Keller, Alexander},
journal={ACM Transactions on Graphics (ToG)},
volume={41},
number={4},
pages={1--15},
year={2022}
}
@inproceedings{rematas2022urban,
title={Urban radiance fields},
author={Rematas, Konstantinos and Liu, Andrew and Srinivasan, Pratul P and Barron, Jonathan T and Tagliasacchi, Andrea and Funkhouser, Thomas and Ferrari, Vittorio},
booktitle={Proc. {IEEE/CVF} Conference on Computer Vision and Pattern Recognition (CVPR)},
pages={12932--12942},
year={2022}
}
-
~45 mins training time on single RTX3090
-
~11 GiB GPU Mem
-
>20 GiB CPU Mem (Caching data to speed up)
-
Waymo Open Dataset - Perception
-
split file: waymo_static_32.lst
Settings | Config file |
---|---|
Multi-view reconstruction with LiDAR | ngp_withlidar.230814.yaml |
For detailed instructions, please refer to the general guide section in code_single
.